Chapter 3

Arithmetic for Computers
Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations
ALU Design

- Arithmetic logic unit (ALU) performs arithmetic operations, such as addition and subtraction, and logical operations, such as AND and OR.

- For ALU implementation, you will learn more details about this in VLSI Design Course
Designing (MIPS) ALU

- Requirements: must support the following arithmetic and logic operations
 - **add, sub**: two’s complement adder/subtractor with overflow detection
 - **and, or, nor**: logical AND, logical OR, logical NOR
 - **slt** (set on less than): two’s complement adder with inverter, check sign bit of result

![ALU Diagram]

<table>
<thead>
<tr>
<th>(ALUop)</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>and</td>
</tr>
<tr>
<td>0001</td>
<td>or</td>
</tr>
<tr>
<td>0010</td>
<td>add</td>
</tr>
<tr>
<td>0110</td>
<td>subtract</td>
</tr>
<tr>
<td>0111</td>
<td>set-on-less-than</td>
</tr>
<tr>
<td>1100</td>
<td>nor</td>
</tr>
</tbody>
</table>
32-Bit ALU ↔ Bit-slice ALU

- Design trick 1: divide and conquer
 - Break the problem into simpler problems, solve them and glue together the solution
- Design trick 2: solve part of the problem and extend
Integer Addition

- Example: $7 + 6$

\[
\begin{array}{cccccccc}
(0) & (0) & (1) & (1) & (0) & (\text{Carries}) \\
\ldots & 0 & 0 & 0 & 1 & 1 & 1 \\
\ldots & 0 & 0 & 0 & 1 & 1 & 0 \\
\ldots & (0) & (0) & (0) & 1 & (1) & 0 & (0) & 1 \\
\end{array}
\]

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0
A 4-bit ALU

- Design trick 3: take pieces you know (or can imagine) and try to put them together
Integer Subtraction

- Add negation of second operand
- Example: $7 - 6 = 7 + (-6)$

\[+7: \quad 0000 \ 0000 \ldots \ 0000 \ 0111\]
\[-6: \quad 1111 \ 1111 \ldots \ 1111 \ 1010\]
\[+1: \quad 0000 \ 0000 \ldots \ 0000 \ 0001\]

- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1
How about subtraction?

- Using the same logic
 - 2’s complement: take inverse of every bit and add 1 (at c\textsubscript{in} of first stage)
 - A + B’ + 1 = A + (B’ + 1) = A + (-B) = A - B
 - Bit-wise inverse of B is B’
Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive
- Consider the operations \(A + B \), and \(A - B \)
 - Can overflow occur if \(B \) is 0?
 - Can overflow occur if \(A \) is 0?
- Overflow detection

<table>
<thead>
<tr>
<th>Operation</th>
<th>A</th>
<th>B</th>
<th>Result indicating overflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+B</td>
<td>(\geq 0)</td>
<td>(\geq 0)</td>
<td>(< 0)</td>
</tr>
<tr>
<td>A+B</td>
<td>(< 0)</td>
<td>(< 0)</td>
<td>(\geq 0)</td>
</tr>
<tr>
<td>A-B</td>
<td>(\geq 0)</td>
<td>(< 0)</td>
<td>(< 0)</td>
</tr>
<tr>
<td>A-B</td>
<td>(< 0)</td>
<td>(\geq 0)</td>
<td>(\geq 0)</td>
</tr>
</tbody>
</table>
Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS `addu`, `addui`, `subu` instructions
 - Saturated arithmetic
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS `add`, `addi`, `sub` instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - `mfc0` (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action
Overflow Detection Logic

- **Overflow**: result too big/small to represent
 - When adding operands with different signs, overflow cannot occur!
 - Overflow occurs when adding:
 - 2 positive numbers and the sum is negative
 - 2 negative numbers and the sum is positive
 => sign bit is set with the value of the result
 - Overflow if: **Carry into MSB ≠ Carry out of MSB**

![Example](image)

Chapter 3 — Arithmetic for Computers — 12
Overflow Detection Logic

- Overflow = CarryIn\[N-1\] XOR CarryOut\[N-1\]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X XOR Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Problems with Ripple Carry Adder

