Exercise 4.

\[
x(n_{1,n2})
\]

\[
\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}
\]

\[
\begin{array}{lll}
D & D & D
\end{array}
\]

\[
\text{Line Delay}
\]

Exercise 6.

(a) Using broadcast architecture can save pipelining registers.

\[
x(n)
\]

\[
\begin{array}{lll}
c & b & a
\end{array}
\]

\[
\begin{array}{lll}
D & 2D & D
\end{array}
\]

(b) \(\therefore (G, j) \), could be achieved by \((G, j) \), for clarity, retiming is applied first.

\[
x(n)
\]

\[
\begin{array}{lll}
c & b & a
\end{array}
\]

\[
\begin{array}{lll}
D & 2D & D
\end{array}
\]

Then the 3-parallel architecture is
Exercise 11.

Pipeline latch delay is negligible so C_{charge} remains unchanged;

$$M(\beta V_o - V_i)^2 = \beta(V_o - V_i)^2$$

Solve $16M\beta^2 - (11.56 + 4.8M)\beta + 0.36M = 0$ for each M, then

$$\text{Power} = (C_{\text{total}} + C_{\text{latch}})(\beta V_o)^2 f$$

<table>
<thead>
<tr>
<th>M</th>
<th>β</th>
<th>C_{total}</th>
<th>Power</th>
<th>V_{dd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>1</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.6253</td>
<td>1.1</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.4954</td>
<td>1.2</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.4281</td>
<td>1.3</td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.3862</td>
<td>1.4</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.3575</td>
<td>1.5</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.3363</td>
<td>1.6</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.3200</td>
<td>1.7</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.3070</td>
<td>1.8</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.2963</td>
<td>1.9</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.2874</td>
<td>2.0</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.2798</td>
<td>2.1</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.2732</td>
<td>2.2</td>
<td>1.09</td>
<td></td>
</tr>
</tbody>
</table>

![Graph](image1.png)

![Graph](image2.png)
Chapter 4 Retiming

Exercise 1.

(a) \(T_w = \frac{T_M + 2T_A}{2} = 18 \)

(b) \(6T_A + 2T_M = 88 \)

![Diagram 1](image1)

(c) Because \(T_M > T_w \), fine-grain pipelining is required and the multiplication units are divided into two sub-parts with 10-unit computation time each. The cutset for retiming is shown as following.

![Diagram 2](image2)

Exercise 8.

\[
[r_1 \ r_2 \ r_3 \ r_4 \ r_5]^T = [0 \ 0 \ -1 \ -2 \ 0]^T
\]

Exercise 17.