Applications of Distributed Arithmetic to Digital Signal Processing:

A Tutorial Review

Ref: Stanley A. White, "Applications of Distributed Arithmetic to Digital Signal Processing: A Tutorial Review," IEEE ASSP Magazine, July, 1989

VSP Lecture 11 Distributed Arithmetic
(cwliu@twins.ee.nctu.edu.tw)

Distributed Arithmetic (DA, 1974)

- The most-often encountered form of computation in DSP:
- Sum of product
- Inner-product
- Executed most efficiently by DA

Derivation of DA Technique

- Sum of product: $y=\sum_{k=1}^{K} A_{k} x_{k}$
- where x_{k} is a 2's-complement binary number scaled such that $\left|x_{k}\right|<1$, and A_{k} is fixed coefficients
- $x_{k}:\left\{b_{k 0}, b_{k 1}, b_{k 2} \ldots \ldots, b_{k(N-1)}\right\}$, wordlength=N
- where $b_{k 0}$ is the sign bit
- Express each x_{k} as: $\quad x_{k}=-b_{k 0}+\sum_{n=1}^{N-1} b_{k n} 2^{-n}$

$$
\begin{equation*}
y=\sum_{k=1}^{K} A_{k}\left[-b_{k 0}+\sum_{n=1}^{N-1} b_{k n} 2^{-n}\right] \tag{2}
\end{equation*}
$$

Derivation of DA Technique -continued I

- Critical step

$$
\begin{align*}
y & =\sum_{k=1}^{K} A_{k}\left[-b_{k 0}+\sum_{n=1}^{N-1} b_{k n} 2^{-n}\right]=\sum_{k=1}^{K} A_{k} \sum_{n=1}^{N-1} b_{k n} 2^{-n}+\sum_{k=1}^{K} A_{k}\left(-b_{k 0}\right) \\
& =\sum_{n=1}^{N-1}\left[\sum_{k=1}^{K} A_{k} b_{k n}\right] 2^{-n}+\sum_{k=1}^{K} A_{k}\left(-b_{k 0}\right) \tag{4}
\end{align*}
$$

- where K is the number of inputs (or taps) and N is the wordlength of Data

Derivation of DA Technique -continued II

- Now consider the equation (4)

$$
y=\sum_{n=1}^{N-1}\left[\sum_{k=1}^{K} A_{k} b_{k n}\right] 2^{-n}+\sum_{k=1}^{K} A_{k}\left(-b_{k 0}\right)
$$

- $\left[\sum_{k=1}^{K} A_{k} b_{k n}\right]$ has only 2^{K} possible values
- $\quad \sum_{k=1}^{K} A_{k}\left(-b_{k 0}\right)$ has only 2^{k} possible values

Technical Overview of DA

- Advantage of DA: Efficiency of computing mechanization
- A frequently argued:
- Slowness because of its inherent bit-serial nature (not true)
- Some modifications to increase the speed by employing techniques:
- Plus more arithmetic operations

Derivation of DA Technique -continued III

- Example
- Let number of inputs $K=4$
- The fixed coefficients are $A_{1}=0.72, A_{2}=-0.3$,

$$
A_{3}=0.95, A_{4}=0.11
$$

$$
y=\sum_{n=1}^{N-1}\left[\sum_{k=1}^{K} A_{k} b_{k n}\right] 2^{-n}+\sum_{k=1}^{K} A_{k}\left(-b_{k 0}\right)
$$

- We need $2 \times 2^{k}=32$-word ROM (K=4)

Example

- Unfolding

$$
\begin{aligned}
& \circ\left[\sum_{k=1}^{4} A_{k} b_{k n}\right]=A_{1} b_{1 n}+A_{2} b_{2 n}+A_{3} b_{3 n}+A_{4} b_{4 n} \\
& \bigcirc \sum_{k=1}^{4} A_{k}\left(-b_{k 0}\right)= \\
& \\
& A_{1}\left(-b_{1,0}\right)+A_{2}\left(-b_{2,0}\right)+A_{3}\left(-b_{3,0}\right)+A_{4}\left(-b_{4,0}\right)
\end{aligned}
$$