- Carry bit may have to propagate from LSB to MSB => worst case delay: \textbf{N-stage delay}

Design Trick: look for parallelism and throw hardware at it
Remarks: Binary Adder

- synchronous word parallel adders
- ripple carry adders (RCA) \(T = O(n), A = O(n) \)
- signed-digit adders \(T = O(1), A = O(n) \)
- fast carry prop adders
- Manchester carry chain \(T = O(n), A = O(n) \)
- carry select\(T = O(\log n) \)
- carry lookahead \(A = O(n \log a n) \)
- prefix cond. carry sum skip \(T = O(n^{**1/2}), A = O(n) \)

Chapter 3 — Arithmetic for Computers — 15
Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)

- Saturating operations
 - On overflow, result is largest representable value
 - e.g. 2’s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video
Multiplication

- Start with long-multiplication approach

```
1000
× 1001
-----
1000   
0000   
0000   
1000   
-----
1001000
```

Length of product is the sum of operand lengths

Chapter 3 — Arithmetic for Computers — 17
Multiplication in MIPS

```
mult $t1, $t2  # t1 * t2

- No destination register: product could be ~2^{64}; need two special registers to hold it
- 3-step process:
```

$\begin{array}{c}
\text{Hi} \\
\text{Lo}
\end{array}$

```
mfhi $t3 \\
mflo $t4
```

```
$\begin{array}{c}
\text{Hi} \\
\text{Lo}
\end{array}$

$\begin{array}{c}
00011111111111111111111111111111 \\
11000000000000000000000000000000
\end{array}$

```

No destination register: product could be \(\sim 2^{64} \); need two special registers to hold it

3-step process:

```
$\begin{array}{c}
\text{Hi} \\
\text{Lo}
\end{array}$

```

```
mfhi $t3 \\
mflo $t4
```

```
$\begin{array}{c}
\text{Hi} \\
\text{Lo}
\end{array}$

```

Chapter 3 — Arithmetic for Computers — 18
Multiplication Hardware

1. Test Multiplier0
 - Multiplier0 = 1
 - 1a. Add multiplicand to product and place the result in Product register
 - 2. Shift the Multiplier register left 1 bit
 - 3. Shift the Multiplier register right 1 bit
 - No: < 32 repetitions
 - 32nd repetition?
 - Yes: 32 repetitions
 - Done
 - Multiplier0 = 0

2. Shift the Multiplier register left 1 bit
3. Shift the Multiplier register right 1 bit

Initially 0
Multiply Algorithm (Ver. 1)

0010 x 0011

<table>
<thead>
<tr>
<th>Product</th>
<th>Multiplier</th>
<th>Multiplicand</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0000</td>
<td>0011</td>
<td>0000 0010</td>
</tr>
<tr>
<td>0000 0010</td>
<td>0001</td>
<td>0000 0100</td>
</tr>
<tr>
<td>0000 0110</td>
<td>0000</td>
<td>0000 1000</td>
</tr>
<tr>
<td>0000 0110</td>
<td>0000</td>
<td>0001 0000</td>
</tr>
<tr>
<td>0000 0110</td>
<td>0000</td>
<td>0010 0000</td>
</tr>
</tbody>
</table>

1. Test Multiplier0

1a. Add multiplicand to product and place the result in Product register

2. Shift Multiplicand register left 1 bit

3. Shift Multiplier register right 1 bit

32nd repetition?

- Yes: 32 repetitions
- No: < 32 repetitions

Done
Observations

- 1 clock per cycle => too slow
 - Ratio of multiply to add 5:1 to 100:1
- Half of the bits in multiplicand always 0
 => 64-bit adder is wasted
- 0’s inserted in right of multiplicand as shifted
 => least significant bits of product never changed once formed
- Instead of shifting multiplicand to left, shift product to right?
- Product register wastes space => combine Multiplier and Product register
Multiply Algorithm (Ver. 2)

1. Test Product0
 - Product0 = 1
 - 1a. Add multiplicand to left half of product and place the result in left half of Product register
 - 2. Shift Product register right 1 bit

