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Algorithm Strength Reduction
• Motivation

– The number of strong operations, such as multiplications, is 
reduced possibly at the expense of an increase in the number of 
weaker operations, such as additions.

• Reduce computation complexity
• Example: Complex multiplication

– (a+jb)(c+jd)=e+jf,  a,b,c,d,e,f ∈ R
– The direct implementation requires 4 multiplications and 2 

additions

– However, the number of multiplication can be reduced to 3 at 
the expense of 3 extra additions by using the identities
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Review of Digital Signal Processing
• Given two sequences:

– Data sequence di, 0 ≤ i≤ N-1, of length N
– Filter sequence gi, 0 ≤ i≤ L-1, of length L

• Linear convolution

• Express the convolution in the notation of polynomials
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CooK-Toom Algorithm
• An algorithm for linear convolution by using 

multiplying polynomials.
• Consider the following system

hx s
L-point 
sequence N-point 

sequence

(L+N-1)-point 
sequence

given

To find sL+N-2, …, s1, s0 By solving L+N-1 linear equations
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Review of Polynomial Ring
• For a field F, there is a polynomial ring F[x] called the ring of 

polynomials over F.
• Mathematical expression

f(x)=fnxn + fn-1xn-1  + …+ f1x + f0, f0,f1,…,fn∈F
• If fn ≠ 0, then the degree of polynomial f(x) is n
• β is called a zero of polynomial f(x), if β∈F and f(β)=0.
• At most n field elements are zeros of a polynomial of degree n, 

otherwise, it is a zero polynomial
• Lagrange Interpolation

– Let β0,…,βn be a set of distinct elements, and let p(βk), k=0,…,n, be given. 
There is exactly one polynomial p(x) of degree n or less that has value 
p(βk), k=0, …, n. p(x) is given by
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Cook-Toom (CT) Algorithm
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Example: 2 by 2 CT Algorithm
• 2 by 2 convolution in polynomial multiplication from is 

s(p)=h(p)x(p), where h(p)=h0+h1p, x(p)=x0+x1p, and 
s(p)=s0+s1p+s2p2

• Direct implementation: 
– require 4 multiplications and 1 addition

• CT algorithm 
– Step 1: Choose β0=0, β1=1, β2=-1
– Step 2 :
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2 by 2 CT Algorithm
– Step 3 : Calculate s(β0), s(β1), s(β2).

– Step 4: Compute s(p) by using Lagrange interpolation theorem
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2 by 2 CT Linear Convolution
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Remarks
• Direct implementation needs 4 mutiplications and 

1 addition
• If we take sequence hi as filter coefficients and 

sequence xi as the signal sequence, then the terms 
Hi need not be recomputed each time the filter is 
used. They can be precomputed once off-line and 
stored.

• 2 by 2 CT algorithm needs 3 multiplications and 5 
additions (ignoring the additions in the pre-
computation). 

• The number of multiplications is reduced by 1 at 
the expense of 4 extra additions
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Remarks
• Some additions in the preaddition or postaddition

matrix can be shared. When we count the number 
of additions, we only count one instead of two or 
three.

• As can be seen from examples, the CT algorithm 
can be understood as a matrix decomposition

C H D
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Cook-Toom Algorithm
• Generally, the equation can be expresses as s=Tx=CHDx

– C is called the postaddition matrix and D the preaddition
matrix. H is a diagonal matrix with Hi, i=0, 1, …, L+N-2 on the 
diagonal

• Since T=CHD, it implies that the CT algorithm provides a 
way to factorize the convolution matrix T into three 
multiplying matrices and the total number of multiplications 
is determined by the non-zero elements on the main 
diagonal of the matrix H (note matrices C and D contain 
only small integers)

• Although the number of multiplications is reduced, the 
number of additions has increased. The Cook-Toom
algorithm can be modified in order to further reduce the 
number of additions
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Concluding Remarks
• The Cook-Toom algorithm is efficient as 

measured by the number of multiplications
• As the size of the problem increases, the number 

of additions increase rapidly
• The choices of βi=0, ±1 are good, while the choices 

of ±2, ±4 (or other small integers) result in 
complicated pre-addition and post-addition 
matrices.

