



#### Introduction to FFT Processors

Chih-Wei Liu VLSI Signal Processing Lab Department of Electronics Engineering National Chiao-Tung University



## FFT Design

#### FFT

Consists of a series of complex additions and complex multiplications

#### Algorithm

 Cooley-Tukey decomposition for power of two length FFT

#### Architecture

• Systematic mapping procedure



#### Algorithm Level

Cooley-Tukey decomposition
 Radix-2, decimation-in-frequency

$$A_{2k} = \sum_{n=0}^{N-1} x_n W_N^{n2k} = \sum_{n=0}^{N/2-1} (x_n + x_{n+N/2}) W_{N/2}^{nk}$$
$$A_{2k+1} = \sum_{n=0}^{N-1} x_n W_N^{n(2k+1)} = \sum_{n=0}^{N/2-1} (x_n - x_{n+N/2}) W_N^n W_{N/2}^{nk}$$



- Variants based on CT algorithm
  - **Fixed radix**: Radix-2, Radix-4, Radix-8, Radix-2<sup>2</sup>
  - Mixed radix: Split-radix, Radix-2/8, Radix-2/4/8
  - Number of addition
    - Same for any mixed-radix or fixed-radix algorithm.
  - Number of multiplication
    - Depends on the reduction of trivial multiplications.

Hence, increase additions



#### FFT Algorithms

- Review of Radix-2<sup>r</sup> algorithm
  - DIF(decimation in frequency) and
    - DIT(decimation in time) version
  - Radix-2 algorithm
  - Radix-4 and Radix-2<sup>2</sup> algorithm
  - Radix-8 and Radix-2<sup>3</sup> algorithm
  - Split-radix 2/4 and Split-radix 2/8



## • DFT $X(k) = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}kn} \equiv \sum_{n=0}^{N-1} x(n) W_N^{kn} , k = 0, 1, ... N-1.$



$$W_{N}^{0} = -W_{N}^{N/2} = 1$$

$$W_{N}^{N/4} = -W_{N}^{3N/4} = -j$$

$$W_{N}^{N/8} = -W_{N}^{5N/8} = \frac{\sqrt{2}}{2}(1-j)$$

$$W_{N}^{3N/8} = -W_{N}^{7N/8} = -\frac{\sqrt{2}}{2}(1+j)$$

$$(a+jb) * W_{8}^{1} = \frac{\sqrt{2}}{2}[(a+b)+j(b-a)]$$

$$(a+jb) * W_{8}^{3} = \frac{\sqrt{2}}{2}[(b-a)-j(b+a)]$$



#### FFT Algorithms

Radix-2 Algorithm

DIF Radix-2 Algorithm

$$\begin{cases} X(2k_l) = \sum_{n=0}^{N/2-1} [x(n) + x(n+N/2)] W_{N/2}^{k_l n} \\ X(2k_l+1) = \sum_{n=0}^{N/2-1} [x(n) - x(n+N/2)] W_N^n W_{N/2}^{k_l n} \end{cases}$$

$$k_l = 0, 1, \dots, N/2 - 1.$$

Butterfly of Radix-2 Algorithm

DIF Form





#### FFT Algorithms

Radix-4 Algorithm

$$X(4k_{1}+l) = \sum_{k=0}^{N/4-l} [x(n) + x(n + \frac{N}{4}) \times W_{4}^{l} + x(n + \frac{N}{2})W_{4}^{2l} + x(n + \frac{3N}{4}) \times W_{4}^{3l}]W_{N}^{nl}W_{N/4}^{nk_{1}}$$
  
$$l = 0,1,2,3; k_{1} = 0 \sim N/4 - 1;$$

Radix-2<sup>2</sup> Algorithm

$$\begin{aligned} X(4k_1 + 2l_2 + l_1) \\ &= \sum_{k=0}^{N_4^{-1}} [x(n) + x(n + N/4) \times W_4^{2l_2 + l_1} + x(n + N/2)W_4^{4l_2 + 2l_1} + x(n + 3N/4) \times W_4^{6l_2 + 3l_1}]W_N^{n(2l_2 + l_1)}W_{N_4^{-1}}^{nk_1} \\ &= \sum_{n=0}^{N/4 - 1} [x(n) + (-1)^{l_1}x(n + N/2)] + (-1)^{l_2}(-j)^{l_1}[x(n + N/4) + (-1)^{l_1}x(n + 3N/4)]W_N^{n(2l_2 + l_1)}W_{N_4^{-1}}^{nk_1} \\ &= l_1, l_2 = 0, l; \ k_1 = 0 \sim N/4 - 1. \end{aligned}$$



#### Butterfly of Radix-4 Algorithm



(Data Ordering: Digit Reversed)



#### Data Ordering of Radix-4 (N=16)





#### Butterfly of radix-2<sup>2</sup> Algorithm



(Data Ordering: Bit Reversed)



#### Data Ordering of Radix- 2<sup>2</sup> (N=16)





#### DIF Radix-8 Algorithm

$$X(8k+l) = \sum_{n=0}^{N-1} x(n) W_N^{(8k+l)n} = \sum_{m=0}^7 \sum_{n=0}^{N/8-1} x(n + \frac{mN}{8}) W_N^{(8k+l)(mN/8+n)}$$
  
=  $\sum_{m=0}^7 \sum_{n=0}^{N/8-1} [x(n + \frac{mN}{8}) W_8^{lm}] W_N^{nl} W_{N/8}^{nk}$   
=  $\sum_{n=0}^{N/8-1} \{ [x(n) + x(n + \frac{2N}{8}) W_4^l + x(n + \frac{4N}{8}) W_4^{2l} + x(n + \frac{6N}{8}) W_4^{-l} ]$   
+  $[x(n + \frac{N}{8}) + x(n + \frac{3N}{8}) W_4^l + x(n + \frac{5N}{8}) W_4^{2l} + x(n + \frac{7N}{8}) W_4^{-l} ] W_8^l \} W_N^{nl} W_{N/8}^{nk}$ 

$$l = 0, 1, 2, 3, 4, 5, 6, 7; k = 0 \sim N/8 - 1.$$



DIF Radix-2<sup>3</sup> Algorithm

 $X(8k+4l_3+2l_2+l_1)$ 

$$= \sum_{n=0}^{N/8-1} \left\{ \left[ x(n) + x(n + \frac{2N}{8})W_4^l + x(n + \frac{4N}{8})W_4^{2l} + x(n + \frac{6N}{8})W_4^{-l} \right] + \left[ x(n + \frac{N}{8}) + x(n + \frac{3N}{8})W_4^l + x(n + \frac{5N}{8})W_4^{2l} + x(n + \frac{7N}{8})W_4^{-l} \right]W_8^l \right\}W_N^{nl}W_{N/8}^{nk}$$

$$= \sum_{n=0}^{N/8-1} \left\{ \left[ (x(n) + W_2^{l_1}x(n + \frac{4N}{8})) + W_2^{l_2}W_4^{l_1}(x(n + \frac{2N}{8}) + W_2^{l_1}x(n + \frac{6N}{8})) \right] + \left[ (x(n + \frac{N}{8}) + W_2^{l_1}x(n + \frac{5N}{8})) + W_2^{l_2}W_4^{l_1}(x(n + \frac{3N}{8}) + W_2^{l_1}x(n + \frac{7N}{8})) \right]W_8^{2l_2+l_1} \right\}W_N^{n(4l_3+2l_2+l_1)}W_{N/8}^{nk}$$

 $l_1, l_2, l_3 = 0,1; \quad k = 0 \sim N/8 - 1.$ 



Butterfly of Radix-8 Algorithm





#### Butterfly of Radix-2<sup>3</sup> Algorithm





#### DIF Split-Radix 2/4 Algorithm

$$\begin{cases} X(2k) = \sum_{n=0}^{N/2-1} [x(n) + x(n + \frac{2N}{4})] W_{N/2}^{nk} \\ X(4k+1) = \sum_{n=0}^{N/4-1} \{x(n) - x(n + \frac{2N}{4}) - j[x(n + \frac{N}{4}) - x(n + \frac{3N}{4})] \} W_N^n W_N^{4nk} \\ X(4k+3) = \sum_{n=0}^{N/4-1} \{x(n) - x(n + \frac{2N}{4}) + j[x(n + \frac{N}{4}) - x(n + \frac{3N}{4})] \} W_N^{3n} W_N^{4nk} \end{cases}$$

*k* in X(2k) is from 0 to N/2-1, and in X(4k+1) and X(4k+3) are from 0 to N/4-1



#### Butterfly of Split-Radix 2/4 Algorithm





#### FFT Algorithms

Advantage of Radix-2/4 Algorithm
 Low Computational Complexity
 Flexible as radix-2 algorithm
 Bit reversed output (when normally ordered input)



#### DIF Split-Radix 2/8 Algorithm

$$\begin{cases} X(2k) = \sum_{n=0}^{N/2^{-1}} [x(n) + x(n + \frac{2N}{4})] W_N^{2nk} \\ X(8k+l) = \sum_{n=0}^{N/8^{-1}} \{ [x(n) + x(n + \frac{2N}{8}) W_4^l + x(n + \frac{4N}{8}) W_4^{2l} + x(n + \frac{6N}{8}) W_4^{-l}] \\ + [x(n + \frac{N}{8}) + x(n + \frac{3N}{8}) W_4^l + x(n + \frac{5N}{8}) W_4^{2l} + x(n + \frac{7N}{8}) W_4^{-l}] W_8^l \} W_N^{nl} W_{N/8}^{nk} \\ l = 1,3,5,7 \end{cases}$$



#### Butterfly of Split-Radix 2/8 Algorithm





#### Multiplicative Complexity

- Trivial multiplications in FFT
   Multiplied by
  - Radix-2: ±1 removed
  - Radix-4: ±1 and ±j (partially) removed
  - Split-radix(2/4): ±1 and ±j removed
  - Radix-8:  $\pm 1$ ,  $\pm j$ ,  $(1\pm j)/\sqrt{2}$  (partially) removed
  - Radix-2/8:  $\pm 1$ ,  $\pm j$ ,  $(1\pm j)/\sqrt{2}$  removed



#### Radix-4 Signal Flow Graph



#### Split-Radix Signal Flow Graph





#### Multiplicative Complexity

| N    | Radix-2 | Radix-4 | Split-<br>Radix | Radix-8 | Const.<br>Mul | Radix-<br>2/8 | Const.<br>Mul |
|------|---------|---------|-----------------|---------|---------------|---------------|---------------|
| 8    | 2       | 3       | 2               | 0       | 2             | 0             | 2             |
| 16   | 10      | 8       | 8               | 6       | 4             | 4             | 6             |
| 32   | 34      | 31      | 26              | 20      | 8             | 16            | 14            |
| 64   | 98      | 76      | 72              | 48      | 32            | 44            | 38            |
| 128  | 258     | 215     | 186             | 152     | 64            | 120           | 94            |
| 256  | 642     | 492     | 456             | 376     | 128           | 308           | 214           |
| 512  | 1538    | 1239    | 1082            | 824     | 384           | 736           | 494           |
| 1024 | 3586    | 2732    | 2504            | 2104    | 768           | 1724          | 1126          |
| 2048 | 8194    | 6487    | 5690            | 4792    | 1536          | 3976          | 2494          |
| 4096 | 18434   | 13996   | 12744           | 10168   | 4096          | 8964          | 5494          |
| 8192 | 40962   | 32087   | 28218           | 23992   | 8192          | 19952         | 12046         |

How to obtain regular SR FFT architecture?



#### Architecture Level

- Mapping procedure
  - Systolic array techniques
    - Operation scheduling, resource sharing
  - Pipeline architecture
    - One-dimensional linear array
    - Delay-feedback vs. Delay-commutator.
  - Single PE architecture
    - Shared-memory, Single Processing Element (PE)

**R2MDC** Radix-2 Multi-Path Delay Commutator



















# Delay Feedback R2SDF R4SDF

♦ R2<sup>2</sup>SDF













### Buffer Styles of pipeline architecture

• R2 delay-commutator: inefficient (50%) MEM usage. (R2MDC)



• R2 delay-feedback: 100% MEM usage.(R2SDF)







single BF\_PE radix-2 shared memory architecture

#### **Concluding Remarks**

- The Split-Radix algorithm has less computation complexity, comparing with the fixed Radix algorithm. However, its butterfly operation is irregular (L-shape).
- The processing speed of pipeline architecture is faster than single-PE architecture. However, the single PE architecture is the most areaefficient, especially for long length FFT/IFFT application.

## Review Traditional FFT Design

- Steps
  - 1. Given N-point FFT spec., choose fixed-radix algorithm
  - 2. Design radix-r butterfly, multiplier, etc.
  - 3. Cascade log<sub>r</sub>N stages to compute N point FFT.
- Arbitrary radix can be used
  - Base on Cooley-Tukey decomposition for any composite number



## **Problem of Traditional Approach**

- Cannot drive architecture for mixed-Radix algorithm
- The processing speed is no longer the critical issue any more nowadays.
- The chip area and the power consumption dominate the design quality.
- Re-configurable FFT/IFFT architecture design is necessary for various applications.

∽A length-scalable and latency-specified FFT/IFFT core is necessary.



# We implement FFT module by single PE architecture



Pre-fetch buffer



#### Design Issue

- Performance-enough, Chip area, power consumption.
- Scalable processing element.
- Limited Storage block(s).
- Efficient memory address generator.



#### We adopt split-radix 2/4 algorithm to realize the FFT module.

$$\begin{cases} A_{2k} = \sum_{n=0}^{N/2-1} (X_n + X_{n+N/2}) \cdot W_{N/2}^{n \cdot k} \end{cases}$$

$$\begin{cases} \boldsymbol{A_{4k+1}} = \sum_{n=0}^{N/4-1} (X_n - j \cdot X_{n+N/4} - X_{n+N/2} + j \cdot X_{n+3N/4}) \cdot W_N^n \cdot W_{N/4}^{n \cdot k} \\ \boldsymbol{A_{4k+3}} = \sum_{n=0}^{N/4-1} (X_n + j \cdot X_{n+N/4} - X_{n+N/2} - j \cdot X_{n+3N/4}) \cdot W_N^{3n} \cdot W_{N/4}^{n \cdot k} \end{cases}$$







#### Folded Butterfly Units

 Comparing with Radix-2/Radix-2<sup>2</sup>, it saves half memory access times.





- We use multiple single-port memory banks to replace the multi-port memory.
- The concept of conflict-free memory. (Vertex coloring problem)



#### Scalable Memory Address Generator

- There must exist a solution for such vertex coloring problem.
- The best solution --- The proposed Interleave Rotated Data Allocation (IRDA) algorithm.







#### The IRDA Concept

- A conflict-free memory banks.
- Simple and lengthscalable design.
- The circular shift rotator.

| 00    | -01   |             | -02  |             | 03      |
|-------|-------|-------------|------|-------------|---------|
| 07    | - 04  |             | 05   |             | 06      |
| 10    | 11    |             | -08  |             | 09      |
| 13    | 14    |             | 15   |             | <u></u> |
| 19    | Ng    |             | 17   |             | 18      |
| 22    | 23    |             | 20   |             | 21      |
| 25    | 26    | $\setminus$ | 27   |             | 24      |
| 28    | 29    |             | 30   |             | 31      |
| 34    | 35    |             | 32   |             | 33      |
| 37    | 38    |             | 39   |             | 36      |
| 40    | 41    |             | 42   | $\setminus$ | 43      |
| 47    | 44    |             | 45   |             | 46      |
| 49    | 50    |             | 51   |             | 48      |
| 52    | 53    |             | 54   |             | 55      |
| 59    | 56    |             | 57   |             | 58      |
| 62    | 63    |             | 60   |             | 61      |
| RAM-A | RAM-B | R           | AM-C |             | RAM-D   |



#### Length-Scalable FFT/IFFT Core





#### Further Performance Improvement

- Multiple PEs architecture.
- 2 pipeline PEs, for example.







#### The Cached-FFT Algorithm



- 1. Input data are loaded into an *N*-word main memory.
- *2. C* of the *N* words are loaded into the cache.
- 3. As many butterflies as possible are computed using the data in the cache.
- 4. Processed data in the cache are flushed to main memory.
- 5. Steps 2-4 are repeated until all *N* words have been processed once.
- 6. Steps 2-5 are repeated until the FFT has been completed.





Result





epoch 0

epoch 1