(cwliu@†wins.ee.nctu.edu.tw)

Example -conti

- Hardware architecture

$x_{1} x_{2} \quad x_{3} \quad x_{4}$

F	Input Code					32-Wor
	T_{5}	$\mathrm{b}_{1 n}$	$\mathrm{b}_{2 n}$	$b_{3 n}$	$\mathrm{b}_{4 n}$	Memory Contents
	0	0	0	0	0	0
	0	0	0	0	1	$A_{4}=0.11$
	0	0	0	1	0	$\mathrm{A}_{3}=0.95$
	0	0	0	1	1	$A_{3}+A_{4}=1.06$
	0	0	1	0	0	$A_{2}=-0.30$
	0	0	1	0	1	$A_{2}+A_{4}=-0.19$
	0	0	1	1	0	$A_{2}+A_{3}=0.65$
	0	0	1	1	1	$A_{2}+A_{3}+A_{4}=0.75$
	0	1	0	0	0	$A_{1}=0.72$
	0	1	0	0	1	$A_{1}+A_{4}=0.83$
	0	1	0	1	0	$A_{1}+A_{3}=1.67$
	0	1	0	1	1	$A_{1}+A_{3}+A_{4}=1.78$
	0	1	1	0	0	$A_{1}+A_{2}=0.42$
	0	1	1	0	1	$A_{1}+A_{2}+A_{4}=0.53$
	0	1	1	1	0	$A_{1}+A_{2}+A_{3}=1,37$
	0	1	1	1	1	$A_{1}+A_{2}+A_{3}+A_{4}-1.48$
	1	0	0	0	0	0
	1	0	0	0	1	$-A_{4}=-0.11$
	1	0	0	1	0	$-\mathrm{A}_{3}=-0.95$
	1	0	0	1	1	$-\left(A_{3}+A_{4}\right)=-1.06$
	1	0	1	0	0	$-\mathrm{A}_{2}=+0.30$
	1	0	1	0	1	$-\left(A_{2}+A_{4}\right)=+0.19$
\bigcirc	1	0	1	1	0	$-\left(A_{2}+A_{3}\right)=-0.65$
!	1	0	1	1	1	$-\left(A_{2}+A_{3}+A_{4}\right)=-0.75$
c	1	1	0	0	0	$-\mathrm{A}_{1}=-0.72$
	1	1	0	0	1	$-\left(A_{1}+A_{4}\right)=-0.83$
	1	1	0	1	0	$-\left(A_{1}+A_{3}\right)=-1.67$
	1	1	0	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	1	$\begin{aligned} & -\left(A_{1}+A_{3}+A_{4}\right)=-1.78 \\ & =\left(A_{1}+A_{v}\right)=-0.42 \end{aligned}$
	1	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	0	0	$\begin{aligned} & =\left(A_{1}+A_{2}\right)=-0.42 \\ & -\left(A_{1}+A_{2}+A_{4}\right)--0.53 \end{aligned}$
	1	1	1	1	0	$-\left(A_{1}+A_{2}+A_{3}\right)=-1.37$
	1	1	1	1	1	$-\left(A_{1}+A_{2}+A_{3}+A_{4}\right)=-1.48$

$$
\begin{aligned}
& y=\sum^{n-1}\left[\sum_{k=1}^{K} A_{k} b_{k n}\right] 2^{-n}+\sum_{k=1}^{K} A_{k}\left(-b_{k 0}\right) \\
& \text { Lecture } 11] \text { Distributed Arithn }
\end{aligned}
$$

(cwliu@twins.ee.nctu.edu.tw)