Multiplicand	Product
0010 | 0000 0011
 | 0010 0011
0010 | 0001 0001
 | 0011 0001
0010 | 0001 1000
0010 | 0000 1100
0010 | 0000 0110

32nd repetition?
- No: < 32 repetitions
- Yes: 32 repetitions

Done
Optimized Multiplier

- Perform steps in parallel: add/shift

 - One cycle per partial-product addition
 - That’s ok, if frequency of multiplications is low
Concluding Remarks

2 steps per bit because multiplier and product registers combined

MIPS registers Hi and Lo are left and right half of Product register
=> this gives the MIPS instruction MultU

What about signed multiplication?
- The easiest solution is to make both positive and remember whether to complement product when done (leave out sign bit, run for 31 steps)
- Apply definition of 2’s complement
 - sign-extend partial products and subtract at end
- **Booth’s Algorithm** is an elegant way to multiply signed numbers using same hardware as before and save cycles
Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel
MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32 bits

- Instructions
 - `mult rs, rt / multu rs, rt`
 - 64-bit product in HI/LO
 - `mfhi rd / mflo rd`
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - `mul rd, rs, rt`
 - Least-significant 32 bits of product → rd
Division

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

n-bit operands yield n-bit quotient and remainder
Division Hardware

1. Subtract the Divisor register from the Remainder register and place the result in the Remainder register.

Remainder ≥ 0

Test Remainder

Remainder < 0

2a. Shift the Quotient register to the left, setting the new rightmost bit to 1.

2b. Restore the original value by adding the Divisor register to the Remainder register and placing the sum in the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0.

3. Shift the Divisor register right 1 bit.

No: < 33 repetitions

Yes: 33 repetitions

33rd repetition?

Initially divisor in left half

Initially dividend

Chapter 3 — Arithmetic for Computers — 28
Divide Algorithm

1. Subtract Divisor register from Remainder register, and place the result in Remainder register

Remainder ≥ 0

2a. Shift Quotient register to left, setting new rightmost bit to 1

Remainder < 0

2b. Restore original value by adding Divisor to Remainder, place sum in Remainder, shift Quotient to the left, setting new least significant bit to 0

3. Shift Divisor register right 1 bit

33rd repetition?

No: < 33 repetitions

Yes: 33 repetitions

Done

Start: Place Dividend in Remainder

Quot. Divisor | Rem.
0000 00100000 00000111
0000 00010000 00000111
0000 00001000 00000111
0000 00000100 00000111
0001 00000010 00000111
0011 00000001 00000111
0011 00000001 00000001

33rd repetition?
Observations

- Half of the bits in divisor register always 0
 => 1/2 of 64-bit adder is wasted
 => 1/2 of divisor is wasted

- Instead of shifting divisor to right, shift remainder to left?

- 1st step cannot produce a 1 in quotient bit (otherwise quotient is too big for the register)
 => switch order to shift first and then subtract
 => save 1 iteration

- Eliminate Quotient register by combining with Remainder register as shifted left
Divide Algorithm (Version 2)

Start: Place Dividend in Remainder

1. Shift Remainder register left 1 bit

2. Subtract Divisor register from the left half of Remainder register, and place the result in the left half of Remainder register

Remainder ≥ 0

Test Remainder

Remainder < 0

3a. Shift Remainder to left, setting new rightmost bit to 1

3b. Restore original value by adding Divisor to left half of Remainder, and place sum in left half of Remainder. Also shift Remainder to left, setting the new least significant bit to 0

32nd repetition?

No: < 32 repetitions

Yes: 32 repetitions

Done. Shift left half of Remainder right 1 bit

Step	Remainder	Div.
0 | 0000 0111 0010 |
1.1 | 0000 1110 |
1.2 | 1110 1110 |
1.3b | 0001 1100 |
2.2 | 1111 1100 |
2.3b | 0011 1000 |
3.2 | 0001 1000 |
3.3a | 0011 0001 |
4.2 | 0001 0001 |
4.3a | 0010 0011 |

Remainder < 0 Remainder ≥ 0
Concluding Remarks

Observations: Divide vs. Multiply

- Same hardware as multiply:
 - just need ALU to add or subtract, and 64-bit register to shift left or shift right
- Hi and Lo registers in MIPS combine to act as 64-bit register for multiply and divide
Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 33
Faster Division