• For larger problems, CT algorithm becomes 
cumbersome 

• Winograd Algorithm
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Review of Integer Ring (1)
• For every integer c and positive integer d, there is a unique 

pair of integer Q, called the quotient, and integer s, the 
remainder, such that c=dQ+s, where 0≤s≤d-1

• Notation: Q=⎣c/d⎦, s=Rd[c]
• Euclidean Algorithm: Given two positive integers s and t, t<s, 

their GCD can be computed by an iterative application of the 
division algorithm. 
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Review of Integer Ring (2)
• For any integer s and t, there exists integers a and b s.t.  

GCD[s,t]= as + bt
• It is possible to uniquely determine a nonnegative integer 

given its moduli with respect to each of several integers, 
provided that the integer is known to be smaller than the 
product of the moduli.

• Example:
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Chinese Remainder Theorem (1)
• Given a set of integers m0, m1, …, mk that are pair-

wise relatively prime (co-prime), then for each 
integer c, 0≤c<M= m0m1…mk, there is a one-to-one
map between c and the vector of residues

• Conversely, given a set of co-prime integers m0, 
m1, …, mk and a set of integers c0, c1, …, ck with ci<mi. 
Then the system of equations

ci =c (mod mi),  i=0,1,…,k
has at most one solution for 0≤c<M

( )][,],[],[
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cRcRcR
kmmm K



VSP Lecture6 - Fast Algorithms for DSP   (cwliu@twins.ee.nctu.edu.tw) 3-18

Chinese Remainder Theorem (2)
• Define Mi=M/mi, then GCD[Mi, mi]=1. So there 

exists integers Ni and ni with 
GCD[Mi, mi]= 1 = NiMi + nimi,  i=0,1,…,k

• The system of equations ci=c (mod mi), 0≤i≤k, is 
uniquely solved by
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GCD Example
• GCD(993,186)

993 186 993=5×186+63
930

63 186=2×63+60

63=1×60+3

126
60

60
3 60=20×3+0

60
0

( )

( )
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186169933

186118659933
1861633

632186163
60163

3186,993

×−×=
×−×−×=

×−×=
×−×−=

×−=
=GCD



VSP Lecture6 - Fast Algorithms for DSP   (cwliu@twins.ee.nctu.edu.tw) 3-20

Remark
1.
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Example
• m0=3, m1=4, m2=5. Then by Euclidean theorem, we have

• The integer c can be calculated as

• Example 

;15)5(12)2(,12,5
;14)4(15)1(,15,4
;13)7(20)1(,20,3

02

11

00

=+−==
=+−==
=+−==

Mm
Mm
Mm

Ni

ni

( )

( ) ( )60 mod   241520  

 mod   

210

0

ccc

MMNcc
k

i
iii

−−−=

=∑
=

( )
17)60 (mod  )224115220( ,Conversely

)2,1,2(,, i.e.,17 210

=×−×−×−=
==

c
cccc



VSP Lecture6 - Fast Algorithms for DSP   (cwliu@twins.ee.nctu.edu.tw) 3-22

Remarks
• By taking residues, large integers are broken 

down into small pieces (that may be easy to add 
and multiply)

• Examples:
7→(1,            3,            2           )

+3→(0,            3,            3           )
10→(1 mod 3, 6 mod 4, 5 mod 5) = (1,2,0)

7→(1,            3,            2           )
×3→(0,            3,            3           )
21→(0 mod 3, 9 mod 4, 6 mod 5) = (0,1,1)
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CRT for Polynomials (1)
• Given a set of polynomials m(0)(x), m(1)(x), …, m(k)(x), that are 

pair-wise relatively prime (co-prime), then for each polynomial 
c(x), deg(c(x))<deg(M(x)), M(x)= m(0)(x)m(1)(x)…m(k)(x), there is 
a one-to-one map between c(x) and the vector of residues