Example -continued II

- Shorten the table

$$
\begin{aligned}
& {\left[\sum_{k=1}^{4} A_{k} b_{k n}\right]=A_{1} b_{1 n}+A_{2} b_{2 n}+A_{3} b_{3 n}+A_{4} b_{4 n}} \\
& \sum_{k=1}^{4} A_{k}\left(-b_{k 0}\right)=-\left[\sum_{k=1}^{4} A_{k}\left(b_{k 0}\right)\right]
\end{aligned}
$$

- Eq. (4)

Offset-Binary Coding (OBC)

- Change Input data from "binary" to "signed-digit"

$$
\left[\begin{array}{rl}
x_{k} & =\frac{1}{2}\left[x_{k}-\left(-x_{k}\right)\right]=\left\{b_{k 0}, b_{k 1}, \ldots \ldots b_{k(n-1)}\right\} \tag{6}\\
x_{k} & =-b_{k 0}+\sum_{n=1}^{N-1} b_{k n} 2^{-n} \\
-x_{k} & =-\bar{b}_{k 0}+\sum_{n=1}^{N-1} \bar{b}_{k n} 2^{-n}+2^{-(N-1)}
\end{array}\right.
$$

Offset-Binary Coding (OBC) (cont'd)
 $$
\Rightarrow x_{k}=\frac{1}{2}\left[-\left(b_{k 0}-\bar{b}_{k 0}\right)+\sum_{n=1}^{N-1}\left(b_{k n}-\bar{b}_{k n}\right) 2^{-n}-2^{-(N-1)}\right]
$$

$$
\bigcirc \quad c_{k n}=\left\{\begin{array}{r}
b_{k n}-\bar{b}_{k n} \quad, n \neq 0 \\
-\left(b_{k n}-\bar{b}_{k n}\right), n=0
\end{array}\right.
$$

$$
\Rightarrow x_{k}=\frac{1}{2}\left[\sum_{n=0}^{N-1} c_{k n} 2^{-n}-2^{-(N-1)}\right] \text { 代入 } y=\sum_{k=1}^{K} A_{k} x_{k}
$$

$$
\Rightarrow \quad y=\frac{1}{2} \sum_{k=1}^{K} A_{k}\left[\sum_{n=0}^{N-1} c_{k n} 2^{-n}-2^{-(N-1)}\right]=\sum_{n=0}^{N-1} Q\left(b_{n}\right) 2^{-n}+2^{-(N-1)} Q(0)
$$

$$
Q(0)=-\sum_{k=1}^{K} \frac{A_{k}}{2}
$$

Offset-Binary Coding (OBC) (cont'd)

- Hardware architecture

Table 2

Speed up of DA multiplication

- Way I: Plus more arithmetic operations

$$
\sum_{n=0}^{N-1} Q\left(b_{n}\right) 2^{-n}=Q\left(b_{0}\right) 2^{-0}+Q\left(b_{1}\right) 2^{-1}+\ldots .+Q\left(b_{N-2}\right) 2^{-(N-2)}+Q\left(b_{N-1}\right) 2^{-(N-1)}
$$

Speedup of DA multiplication

- Way I: at the expense of linearly increased memory \& arithmetic operation

Speed up of DA Multiplication

- Way II: at the expense of exponentially increased memory
- ROM : 2*7 words $\Rightarrow 1 \star 128$ words

Conclusions

- DA is a very efficient mechanism for computations that are dominated by inner products (convolution)
- A good way to trade combinational logic with memory for high-performance computation.
- When a many computing methods are compared, DA should be considered. It is not always (but often) best, and never poorly: save gate count around 50% to 80%.
- Application: "VLSI implementation of a 16*16 discrete cosine transform," by M.-T. Sun, T.-C. Chen, A. M. Gottlieb, IEEE Transactions on Circuits and Systems, Volume: 36 Issue: 4 , April 1989, Page(s): 610-617, and many other transforms and-SP kernels.