- Can’t use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division) generate multiple quotient bits per step
 - Still require multiple steps
MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient

- Instructions
 - `div rs, rt` / `divu rs, rt`
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use `mfhi` and `mflo` to access result
Floating-Point (FP): Motivation

- **What can be represented in n bits?**
 - **Unsigned**: 0 to $2^n - 1$
 - **2’s Complement**: -2^{n-1} to $2^{n-1} - 1$
 - **1’s Complement**: $-2^{n-1} + 1$ to 2^{n-1}
 - **Excess M**: $-M$ to $2^n - M - 1$

- **But, what about ...**
 - very large numbers?
 - 9,349,398,989,787,762,244,859,087,678
 - very small number?
 - 0.000000000000000000045691
 - rationals
 - 2/3
 - irrationals
 - $\sqrt{2}$
 - transcendentals
 - e, π

Chapter 3 — Arithmetic for Computers — 36
Scientific Notation: Binary

- Computer arithmetic that supports it is called floating point, because the binary point is not fixed, as it is for integers.
- Normalized form: no leading 0s (exactly one digit to left of decimal point).
- Alternatives to represent $1/1,000,000,000$:
 - Normalized: 1.0×10^{-9}
 - Not normalized: 0.1×10^{-8}, 10.0×10^{-10}
Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation
 - -2.34×10^{56} (normalized)
 - $+0.002 \times 10^{-4}$ (not normalized)
 - $+987.02 \times 10^9$
- In binary
 - $\pm1.xxxxxxxxx_2 \times 2^{yyyy}$
- Types `float` and `double` in C

Chapter 3 — Arithmetic for Computers — 38
FP Representation

- Normal format: $1.xxxxxxxxx_{two} \times 2^{yyyy}_{two}$
- Want to put it into multiple words: 32 bits for *single-precision* and 64 bits for *double-precision*
- A simple *single-precision* representation:

\[
\begin{array}{c|c|c}
31 & 30 & 23 \quad 22 \\
S & \text{Exponent} & \text{Significand} \\
1 \text{ bit} & 8 \text{ bits} & 23 \text{ bits}
\end{array}
\]

- S represents sign
- **Exponent** represents y’s
- **Significand** represents x’s
 - Represent numbers as small as 2.0×10^{-38} to as large as 2.0×10^{38}
Double Precision Representation

- 64 bits Format

\[
\begin{array}{cccccc}
31 & 30 & 20 & 19 & \text{Significand} \\
S & \text{Exponent} & & & \text{Significand (cont'd)}
\end{array}
\]

- 1 bit 11 bits 20 bits

32 bits

- Double precision (vs. single precision)
 - Represent numbers almost as small as 2.0×10^{-308} to almost as large as 2.0×10^{308}
 - But primary advantage is greater accuracy due to larger significand
Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)
IEEE 754 Standard (1/2)

- Regarding single precision (SP), DP similar
- Sign bit:
 - 1 means negative
 - 0 means positive
- Significand:
 - To pack more bits, *leading 1* implicit for normalized numbers
 - 1 + 23 bits single, 1 + 52 bits double
 - always true: $0 \leq \text{Significand} < 1$
 (for normalized numbers)
- Note: 0 has no leading 1, so reserve exponent value 0 just for number 0
Exponent:
- Need to represent positive and negative exponents
- Also want to compare FP numbers as if they were integers, to help in value comparisons
- If use 2’s complement to represent? e.g., 1.0×2^{-1} versus $1.0 \times 2^{+1}$ (1/2 versus 2)

If we use integer comparison for these two words, we will conclude that $1/2 > 2$!!!
Biased (Excess) Notation

- Let notation 0000 be most negative, and 1111 be most positive.
- Example: Biased 7