• Conversely, given a set of co-prime polynomials m(0)(x), 
m(1)(x), …, m(k)(x) and a set of polynomials c(0)(x), c(1)(x), …, c(k)(x) 
with deg(c(i)(x))< deg(m(i)(x)). Then the system of equations

c(i)(x) =c(x) (mod m(i)(x)),  i=0,1,…,k
has at most one solution for deg(c(x)) < deg(M(x))

)])([,)],([)],([(
)()()( )()1()0( xcRxcRxcR

xmxmxm kK
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Chinese Remainder Theorem (2)
• Define M(i)(x)=M(x)/ m(i)(x), then GCD[M(i)(x),m(i)(x)]=1.  So 

there exists polynomials N(i)(x) and n(i)(x) with 
GCD[M(i)(x),m(i)(x)]=1= N(i)(x)M(i)(x) + n(i)(x)m(i)(x),  i=0,1,…,k

• The system of equations c(i)(x) =c(x) (mod m(i)(x) ), 0≤i≤k, is 
uniquely solved by
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Remarks
• The remainder of a polynomial with regard to 

modulus xi+f(x), where deg(f(x))<i, can be 
evaluated by substituting xi by –f(x) in the 
polynomial

• Example
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Winograd Algorithm
• Recall that we wish to compute s(p)=h(p)x(p) for 

linear convolution
• Consider the following system:

s(p)=h(p)x(p)  mod m(p)
• As long as deg(s)<deg(m), then the system can be 

used for solving linear convolution problem
• If m(p)= m(0)(p)m(1)(p)…m(k)(p). Efficient 

implementation for linear convolution can be 
constructed using the CRT by choosing and 
factoring the polynomial m(p) appropriately.
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Winograd Algorithm

This step requires multiplications

m(p)
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Example: 2×3 Winograd
Algorithm

• The linear convolution h(p)x(p) has degree 3

Require 
no multiplication
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Example: 2×3 Winograd
Algorithm

Require multiplication

m(p)
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Example: 2×3 Winograd
Algorithm



VSP Lecture6 - Fast Algorithms for DSP   (cwliu@twins.ee.nctu.edu.tw) 3-31

Example: 2×3 Winograd
Algorithm
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Remarks
• It requires 5 multiplications and 11 additions, compared with 6 

multiplications and 2 additions.
• In above example, the order in which the additions are done is 

unspecified. 
• One can experiment with the order of the additions to minimize 

their number, however, there is no theory developed to aid in doing 
this.

• The number of multiplications is highly dependent on the degree of 
m(p)

• The degree of m(p) should be as small as possible. By CRT, the 
extreme case is deg(m(p))=deg(s(p))+1

• Let s’(p)=s(p)- hN-1xL-1 m(p). Note that s’(p) (mod m(p)) = s(p) (mod 
m(p))

• Modified Winograd Algorithm:
– Choose m(p) with a degree equal to that of s(p)
– Apply CRT to s’(p)
– s(p)=s’(p)+ hN-1xL-1 m(p).
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Iterated Convolution
• To make use of efficient short-length convolution 

algorithms iteratively, one can build long 
convolutions

• These algorithms do not achieve minimal 
multiplication complexity, but achieve a good 
balance between multiplications and addition 
complexity

• Iterated Convolution algorithm
– Decompose the long convolution algorithm for short 

convolutions
– Construct fast convolution algorithm for short 

convolutions
– Use the short convolution algorithms to iteratively (or 

hierarchically) implement the long convolution



VSP Lecture6 - Fast Algorithms for DSP   (cwliu@twins.ee.nctu.edu.tw) 3-34

Example
• 4×4 linear convolution algorithm

Polyphase decomposition !!
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Remarks
• The 4×4 convolution is decomposed into two levels of nested 

2×2 short convolutions
• The top-level, which is expressed in terms of variable q, can 

be using by 2×2 convolution algorithms

• The polynomial multiplications, for computing s’0,s’1,s’2, are 
again 2×2 convolutions, i.e. the second level 2×2 short 
convolutions
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Linear Convolution

Linear Shift

Linear Shift



VSP Lecture6 - Fast Algorithms for DSP   (cwliu@twins.ee.nctu.edu.tw) 3-37

Circular Shift

Conventional shift
(linear shift)
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Circular Convolution
• Given two sequences xi and hi, 0≤i≤n-1, of block length n
• Notation:  ((n-k)) ≡ n-k (mod n)
• Cyclic (or circular) convolution s’i, 0≤i≤n-1, is given by

( )( )∑
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k
kkii xhs

( ) ( ) ( ) ( )1mod   1mod   )()(    
:product polynomialby n convolutio cyclic  theexpresscan  We
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Coefficients with indices larger than n-1 are folded back into terms
with indices small than n
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Direct Implementation
• Consider the following system

Ohx s
n-point 
sequence n-point 

sequence

n-point 
sequence

4×4 cyclic convolution

16 multiplications
12 additions

Circular Convolution

Circular shift
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Remarks
• The cyclic convolution can be computed as a linear 

convolution reduced by modulo pn-1
• There are 2n-1 outputs of linear convolution, while 

there are n outputs of cyclic convolution
• The cyclic convolution can be computed by using 

CRT with m(p)=pn-1
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Example: 4×4 Cyclic 
Convolution

• 4×4 cyclic convolution by using m(p)=p4-1

p=1
p=-1

p2=-1
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Example
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Examplem(p)
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Example
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5 multiplications
15 additions
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Discrete Fourier Transform
• Discrete Fourier transform (DFT) pairs
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• DFT/IDFT can be implemented by using the same hardware
• It requires N2 complex multiplications and N(N-1) complex 
additions

N complex multiplications
N-1 complex additions

2π/N
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Decimation in Time

N+2(N/2)2 complex multiplications vs. N2 complex multiplication

twiddle factor

n
2ℓ

2ℓ+1
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Flow Graph of the DIT FFT
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8-point DIT DFT
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Remarks
• It requires v=log2N stages. Each stage has N/2 butterfly 

operation (radix-2 DIT FFT), which requires 2 complex 
multiplications and 2 complex additions

• Each stage has N complex multiplications and N complex 
additions

• The number of complex multiplications (as well as additions) 
is equal to N log2N

• By symmetry property, we have (butterfly operation)
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2 complex multiplications
2 complex additions

1 complex multiplications
2 complex additions
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8-point FFT

Normal orderBit-Reversed order
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In-Place Computation

Stage 1
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The same register array can be used in each stage
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8-point FFT

Normal order Bit-reversed order
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Normal-Order Sorting v.s. 
Bit-Reversed Sorting

Normal Order Bit-reversed Order

even

odd

top

bottom
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DFT v.s. Radix-2 FFT
• DFT: N2 complex multiplications and N(N-1)

complex additions
• Recall that each butterfly operation requires one 

complex multiplication and two complex additions
• FFT: (N/2) log2N multiplications and N log2N

complex additions

• In-place computations: the input and the output 
nodes for each butterfly operation are 
horizontally adjacent only one storage arrays 
will be required
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Decimation in Frequency (DIF)
• Recall that the DFT is

• DIT FFT algorithm is based on the decomposition of the 
DFT computations by forming small subsequences in time 
domain index “n”: n=2ℓ or n=2ℓ+1

• One can consider dividing the output sequence X[k], in 
frequency domain, into smaller subsequences: k=2r or k=2r+1:
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DIF FFT Algorithm (1)

is just N/2-point DFT. Similarly,
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DIF FFT Algorithm (2)

v=log2N stages, each stage has N/2 butterfly operation.

(N/2)log2N complex multiplications, N complex additions



VSP Lecture6 - Fast Algorithms for DSP   (cwliu@twins.ee.nctu.edu.tw) 3-61

Remarks
• The basic butterfly operations for DIT FFT and DIF FFT 

respectively are transposed-form pair.

• The I/O values of DIT FFT and DIF FFT are the same
• Applying the transpose transform to each DIT FFT 

algorithm, one obtains DIF FFT algorithm

DIF BF unitDIT BF unit
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Fast Convolution with the FFT
• Given two sequences x1 and x2 of length N1 and N2

respectively
– Direct implementation requires N1N2 complex 

multiplications
• Consider using FFT to convolve two sequences:

– Pick N, a power of 2, such that N≥N1+N2-1
– Zero-pad x1 and x2 to length N
– Compute N-point FFTs of zero-padded x1 and x2, then we 

obtain X1 and X2
– Multiply X1 and X2
– Apply the IFFT to obtain the convolution sum of x1 and 

x2
– Computation complexity: 2(N/2) log2N + N + (N/2)log2N
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Implementation Issues
• Radix-2, Radix-4, Radix-8, Split-Radix,Radix-22, …, 
• I/O Indexing
• In-place computation

– Bit-reversed sorting is necessary
– Efficient use of memory
– Random access (not sequential) of memory. An address 

generator unit is required.
– Good for cascade form: FFT followed by IFFT (or vice 

versa)
• E.g. fast convolution algorithm

• Twiddle factors
– Look up table
– CORDIC rotator
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Algorithm Strength Reduction
• Motivation

– The number of strong operations, such as multiplications, is 
reduced possibly at the expense of an increase in the number of 
weaker operations, such as additions.

• Reduce computation complexity
• Example: Complex multiplication

– (a+jb)(c+jd)=e+jf,  a,b,c,d,e,f ∈ R
– The direct implementation requires 4 multiplications and 2 

additions

– However, the number of multiplication can be reduced to 3 at 
the expense of 3 extra additions by using the identities
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Complex Multiplication

Reduce the number of strong operation (less switched capacitance), 
however, increase the critical path

Speed?, Area?, Power? ….



VSP Lecture6 - Fast Algorithms for DSP   (cwliu@twins.ee.nctu.edu.tw) 3-66

FIR Filters
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Example: Linear Phase FIR
Linear phase FIR filter: with approximately constant frequency-
response magnitude and linear phase (constant group delay) in pass-
band

N-tap 

N multipliers
N-1 adders

(N+1)/2 multipliers
N-1 adders, if odd N

N/2 multipliers
N-1 adders, if even N

By exploiting substructure sharing to reduce area
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An Efficient Decomposition
• Example: 2-fold decomposition

• Example 3-fold decomposition

• General case (N-fold decomposition)
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Traditional Parallel Architecture
• 2-fold parallel architecture

4(N/2) multiplications
N/2-tap 4(N/2-1)+2 additions
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Traditional Parallel FIR

L-parallel FIR filter of length N/L requires 
1. L2 (N/L) multiplications, i.e. LN multiplications
2. L2 (N/L -1) +L(L-1) additions, i.e. L(N-1) additions

~ LN multiply-add operations



VSP Lecture6 - Fast Algorithms for DSP   (cwliu@twins.ee.nctu.edu.tw) 3-71



VSP Lecture6 - Fast Algorithms for DSP   (cwliu@twins.ee.nctu.edu.tw) 3-72

Fast FIR Algorithm (FFA)
• First by applying L-fold polyphase

decomposition for H(z)
– There are L filters of length N/L

• By applying Winograd algorithm
– 2 polynomials of degree L-1 can be implemented 

by using 2L-1 product terms.
– Each product terms are equivalent to filtering 

operations in the block formulation
– Consequently, it can be realized using 

approximately (2L-1) FIR filters of length N/L
It requires 2N-N/L multiplications