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>-7</td>
</tr>
<tr>
<td>0001</td>
<td>-6</td>
</tr>
<tr>
<td>0010</td>
<td>-5</td>
</tr>
<tr>
<td>0011</td>
<td>-4</td>
</tr>
<tr>
<td>0100</td>
<td>-3</td>
</tr>
<tr>
<td>0101</td>
<td>-2</td>
</tr>
<tr>
<td>0110</td>
<td>-1</td>
</tr>
<tr>
<td>0111</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>1001</td>
<td>2</td>
</tr>
<tr>
<td>1010</td>
<td>3</td>
</tr>
<tr>
<td>1011</td>
<td>4</td>
</tr>
<tr>
<td>1100</td>
<td>5</td>
</tr>
<tr>
<td>1101</td>
<td>6</td>
</tr>
<tr>
<td>1110</td>
<td>7</td>
</tr>
<tr>
<td>1111</td>
<td>8</td>
</tr>
</tbody>
</table>
IEEE 754 Standard

Using biased notation

- the bias is the number subtracted to get the real number
- IEEE 754 uses bias of 127 for single precision: Subtract 127 from Exponent field to get actual value for exponent
- 1023 is bias for double precision
- The example becomes

\[
\begin{array}{c|cccccccc}
1/2 & 0 & 0111 1110 & 000 0000 000 0000 0000 0000 0000 \\
2 & 0 & 1000 0000 & 000 0000 0000 0000 0000 0000 0000 \\
\end{array}
\]
IEEE Floating-Point Format

<table>
<thead>
<tr>
<th></th>
<th>Single: 8 bits</th>
<th>Double: 11 bits</th>
<th>Single: 23 bits</th>
<th>Double: 52 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exponent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x = (-1)^S \times (1 + \text{Fraction}) \times 2^{(\text{Exponent} - \text{Bias})}

- **S**: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
- Normalize significand: \(1.0 \leq |\text{significand}| < 2.0\)
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the “1.” restored
- **Exponent**: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203
Single-Precision Range

- Exponents 00000000 and 11111111 reserved

- Smallest value
 - Exponent: 00000001
 \[\Rightarrow\text{actual exponent} = 1 - 127 = -126\]
 - Fraction: 000...00 \[\Rightarrow\text{significand} = 1.0\]
 - \[\pm1.0 \times 2^{-126} \approx \pm1.2 \times 10^{-38}\]

- Largest value
 - Exponent: 11111110
 \[\Rightarrow\text{actual exponent} = 254 - 127 = +127\]
 - Fraction: 111...11 \[\Rightarrow\text{significand} \approx 2.0\]
 - \[\pm2.0 \times 2^{+127} \approx \pm3.4 \times 10^{+38}\]
Double-Precision Range

- Exponents 0000…00 and 1111…11 reserved

- Smallest value
 - Exponent: 00000000001
 ⇒ actual exponent = 1 – 1023 = –1022
 - Fraction: 000…00 ⇒ significand = 1.0
 - \(\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308} \)

- Largest value
 - Exponent: 11111111110
 ⇒ actual exponent = 2046 – 1023 = +1023
 - Fraction: 111…11 ⇒ significand ≈ 2.0
 - \(\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308} \)
Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2^{-23}
 - Equivalent to $23 \times \log_{10}2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
 - Double: approx 2^{-52}
 - Equivalent to $52 \times \log_{10}2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision
Floating-Point Example

- Represent –0.75
 - \(-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}\)
 - S = 1
 - Fraction = 1000…00_2
 - Exponent = \(-1 + \text{Bias}\)
 - Single: \(-1 + 127 = 126 = 01111110_2\)
 - Double: \(-1 + 1023 = 1022 = 01111111110_2\)
- Single: 10111111101000…00
- Double: 10111111111101000…00
Floating-Point Example

- What number is represented by the single-precision float
 11000000101000...00
 - S = 1
 - Fraction = 01000...00₂
 - Exponent = 10000001₂ = 129
 - \(x = (-1)^1 \times (1 + 01₂) \times 2^{(129 - 127)} \)
 = \(-1\) × 1.25 × 2²
 = \(-5.0\)
Concluding Remarks

What have we defined so far? (single precision)

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>???</td>
</tr>
<tr>
<td>0</td>
<td>nonzero</td>
<td>???</td>
</tr>
<tr>
<td>1-254</td>
<td>anything</td>
<td>+/- floating-point</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>???</td>
</tr>
<tr>
<td>255</td>
<td>nonzero</td>
<td>???</td>
</tr>
</tbody>
</table>
Zero and Special Numbers

- Represent 0?
 - exponent all zeroes
 - significand all zeroes too
 - What about sign?
 - +0: 0 00000000 00000000000000000000000
 - -0: 1 00000000 00000000000000000000000

- Why two zeroes?
 - Helps in some limit comparisons

- Special numbers
 - Range: $1.0 \times 2^{-126} \approx 1.8 \times 10^{-38}$
 - What if result too small? ($>0, < 1.8 \times 10^{-38} \Rightarrow \text{Underflow!}$)
 - What if result too large? ($> 3.4 \times 10^{38} \Rightarrow \text{Overflow!}$)
Gradual Underflow

- Represent denormalized numbers (denoms)
 - Exponent: all zeroes
 - Significand: non-zeroes
 - Allow a number to degrade in significance until it become 0 (gradual underflow)

- The smallest normalized number
 - $1.0000\ 0000\ 0000\ 0000\ 0000\ 0000 \times 2^{-126}$
Representation for +/- Infinity

- In FP, divide by zero should produce +/- infinity, not overflow
- Why?
 - OK to do further computations with infinity, e.g., $X/0 > Y$ may be a valid comparison
- IEEE 754 represents +/- infinity
 - Most positive exponent reserved for infinity
 - Significands all zeroes

<table>
<thead>
<tr>
<th>S</th>
<th>1111 1111</th>
<th>0000 0000 0000 0000 0000 0000 000</th>
</tr>
</thead>
</table>

Chapter 3 — Arithmetic for Computers — 55
Representation for Not a Number

- What do I get if I calculate sqrt(-4.0) or 0/0?
 - If infinity is not an error, these should not be either
 - They are called Not a Number (NaN)
 - Exponent = 255, Significand nonzero

- Why is this useful?
 - Hope NaNs help with debugging?
 - They contaminate: op(NaN,X) = NaN
 - OK if calculate but don’t use it
IEEE 754 Encoding of FP Numbers

What have we defined so far? (single-precision)

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>nonzero</td>
<td>denom</td>
</tr>
<tr>
<td>1-254</td>
<td>anything</td>
<td>+/- fl. pt. #</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>+/- infinity</td>
</tr>
<tr>
<td>255</td>
<td>nonzero</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Diagram:

- **Normalized**: Represents numbers that are fully represented.
- **Denorm**: Represents numbers that are close to zero.
- **NaN**: Represents Not-a-Number, indicating an error or undefined result.

Chapter 3 — Arithmetic for Computers — 57
Floating-Point Addition

Basic addition algorithm:
compute Ye - Xe (to align binary point)

1. right shift the smaller number, say Xm, that many positions to form Xm × 2^{X_e-Y_e}

2. compute Xm × 2^{X_e-Y_e} + Y_m

if demands normalization, then normalize:
3. left shift result, decrement result exponent
 right shift result, increment result exponent
 3.1 check overflow or underflow during the shift
3.1.1 check overflow or underflow during the shift
4. round the mantissa
 continue until MSB of data is 1
 (NOTE: Hidden bit in IEEE Standard)
5. if result is 0 mantissa, set the exponent

1. Compare the exponents of the two numbers. Shift the smaller number to the right until its exponent would match the larger exponent
2. Add the significands
3. Normalize the sum, either shifting right and incrementing the exponent or shifting left and decrementing the exponent
4. Round the significand to the appropriate number of bits
5. Still normalized?
 Yes
 No
 Exception
 Done
Floating-Point Addition

- Consider a 4-digit decimal example
 - $9.999 \times 10^1 + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - $9.999 \times 10^1 + 0.016 \times 10^1$
- 2. Add significands
 - $9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1$
- 3. Normalize result & check for over/underflow
 - 1.0015×10^2
- 4. Round and renormalize if necessary
 - 1.002×10^2
Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$

- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$

- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$

- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow

- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625
FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined
FP Adder Hardware

Step 1
- Compare exponents

Step 2
- Shift smaller number right
- Add

Step 3
- Normalize

Step 4
- Round

Chapter 3 — Arithmetic for Computers — 62
Extra Bits for Rounding

- Why rounding after addition?
 - Because not every intermediate result is truncated
 - To keep more precision

- Guard and round bits: extra bits to guard against loss of bits during intermediate additions
 - to the right of significand
 - can later be shifted left into significand during normalization

- Sticky bit
 - Additional bit to the right of the round digit
 - Better fine tune rounding

```
  b0 . b1 b2 b3 . . . bp-1 0 0 0
  0 . 0 0 X . . . X  X  X  S
  +_________________________  Sticky bit: set to 1 if any 1 bit falls off the end of the round bit

  • Get the same results as if the intermediate results were calculated to infinite precision and then rounded.
```
Example

- Try to add 2.98×10^0 and 2.34×10^2
 - only 3 decimal digits are allowed

 \[
 \begin{array}{c}
 \ 2.34 \\
 + \ 0.02 \\
 \hline
 2.36 \\
 \end{array}
 \quad \text{without guard bits}

 \begin{array}{c}
 \ 2.3400 \\
 + \ 0.0298 \\
 \hline
 2.3698 \\
 \end{array}
 \quad \Rightarrow \text{rounding} \Rightarrow \ 2.37

 - with 2 more guard bits during computation
 - perform rounding at last

- With guard bits and rounding \(\Rightarrow \) more accurate results
Floating-Point Multiplication

- Consider a 4-digit decimal example
 - \(1.110 \times 10^{10} \times 9.200 \times 10^{-5}\)
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + (-5) = 5
- 2. Multiply significands
 - \(1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^5\)
- 3. Normalize result & check for over/underflow
 - \(1.0212 \times 10^6\)
- 4. Round and renormalize if necessary
 - \(1.021 \times 10^6\)
- 5. Determine sign of result from signs of operands
 - \(+1.021 \times 10^6\)
Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: $-1 + -2 = -3$
 - Biased: $(-1 + 127) + (-2 + 127) = -3 + 254 - 127 = -3 + 127$
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \Rightarrow 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: $+ve \times -ve \Rightarrow -ve$
 - $-1.110_2 \times 2^{-3} = -0.21875$
FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined
FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: $f0, $f1, … $f31
 - Paired for double-precision: $f0/$f1, $f2/$f3, …
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s
- FP instructions operate only on FP registers
 - Programs generally don’t do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 $f8, 32($sp)
FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s $f0, $f1, $f6

- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d $f4, $f4, $f6

- Single- and double-precision comparison
 - c.xx.s, c.xx.d (xx is eq, lt, le, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s $f3, $f4

- Branch on FP condition code true or false
 - bclt, bclf
 - e.g., bclt TargetLabel
FP Example: °F to °C

- C code:
  ```c
  float f2c (float fahr) {
    return ((5.0/9.0)*(fahr - 32.0));
  }
  ```
 - fahr in $f12, result in $f0, literals in global memory space

- Compiled MIPS code:
  ```
  f2c: lwc1 $f16, const5($gp)
  lwc2 $f18, const9($gp)
  div.s $f16, $f16, $f18
  lwc1 $f18, const32($gp)
  sub.s $f18, $f12, $f18
  mul.s $f0, $f16, $f18
  jr $ra
  ```
FP Example: Array Multiplication

- $X = X + Y \times Z$
 - All 32 x 32 matrices, 64-bit double-precision elements
- C code:
  ```c
  void mm (double x[][], double y[][], double z[][]) {
    int i, j, k;
    for (i = 0; i! = 32; i = i + 1)
      for (j = 0; j! = 32; j = j + 1)
        for (k = 0; k! = 32; k = k + 1)
          x[i][j] = x[i][j] + y[i][k] * z[k][j];
  }
  ```
 - Addresses of x, y, z in $a0, a1, a2$, and i, j, k in $s0, s1, s2$
FP Example: Array Multiplication

MIPS code:

```
li $t1, 32       # $t1 = 32 (row size/loop end)
li $s0, 0        # i = 0; initialize 1st for loop
L1: li $s1, 0        # j = 0; restart 2nd for loop
L2: li $s2, 0        # k = 0; restart 3rd for loop
sll $t2, $s0, 5   # $t2 = i * 32 (size of row of x)
addu $t2, $t2, $s1 # $t2 = i * size(row) + j
sll $t2, $t2, 3   # $t2 = byte offset of [i][j]
addu $t2, $a0, $t2 # $t2 = byte address of x[i][j]
l.d $f4, 0($t2)   # $f4 = 8 bytes of x[i][j]
L3: sll $t0, $s2, 5   # $t0 = k * 32 (size of row of z)
addu $t0, $t0, $s1 # $t0 = k * size(row) + j
sll $t0, $t0, 3   # $t0 = byte offset of [k][j]
addu $t0, $a2, $t0 # $t0 = byte address of z[k][j]
l.d $f16, 0($t0)  # $f16 = 8 bytes of z[k][j]
...
```
FP Example: Array Multiplication

...

```
sll $t0, $s0, 5       # $t0 = i*32 (size of row of y)
addu $t0, $t0, $s2    # $t0 = i*size(row) + k
sll $t0, $t0, 3      # $t0 = byte offset of [i][k]
addu $t0, $a1, $t0    # $t0 = byte address of y[i][k]
l.d $f18, 0($t0)     # $f18 = 8 bytes of y[i][k]

mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j]
add.d $f4, $f4, $f16   # f4=x[i][j] + y[i][k]*z[k][j]
addiu $s2, $s2, 1      # $k k + 1
bne  $s2, $t1, L3     # if (k != 32) go to L3
s.d $f4, 0($t2)      # x[i][j] = $f4
addiu $s1, $s1, 1      # $j = j + 1
bne  $s1, $t1, L2     # if (j != 32) go to L2
addiu $s0, $s0, 1      # $i = i + 1
bne  $s0, $t1, L1     # if (i != 32) go to L1
```
Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements
Interpretation of Data

The BIG Picture

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs
Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

<table>
<thead>
<tr>
<th></th>
<th>$(x+y)+z$</th>
<th>$x+(y+z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>-1.50E+38</td>
<td>-1.50E+38</td>
</tr>
<tr>
<td>y</td>
<td>1.50E+38</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>z</td>
<td>1.0</td>
<td>1.50E+38</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

- Need to validate parallel programs under varying degrees of parallelism
x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance
x86 FP Instructions

<table>
<thead>
<tr>
<th>Data transfer</th>
<th>Arithmetic</th>
<th>Compare</th>
<th>Transcendental</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL LD mem1 ST(i)</td>
<td>FI ADDP mem1 ST(i)</td>
<td>FI COMP</td>
<td>FPATAN</td>
</tr>
<tr>
<td>FI STP mem1 ST(i)</td>
<td>FI SUBRP mem1 ST(i)</td>
<td>FI UCOMP</td>
<td>F2XM</td>
</tr>
<tr>
<td>FLDP1</td>
<td>FI MULP mem1 ST(i)</td>
<td>FSTSW AX/ mem</td>
<td>FCOS</td>
</tr>
<tr>
<td>FLD1</td>
<td>FI DI VRP mem1 ST(i)</td>
<td></td>
<td>FPTAN</td>
</tr>
<tr>
<td>FLDZ</td>
<td>FSQRT</td>
<td></td>
<td>FPREM</td>
</tr>
<tr>
<td></td>
<td>FABS</td>
<td></td>
<td>FPSIN</td>
</tr>
<tr>
<td></td>
<td>FRND1 NT</td>
<td></td>
<td>FYL2X</td>
</tr>
</tbody>
</table>

- Optional variations
 - I: integer operand
 - P: pop operand from stack
 - R: reverse operand order
 - But not all combinations allowed
Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data
Right Shift and Division

- Left shift by \(i \) places multiplies an integer by \(2^i \)
- Right shift divides by \(2^i \)?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., \(-5 / 4\)
 - \(11111011_2 \gg 2 = 11111110_2 = -2\)
 - Rounds toward \(-\infty\)
 - e.g. \(11111011_2 \gg\gg 2 = 00111110_2 = +62\)
Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - “My bank balance is out by 0.0002¢!” 😞

- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, *The Pentium Chronicles*
Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent