

VLSI Signal Processing Lecture 6 Fast Algorithms for Digital Signal Processing

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

Algorithm Strength Reduction

- Motivation
 - The number of strong operations, such as multiplications, is reduced possibly at the expense of an increase in the number of weaker operations, such as additions.
- Reduce computation complexity
- Example: Complex multiplication
 - (a+jb)(c+jd)=e+jf, a,b,c,d,e,f $\in \mathbf{R}$
 - The direct implementation requires 4 multiplications and 2 additions $\begin{bmatrix} e \\ f \end{bmatrix} = \begin{bmatrix} c & -d \\ d & c \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$
 - However, the number of multiplication can be reduced to 3 at the expense of 3 extra additions by using the identities

$$ac-bd = a(c-d) + d(a-b)$$

3 multiplications 5 additions

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

ad + bc = b(c+d) + d(a-b)

Review of Digital Signal Processing

- Given two sequences:
 - Data sequence d_i , $0 \le i \le N-1$, of length N
 - Filter sequence g_i , $0 \le i \le L-1$, of length L
- Linear convolution

NL multiplications

$$\underline{s_i} = \sum_{k=0}^{N-1} g_{i-k} d_k, \text{ or } s_i = \sum_{k=0}^{L-1} g_k d_{i-k}, \quad i = 0, 1, \dots, L+N-2$$

Express the convolution in the notation of polynomials

$$d(x) = \sum_{i=0}^{N-1} d_i x^i, \quad g(x) = \sum_{i=0}^{L-1} g_i x^i. \text{ Then}$$
$$s(x) = g(x)d(x) = d(x)g(x), \text{ where } s(x) = \sum_{i=0}^{L+N-2} s_i x^i$$

CooK-Toom Algorithm

- An algorithm for linear convolution by using multiplying polynomials.
- Consider the following system

Review of Polynomial Ring

- For a field F, there is a polynomial ring F[x] called the ring of polynomials over F.
- Mathematical expression

$$f(x)=f_nx^n + f_{n-1}x^{n-1} + ... + f_1x + f_0, f_0, f_1, ..., f_n \in \mathbf{F}$$

- If $f_n \neq 0$, then the degree of polynomial f(x) is n
- β is called a zero of polynomial f(x), if $\beta \in F$ and $f(\beta)=0$.
- At most n field elements are zeros of a polynomial of degree n, otherwise, it is a zero polynomial
- Lagrange Interpolation
 - Let $\beta_0, ..., \beta_n$ be a set of distinct elements, and let $p(\beta_k)$, k=0,...,n, be given. There is exactly one polynomial p(x) of degree n or less that has value $p(\beta_k)$, k=0, ..., n. p(x) is given by

$$p(x) = \sum_{i=0}^{n} p(\beta_i) \frac{\prod_{j \neq i} (x - \beta_j)}{\prod_{j \neq i} (\beta_i - \beta_j)}$$

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

Cook-Toom (CT) Algorithm

- 1. Choose L + N 1 different real numbers $\beta_0, \beta_1, \dots \beta_{L+N-2}$
- 2. Compute $h(\beta_i)$ and $x(\beta_i)$, for $i = \{0, 1, \dots, L + N 2\}$
- 3. Compute $s(\beta_i) = h(\beta_i) \cdot x(\beta_i)$, for $i = \{0, 1, \dots, L + N 2\}$

4. Compute
$$s(p)$$
 by using $s(p) = \sum_{i=0}^{L+N-2} s(\beta_i) \frac{\prod_{j\neq i} (p-\beta_j)}{\prod_{j\neq i} (\beta_i - \beta_j)}$

- Algorithm Complexity
 - The goal of the fast-convolution algorithm is to reduce the multiplication complexity. So, if β_i `s (i=0,1,...,L+N-2) are chosen properly, the computation in step-2 involves some additions and multiplications by small constants
 - The multiplications are only used in step-3 to compute s(βi). So, only L+N-1 multiplications are needed

Example: 2 by 2 CT Algorithm

- 2 by 2 convolution in polynomial multiplication from is s(p)=h(p)x(p), where $h(p)=h_0+h_1p$, $x(p)=x_0+x_1p$, and $s(p)=s_0+s_1p+s_2p^2$
- Direct implementation:
 - require 4 multiplications and 1 addition

$$\begin{bmatrix} s_0 \\ s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} h_0 & 0 \\ h_1 & h_0 \\ 0 & h_1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$$

- CT algorithm
 - Step 1: Choose $\beta_0=0$, $\beta_1=1$, $\beta_2=-1$

 $\beta_0 = 0, \quad h(\beta_0) = h_0, \quad x(\beta_0) = x_0;$ $\beta_0 = 1, \quad h(\beta_1) = h_0 + h_1, \quad x(\beta_1) = x_0 + x_1;$ $\beta_0 = -1, \quad h(\beta_2) = h_0 - h_1, \quad x(\beta_2) = x_0 - x_1$

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

Require no

multiplications

- Step 3 : Calculate $s(\beta_0)$, $s(\beta_1)$, $s(\beta_2)$.

 $s(\beta_0) = h(\beta_0)x(\beta_0)$ $s(\beta_1) = h(\beta_1)x(\beta_1)$ $s(\beta_2) = h(\beta_2)x(\beta_2)$

Require 3 multiplications

Step 4: Compute s(p) by using Lagrange interpolation theorem

$$s(p) = s(\beta_{0}) \frac{(p - \beta_{1})(p - \beta_{2})}{(\beta_{0} - \beta_{1})(\beta_{0} - \beta_{2})} + s(\beta_{1}) \frac{(p - \beta_{0})(p - \beta_{1})}{(\beta_{1} - \beta_{0})(\beta_{1} - \beta_{2})} + s(\beta_{2}) \frac{(p - \beta_{0})(p - \beta_{1})}{(\beta_{2} - \beta_{0})(\beta_{2} - \beta_{1})} = s(\beta_{0}) + p(\frac{s(\beta_{1}) - s(\beta_{2})}{2}) + p^{2}(-s(\beta_{0}) + \frac{s(\beta_{1}) + s(\beta_{2})}{2}) = s_{0} + ps_{0} + p^{2}s_{0}$$

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

2 by 2 CT Linear Convolution

- The preceding computation leads to the following matrix form

$$\begin{bmatrix} s_{0} \\ s_{1} \\ s_{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} s(\beta_{0}) \\ s(\beta_{1})/2 \\ s(\beta_{2})/2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} h(\beta_{0}) & 0 & 0 \\ 0 & h(\beta_{1})/2 & 0 \\ 0 & 0 & h(\beta_{2})/2 \end{bmatrix} \cdot \begin{bmatrix} x(\beta_{0}) \\ x(\beta_{1}) \\ x(\beta_{2}) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} h_{0} & 0 & 0 \\ 0 & (h_{0} + h_{1})/2 & 0 \\ 0 & 0 & (h_{0} - h_{1})/2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} x_{0} \\ x_{1} \end{bmatrix}$$

- The computation is carried out as follows (5 additions, 3 multiplications)

1. $H_0 = h_0$, $H_1 = \frac{h_0 + h_1}{2}$, $H_2 = \frac{h_0 - h_1}{2}$ (pre-computed) 2. $X_0 = x_0$, $X_1 = x_0 + x_1$, $X_2 = x_0 - x_1$ 3. $S_0 = H_0 X_0$, $S_1 = H_1 X_1$, $S_2 = H_2 X_2$ 4. $s_0 = S_0$, $s_1 = S_1 - S_2$, $s_2 = -S_0 + S_1 + S_2$

Remarks

- Direct implementation needs 4 mutiplications and 1 addition
- If we take sequence h_i as filter coefficients and sequence x_i as the signal sequence, then the terms H_i need not be recomputed each time the filter is used. They can be precomputed once off-line and stored.
- 2 by 2 CT algorithm needs 3 multiplications and 5 additions (ignoring the additions in the pre-computation).
- The number of multiplications is reduced by 1 at the expense of 4 extra additions

- Some additions in the preaddition or postaddition matrix can be shared. When we count the number of additions, we only count one instead of two or three.
- As can be seen from examples, the CT algorithm can be understood as a matrix decomposition

$$\begin{bmatrix} s_0 \\ s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} h_0 & 0 \\ h_1 & h_0 \\ 0 & h_1 \end{bmatrix} \cdot \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \quad \text{or} \quad s = T \cdot x$$

Cook-Toom Algorithm

- Generally, the equation can be expresses as s=Tx=CHDx
 - C is called the postaddition matrix and D the preaddition matrix. H is a diagonal matrix with H_i, i=0, 1, ..., L+N-2 on the diagonal
- Since T=CHD, it implies that the CT algorithm provides a way to factorize the convolution matrix T into three multiplying matrices and the total number of multiplications is determined by the non-zero elements on the main diagonal of the matrix H (note matrices C and D contain only small integers)
- Although the number of multiplications is reduced, the number of additions has increased. The Cook-Toom algorithm can be modified in order to further reduce the number of additions

- The Cook-Toom algorithm is efficient as measured by the number of multiplications
- As the size of the problem increases, the number of additions increase rapidly
- The choices of β_i =0, ±1 are good, while the choices of ±2, ±4 (or other small integers) result in complicated pre-addition and post-addition matrices.
- For larger problems, CT algorithm becomes cumbersome
- →Winograd Algorithm

Review of Integer Ring (1)

- For every integer c and positive integer d, there is a unique pair of integer Q, called the quotient, and integer s, the remainder, such that c=dQ+s, where $0\leq s\leq d-1$
- Notation: Q=[c/d], s=R_d[c]
- Euclidean Algorithm: Given two positive integers s and t, t<s, their GCD can be computed by an iterative application of the division algorithm.

$$s = Q^{(1)}t + t^{(1)}$$

$$t = Q^{(2)}t^{(1)} + t^{(2)}$$

$$t^{(1)} = Q^{(3)}t^{(2)} + t^{(3)}$$

$$t^{(n-2)} = Q^{(n)}t^{(n-1)} + t^{(n)}$$
$$t^{(n-1)} = Q^{(n-1)}t^{(n)}$$

- 1. the process stops when a remainder of zero is obtained.
- The last nonzero remainder t⁽ⁿ⁾ is the GCD(s,t)
- 3. Matrix notation expression

 $\begin{bmatrix} s^{(r)} \\ t^{(r)} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -Q^{(r)} \end{bmatrix} \begin{bmatrix} s^{(r-1)} \\ t^{(r-1)} \end{bmatrix}$

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

Review of Integer Ring (2)

- For any integer s and t, there exists integers a and b s.t.
 GCD[s,t]= as + bt
- It is possible to uniquely determine a nonnegative integer given its moduli with respect to each of several integers, provided that the integer is known to be smaller than the product of the moduli.

 M_1

Unique representation

>

 \rightarrow

• Example:

 $\{m_1=3, m_2=5\}$

 M_1

 \rightarrow

 M_2

M=3×5=15

 M_2

	\rightarrow	M_{1}	<i>M</i> ₂
10	\rightarrow	1	0
11	\rightarrow	2	1
12	\rightarrow	0	2
13	\rightarrow	1	3
14	\rightarrow	2	4

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

Example

 $\{m_1, m_2, m_3\} = \{3, 4, 5\}$

 $\boldsymbol{M} = 3 \times 4 \times 5 = 60$

	\rightarrow	M_1	M_2	M_3			
0	\rightarrow	0	0	0		j	
1	\rightarrow	1	1	1		j	
2	\rightarrow	2	2	2		j	
3	\rightarrow	0	3	3		j	
4	\rightarrow	1	0	4		j	
5	\rightarrow	2	1	0		1	
6	\rightarrow	0	2	1		2	
7	\rightarrow	1	3	2		2	
8	\rightarrow	2	0	3		4	
9	\rightarrow	0	1	4		4	
10	\rightarrow	1	2	0			
11	\rightarrow	2	3	1		4	

2'		5)	C	,	,)
	\rightarrow	M_1	M_2	M_3		
12	\rightarrow	0	0	2		24
13	\rightarrow	1	1	3		25
14	\rightarrow	2	2	4		26
15	\rightarrow	0	3	0		27
16	\rightarrow	1	0	1		28
17	\rightarrow	2	1	2		29
18	\rightarrow	0	2	3		30
19	\rightarrow	1	3	4		31
20	\rightarrow	2	0	0		32
21	\rightarrow	0	1	1		33
22	\rightarrow	1	2	2		34
23	\rightarrow	2	3	3		35

	\rightarrow	M_1	M_2	M_3
24	\rightarrow	0	0	4
25	\rightarrow	1	1	0
26	\rightarrow	2	2	1
27	\rightarrow	0	3	2
28	\rightarrow	1	0	3
29	\rightarrow	2	1	4
30	\rightarrow	0	2	0
31	\rightarrow	1	3	1
32	\rightarrow	2	0	2
33	\rightarrow	0	1	3
34	\rightarrow	1	2	4
35	\rightarrow	2	3	0

	\rightarrow	M_1	M_2	M_3
36	\rightarrow	0	0	1
37	\rightarrow	1	1	2
38	\rightarrow	2	2	3
39	\rightarrow	0	3	4
40	\rightarrow	1	0	0
41	\rightarrow	2	1	1
42	\rightarrow	0	2	2
43	\rightarrow	1	3	3
44	\rightarrow	2	0	4
45	\rightarrow	0	1	0
46	\rightarrow	1	2	1
47	\rightarrow	2	3	2

Chinese Remainder Theorem (1)

• Given a set of integers $m_0, m_1, ..., m_k$ that are pairwise relatively prime (co-prime), then for each integer c, $0 \le c \le M = m_0 m_{1...} m_k$, there is a one-to-one map between c and the vector of residues

$$(R_{m_0}[c], R_{m_1}[c], \dots, R_{m_k}[c])$$

• Conversely, given a set of co-prime integers m_0 , m_1 , ..., m_k and a set of integers c_0 , c_1 , ..., c_k with $c_i < m_i$. Then the system of equations

$$c_i = c \pmod{m_i}, i = 0, 1, ..., k$$

has at most one solution for 0 \leq c<M

Chinese Remainder Theorem (2)

- Define M_i=M/m_i, then GCD[M_i, m_i]=1. So there exists integers N_i and n_i with GCD[M_i, m_i]=1 = N_iM_i + n_im_i, i=0,1,...,k
- The system of equations c_i=c (mod m_i), 0≤i≤k, is uniquely solved by
 We need to find N_i

$$c = \sum_{i=0}^{k} c_i N_i M_i \pmod{M}$$

given

GCD Example

• GCD(993,186)

993	186	
930	126	
63	60	
60	60	
3	0	

993=5×186+63

186=2×63+60

63=1×60+3

 $60 = 20 \times 3 + 0$

3-19

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

A

Remark

1.
$$N_i M_i + n_i m_i = GCD(M_i, m_i) = 1$$
, then we have
 $N_i M_i = 1 \pmod{m_i}$

2.
$$c \pmod{m_i} = \sum_{i=0}^k c_i N_i M_i \pmod{m_i}$$

= $c_i N_i M_i \pmod{m_i}$
= $c_i \pmod{m_i}$

Example

- $m_0=3$, $m_1=4$, $m_2=5$. Then by Euclidean theorem, we have
 - $m_0 = 3, \quad M_0 = 20, \quad (-1)^2 0 + (7)^3 = 1;$ $m_1 = 4, \quad M_1 = 15, \quad (-1)^1 5 + (4)^4 = 1;$
 - $m_2 = 5$, $M_0 = 12$, (-2)12 + (5)5 = 1;
- The integer c can be calculated as n_i

$$c = \sum_{i=0}^{k} c_i N_i M_i \pmod{M}$$

= $(-20c_0 - 15c_1 - 24c_2) \pmod{60}$

• Example

$$c = 17$$
, i.e. $(c_0, c_1, c_2) = (2, 1, 2)$

Conversely, $c = (-20 \times 2 - 15 \times 1 - 24 \times 2) \pmod{60} = 17$

Remarks

- By taking residues, large integers are broken down into small pieces (that may be easy to add and multiply)
- Examples:

$$\begin{array}{ccccccc} 7 \rightarrow (1, & 3, & 2 &) \\ + 3 \rightarrow (0, & 3, & 3 &) \end{array}$$

 $10 \rightarrow (1 \mod 3, 6 \mod 4, 5 \mod 5) = (1,2,0)$

7→(1,	3,	2)
×3→(0,	3,	3)

 $21 \rightarrow (0 \mod 3, 9 \mod 4, 6 \mod 5) = (0,1,1)$

CRT for Polynomials (1)

Given a set of polynomials m⁽⁰⁾(x), m⁽¹⁾(x), ..., m^(k)(x), that are pair-wise relatively prime (co-prime), then for each polynomial c(x), deg(c(x))<deg(M(x)), M(x)= m⁽⁰⁾(x)m⁽¹⁾(x)...m^(k)(x), there is a one-to-one map between c(x) and the vector of residues

$$(R_{m^{(0)}(x)}[c(x)], R_{m^{(1)}(x)}[c(x)], \dots, R_{m^{(k)}(x)}[c(x)])$$

 Conversely, given a set of co-prime polynomials m⁽⁰⁾(x), m⁽¹⁾(x), ..., m^(k)(x) and a set of polynomials c⁽⁰⁾(x), c⁽¹⁾(x), ..., c^(k)(x) with deg(c⁽ⁱ⁾(x))< deg(m⁽ⁱ⁾(x)). Then the system of equations c⁽ⁱ⁾(x) = c(x) (mod m⁽ⁱ⁾(x)), i=0,1,...,k has at most one solution for deg(c(x)) < deg(M(x))

Chinese Remainder Theorem (2)

- Define $M^{(i)}(x)=M(x)/m^{(i)}(x)$, then $GCD[M^{(i)}(x),m^{(i)}(x)]=1$. So there exists polynomials $N^{(i)}(x)$ and $n^{(i)}(x)$ with $GCD[M^{(i)}(x),m^{(i)}(x)]=1=N^{(i)}(x)M^{(i)}(x)+n^{(i)}(x)m^{(i)}(x)$, i=0,1,...,k
- The system of equations $c^{(i)}(x) = c(x) \pmod{m^{(i)}(x)}$, $0 \le i \le k$, is uniquely solved by

$$c(x) = \sum_{i=0}^{k} c^{(i)}(x) N^{(i)}(x) M^{(i)}(x) \pmod{M(x)}$$

Remarks

- The remainder of a polynomial with regard to modulus xⁱ+f(x), where deg(f(x))<i, can be evaluated by substituting xⁱ by -f(x) in the polynomial
- Example

(a).
$$R_{x+2}[5x^2+3x+5]=5(-2)^2+3(-2)+5=19$$

(b). $R_{x^2+2}[5x^2+3x+5]=5(-2)+3x+5=3x-5$
(c). $R_{x^2+x+2}[5x^2+3x+5]=5(-x-2)+3x+5=-2x-5$

Winograd Algorithm

- Recall that we wish to compute s(p)=h(p)x(p) for linear convolution
- Consider the following system:
 s(p)=h(p)x(p) mod m(p)
- As long as deg(s)<deg(m), then the system can be used for solving linear convolution problem
- If m(p)= m⁽⁰⁾(p)m⁽¹⁾(p)...m^(k)(p). Efficient implementation for linear convolution can be constructed using the CRT by choosing and factoring the polynomial m(p) appropriately.

Winograd Algorithm

- 1. Choose a polynomial m(p) with degree higher than the degree of h(p)x(p) and factor it into k+1 relatively prime polynomials with real coefficients, i.e., $m(p) = m^{(0)}(p)m^{(1)}(p) \cdots m^{(k)}(p)$
- 2. Let $M^{(i)}(p) = m(p)/m^{(i)}(p)$. Use the Euclidean GCD algorithm to solve $N^{(i)}(p)M^{(i)}(p) + n^{(i)}(p)m^{(i)}(p) = 1$ for $N^{(i)}(p)$.

- 3. Compute:
$$h^{(i)}(p) = h(p) \mod m^{(i)}(p), \quad x^{(i)}(p) = x(p) \mod m^{(i)}(p)$$

for $i = 0, 1, \dots, k$

- 4. Compute:
$$s^{(i)}(p) = h^{(i)}(p)x^{(i)}(p) \mod m^{(i)}(p)$$
, for $i = 0, 1, \dots, k$

This step requires multiplications

- 5. Compute s(p) by using:

$$s(p) = \sum_{i=0}^{k} s^{(i)}(p) N^{(i)}(p) M^{(i)}(p) \mod m(p)$$

Example: 2×3 Winograd Algorithm

witl	The linear convolution $h(p)x(p)$ has degree 3 with $m(p) = p(p-1)(p^2+1)$ - Let: $m^{(0)}(p) = p$, $m^{(1)}(p) = p-1$, $m^{(2)}(p) = p^2+1$ - Construct the following table using the relationships $M^{(i)}(p) = m(p)/m^{(i)}(p)$ and $N^{(i)}(p)M^{(i)}(p) + n^{(i)}(p)m^{(i)}(p) = 1$ for $i = 0,1,2$						
	i	$m^{(i)}(p)$	$M^{(i)}(p)$	$n^{(i)}(p)$	$N^{(i)}(p)$		
	0	р	$p^3 - p^2 + p - 1$	$p^2 - p + 1$	-1		
	1	<i>p</i> – 1	$p^3 + p$	$-\frac{1}{2}\left(p^2 + p + 2\right)$	$\frac{1}{2}$		
	2	$p^{2} + 1$	$p^2 - p$	$-\frac{1}{2}(p-2)$	$\frac{1}{2}(p-1)$	J	
_ _	Com		$ \begin{array}{l} & \text{rom} \ \hline h(p) = h_0 + h_1 p \\ h^{(0)}(p) = h_0, \\ h^{(0)}(p) = h_0 + h_1, \\ (p) = h_0 + h_1 p, x \end{array} $	$x^{(0)}(p) = x_0$ $x^{(1)}(p) = x_0 + x_1 +$	Require x ₂ no multiplication		

•

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

Example: 2×3 Winograd Algorithm

- $s^{(0)}(p) = h_0 x_0 = s_0^{(0)}, \quad s^{(1)}(p) = (h_0 + h_1)(x_0 + x_1 + x_2) = s_0^{(1)}$
- $s^{(2)}(p) = (h_0 + h_1 p)((x_0 x_2) + x_1 p) \mod(p^2 + 1)$ Require multiplication = $h_0(x_0 - x_2) - h_1 x_1 + (h_0 x_1 + h_1(x_0 - x_2)) p = s_0^{(2)} + s_1^{(2)} p$
- Notice, we need 1 multiplication for $s^{(0)}(p)$, 1 for $s^{(1)}(p)$, and 4 for $s^{(2)}(p)$
- However it can be further reduced to 3 multiplications as shown below:

$$\begin{bmatrix} s_0^{(2)} \\ s_1^{(2)} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} h_0 & 0 & 0 \\ 0 & h_0 - h_1 & 0 \\ 0 & 0 & h_0 + h_1 \end{bmatrix} \cdot \begin{bmatrix} x_0 + x_1 - x_2 \\ x_0 - x_2 \\ x_1 \end{bmatrix}$$

– Then:

$$s(p) = \sum_{i=0}^{2} s^{(i)}(p) N^{(i)}(p) M^{(i)}(p) \mod m(p)$$

= $\left[-s^{(0)}(p)(p^{3} - p^{2} + p - 1) + \frac{s^{(1)}(p)}{2}(p^{3} + p) + \frac{s^{(2)}(p)}{2}(p^{3} - 2p^{2} + p) \right]$
mod $(p^{4} - p^{3} + p^{2} - p)$

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

Example: 2×3 Winograd Algorithm

- Substitute $s^{(0)}(p)$, $s^{(1)}(p)$, $s^{(2)}(p)$ into s(p) to obtain the following

table

p^{0}	p^1	p^2	p^{3}
<i>s</i> ₀ ⁽⁰⁾	$-s_0^{(0)}$	<i>s</i> ₀ ⁽⁰⁾	$-s_0^{(0)}$
0	$\frac{1}{2} S_0^{(1)}$	0	$\frac{1}{2} S_0^{(1)}$
0	$\frac{1}{2} s_0^{(2)}$	$-s_0^{(2)}$	$\frac{1}{2} S_0^{(2)}$
0	$\frac{1}{2} s_1^{(2)}$	0	$-\frac{1}{2}s_1^{(2)}$

- Therefore, we have

$$\begin{bmatrix} s_{0} \\ s_{1} \\ s_{2} \\ s_{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 1 & 1 \\ 1 & 0 & -2 & 0 \\ -1 & 1 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} s_{0}^{(0)} \\ \frac{1}{2} s_{0}^{(1)} \\ \frac{1}{2} s_{0}^{(2)} \\ \frac{1}{2} s_{1}^{(2)} \end{bmatrix}$$

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

- It requires 5 multiplications and 11 additions, compared with 6 multiplications and 2 additions.
- In above example, the order in which the additions are done is unspecified.
- One can experiment with the order of the additions to minimize their number, however, there is no theory developed to aid in doing this.
- The number of multiplications is highly dependent on the degree of m(p)
- The degree of m(p) should be as small as possible. By CRT, the extreme case is deg(m(p))=deg(s(p))+1
- Let s'(p)=s(p)- h_{N-1}x_{L-1} m(p). Note that s'(p) (mod m(p)) = s(p) (mod m(p))
- Modified Winograd Algorithm
 - Choose m(p) with a degree equal to that of s(p)
 - Apply CRT to s'(p)
 - $s(p)=s'(p)+h_{N-1}x_{L-1}m(p)$.

Iterated Convolution

- To make use of efficient short-length convolution algorithms iteratively, one can build long convolutions
- These algorithms do not achieve minimal multiplication complexity, but achieve a good balance between multiplications and addition complexity
- Iterated Convolution algorithm
 - Decompose the long convolution algorithm for short convolutions
 - Construct fast convolution algorithm for short convolutions
 - Use the short convolution algorithms to iteratively (or hierarchically) implement the long convolution

_

Example

- 4×4 linear convolution algorithm
 - Let $h(p) = h_0 + h_1 p + h_2 p^2 + h_3 p^3$, $x(p) = x_0 + x_1 p + x_2 p^2 + x_3 p^3$ and s(p) = h(p)x(p)
 - First, we need to decompose the 4X4 convolution into a 2X2 convolution

- Define
$$h'_0(p) = h_0 + h_1 p$$
, $h'_1(p) = h_2 + h_3 p$
 $x'_0(p) = x_0 + x_1 p$, $x'_1(p) = x_2 + x_3 p$

Then, we have: Polyphase decomposition !!

- The 4×4 convolution is decomposed into two levels of nested
 2×2 short convolutions
- The top-level, which is expressed in terms of variable q, can be using by 2×2 convolution algorithms

$$\begin{bmatrix} s_0'(p) \\ s_1'(p) \\ s_2'(p) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} h_0'(p) & 0 & 0 \\ 0 & h_0'(p) - h_1'(p) & 0 \\ 0 & 0 & h_1'(p) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_0'(p) \\ x_1'(p) \end{bmatrix}$$

The polynomial multiplications, for computing s'₀,s'₁,s'₂, are again 2×2 convolutions, i.e. the second level 2×2 short convolutions

Circular Convolution

- Given two sequences x_i and h_i , $0 \le i \le n-1$, of block length n
- Notation: $((n-k)) \equiv n-k \pmod{n}$
- Cyclic (or circular) convolution s'_i , $0 \le i \le n-1$, is given by

$$s'_i = \sum_{k=0}^{n-1} h_{((i-k))} x_k$$

Coefficients with indices larger than n-1 are folded back into terms with indices small than n

We can express the cyclic convolution by polynomial product : $s'(p) = s(p) \pmod{p^n - 1} = h(p)x(p) \pmod{p^n - 1}$

Direct Implementation

Remarks

- The cyclic convolution can be computed as a linear convolution reduced by modulo $p^n\mbox{-}1$
- There are 2n-1 outputs of linear convolution, while there are n outputs of cyclic convolution
- The cyclic convolution can be computed by using CRT with $m(p)=p^n-1$

Example: 4×4 Cyclic Convolution

- Let $h(p) = h_0 + h_1 p + h_2 p^2 + h_3 p^3$, $x(p) = x_0 + x_1 p + x_2 p^2 + x_3 p^3$ - Let $m^{(0)}(p) = p - 1$, $m^{(1)}(p) = p + 1$, $m^{(2)}(p) = p^2 + 1$
- Get the following table using the relationships $M^{(i)}(p) = m(p)/m^{(i)}(p)$ and $N^{(i)}(p)M^{(i)}(p) + n^{(i)}(p)m^{(i)}(p) = 1$

i	$m^{(i)}(p)$	$M^{(i)}(p)$	$n^{(i)}(p)$	$N^{(i)}(p)$
0	<i>p</i> -1	$p^3 + p^2 + p - 1$	$-\frac{1}{4}(p^2+2p+3)$	$\frac{1}{4}$
1	<i>p</i> +1	$p^3 - p^2 + p - 1$	$\frac{1}{4}(p^2-2p+3)$	$-\frac{1}{4}$
2	$p^2 + 1$	$p^2 - 1$	$\frac{1}{2}$	$-\frac{1}{2}$

Compute the residues

$$h^{(0)}(p) = h_0 + h_1 + h_2 + h_3 = h_0^{(0)}, \quad p=1$$

$$h^{(1)}(p) = h_0 - h_1 + h_2 - h_3 = h_0^{(1)}, \quad p=-1$$

$$h^{(2)}(p) = (h_0 - h_2) + (h_1 - h_3)p = h_0^{(2)} + h_1^{(2)}p \quad p^2=-1 \quad 3-43$$

Computations so far require 5 multiplications

$$\begin{aligned} &-\text{ Then } s(p) = \sum_{i=0}^{2} s^{(i)}(p) N^{(i)}(p) M^{(i)}(p) \mod m(p) \\ &= \left[s_{0}^{(0)}(\frac{p^{3}+p^{2}+p+1}{4}) + s_{0}^{(1)}(\frac{p^{3}-p^{2}+p-1}{-4}) + s_{0}^{(2)}(\frac{p^{2}-1}{-2}) \right] + s_{1}^{(2)}\left(p \cdot \frac{p^{2}-1}{-2}\right) \\ &= \left(\frac{s_{0}^{(0)}}{4} + \frac{s_{0}^{(1)}}{4} + \frac{s_{0}^{(2)}}{2} \right) + p \left(\frac{s_{0}^{(0)}}{4} - \frac{s_{0}^{(1)}}{4} + \frac{s_{1}^{(2)}}{2} \right) + p^{2} \left(\frac{s_{0}^{(0)}}{4} + \frac{s_{0}^{(1)}}{4} - \frac{s_{0}^{(2)}}{2} \right) \\ &+ p^{3} \left(\frac{1}{4} s_{0}^{(0)} - \frac{1}{4} s_{0}^{(1)} - \frac{1}{2} s_{1}^{(2)} \right) \end{aligned}$$

- So, we have

$$\begin{bmatrix} s_0 \\ s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{4} s_0^{(0)} \\ \frac{1}{4} s_0^{(1)} \\ \frac{1}{2} s_0^{(2)} \\ \frac{1}{2} s_1^{(2)} \end{bmatrix}$$

- Notice that:

$$\begin{split} \frac{1}{4}s_{0}^{(0)} \\ \frac{1}{4}s_{0}^{(1)} \\ \frac{1}{2}s_{0}^{(2)} \\ \frac{1}{2}s_{1}^{(2)} \end{split} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix} \cdot \\ & \begin{bmatrix} \frac{1}{4}h_{0}^{(0)} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{4}h_{0}^{(1)} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2}h_{0}^{(2)} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}(h_{1}^{(2)}-h_{0}^{(2)}) & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}(h_{0}^{(2)}-h_{1}^{(2)}) \end{bmatrix} \cdot \begin{bmatrix} x_{0}^{(0)} \\ x_{0}^{(1)} \\ x_{0}^{(2)}+x_{1}^{(2)} \\ x_{0}^{(2)} \\ x_{0}^{(2)} \\ x_{1}^{(2)} \end{bmatrix} \end{split}$$

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

- Therefore, we have

Discrete Fourier Transform

• Discrete Fourier transform (DFT) pairs

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad k = 0,1,...,N-1$$

N complex multiplications
N-1 complex additions
$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, \quad n = 0,1,...,N-1,$$

where $W_N^{-kn} = e^{-j\frac{2\pi}{N}kn}$

Dr 1/1Dr 1 can be implemented by using the same hardware
 It requires N² complex multiplications and N(N-1) complex additions

 $N+2(N/2)^2$ complex multiplications vs. N^2 complex multiplication

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

3-47

Using a briefer system of notation:

$X_N[k] = G_{N/2}[k] + W_N^k H_{N/2}[k] ,$

where $G_{N/2}[k]$ and $H_{N/2}[k]$ are the N/2-point DFTs involving x[n] with even and odd n, respectively.

Flow Graph of the DIT FFT

Corollary:

Any *N*-point DFT with even *N* can be computed via two N/2-point DFTs. In turn, if N/2 is even then each of these N/2-point DFTs can be computed via two N/4-point DFTs and so on. In the case of $N = 2^r$, all N, N/2, N/4 ... are even and such a process of "splitting" ends up with all 2-point DFTs!

Remarks

- It requires v=log₂N stages. Each stage has N/2 butterfly operation (radix-2 DIT FFT), which requires 2 complex multiplications and 2 complex additions
- Each stage has N complex multiplications and N complex additions
- The number of complex multiplications (as well as additions) is equal to N log₂N
- By symmetry property, we have (butterfly operation)

In-Place Computation

The same register array can be used in each stage

Normal-Order Sorting v.s. Bit-Reversed Sorting

DFT v.s. Radix-2 FFT

- DFT: N² complex multiplications and N(N-1) complex additions
- Recall that each butterfly operation requires one complex multiplication and two complex additions
- FFT: (N/2) log₂N multiplications and N log₂N complex additions
- In-place computations: the input and the output nodes for each butterfly operation are horizontally adjacent → only one storage arrays will be required

Decimation in Frequency (DIF)

- Recall that the DFT is $X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk}$, $0 \le k \le N-1$
- DIT FFT algorithm is based on the decomposition of the DFT computations by forming small subsequences in time domain index "n": n=2 ℓ or n=2 ℓ +1
- One can consider dividing the output sequence X[k], in frequency domain, into smaller subsequences: k=2r or k=2r+1:

 $v = log_2 N$ stages, each stage has N/2 butterfly operation. $(N/2)\log_2 N$ complex multiplications, N complex additions

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

Remarks

The basic butterfly operations for DIT FFT and DIF FFT respectively are transposed-form pair.

DIT BF unit

DIF BF unit

- The I/O values of DIT FFT and DIF FFT are the same
- Applying the transpose transform to each DIT FFT algorithm, one obtains DIF FFT algorithm

Fast Convolution with the FFT

- Given two sequences x_1 and x_2 of length N_1 and N_2 respectively
 - Direct implementation requires N_1N_2 complex multiplications
- Consider using FFT to convolve two sequences:
 - Pick N, a power of 2, such that $N \ge N_1 + N_2 1$
 - Zero-pad x_1 and x_2 to length N
 - Compute N-point FFTs of zero-padded x_1 and x_2 , then we obtain X_1 and X_2
 - Multiply X_1 and X_2
 - Apply the IFFT to obtain the convolution sum of x_1 and x_2
 - Computation complexity: $2(N/2) \log_2 N + N + (N/2) \log_2 N$

Implementation Issues

- Radix-2, Radix-4, Radix-8, Split-Radix, Radix-2², ...,
- I/O Indexing
- In-place computation
 - Bit-reversed sorting is necessary
 - Efficient use of memory
 - Random access (not sequential) of memory. An address generator unit is required.
 - Good for cascade form: FFT followed by IFFT (or vice versa)
 - E.g. fast convolution algorithm
- Twiddle factors
 - Look up table
 - CORDIC rotator

Algorithm Strength Reduction

- Motivation
 - The number of strong operations, such as multiplications, is reduced possibly at the expense of an increase in the number of weaker operations, such as additions.
- Reduce computation complexity
- Example: Complex multiplication
 - (a+jb)(c+jd)=e+jf, a,b,c,d,e,f $\in \mathbf{R}$
 - The direct implementation requires 4 multiplications and 2 additions $\begin{bmatrix} e \\ f \end{bmatrix} = \begin{bmatrix} c & -d \\ d & c \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$
 - However, the number of multiplication can be reduced to 3 at the expense of 3 extra additions by using the identities

$$ac-bd = a(c-d) + d(a-b)$$
 3 multiplications
5 additions

D VSP Lecture6 - Fast

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

ad + bc = b(c+d) + d(a-b)

Complex Multiplication

Reduce the number of strong operation (less switched capacitance), however, increase the critical path

→ Speed?, Area?, Power?

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

FIR Filters

$$x(1), x(2), x(3), \dots \qquad H(z)$$

$$y(n) = h(n) * x(n) \Leftrightarrow Y(z) = H(z)X(z)$$

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} h_0 & 0 & 0 \\ h_1 & h_0 & 0 \\ 0 & h_1 & h_0 \\ 0 & 0 & h_1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \quad \text{Time-domain}$$

$$Y(z) = H(z) \cdot X(z) = \left(\sum_{n=0}^{N-1} h(n)z^{-n}\right) \cdot \left(\sum_{n=0}^{\infty} x(n)z^{-n}\right)$$

$$h(n) * x(n) = \sum_{i=0}^{N-1} h(i) x(n-i), \quad n = 0, 1, 2, \dots, \infty$$
3-66

Example: Linear Phase FIR

Linear phase FIR filter: with approximately constant frequencyresponse magnitude and linear phase (constant group delay) in passband

By exploiting substructure sharing to reduce area

(N+1)/2 multipliers N-1 adders, if odd N

N/2 multipliers y(n) N-1 adders, if even N

An Efficient Decomposition

Example: 2-fold decomposition

$$H(z) = h[0] + h[1]z^{-1} + h[2]z^{-2} + h[3]z^{-3} + h[4]z^{-4} + h[5]z^{-5} + h[6]z^{-6}$$

$$= (h[0] + h[2]z^{-2} + h[4]z^{-4} + h[6]z^{-6}) + z^{-1}(h[1] + h[3]z^{-2} + h[5]z^{-4})$$

$$H(z) = h[0] + h[1]z^{-1} + h[2]z^{-2} + h[3]z^{-3} + h[4]z^{-4} + h[5]z^{-5} + h[6]z^{-6}$$

$$= (h[0] + h[3]z^{-3} + h[6]z^{-6}) + z^{-1}(h[1] + h[4]z^{-3}) + z^{-2}(h[2] + h[5]z^{-3})$$

$$H(z) = h[0] + h[3]z^{-3} + h[6]z^{-6} + z^{-1}(h[1] + h[4]z^{-3}) + z^{-2}(h[2] + h[5]z^{-3})$$

$$H(z) = \sum_{k=-\infty}^{\infty} h[k]z^{-k} = \sum_{l=0}^{N-1} z^{-l}H_{l}(z^{N}), \text{ where } H_{l}(z) = \sum_{k=-\infty}^{\infty} h[Nk + l]z^{-k}$$

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

Traditional Parallel Architecture

• 2-fold parallel architecture

Traditional Parallel FIR

$$\begin{bmatrix} Y_0 \\ Y_1 \\ \cdots \\ Y_{L-1} \end{bmatrix} = \begin{bmatrix} H_0 & z^{-L}H_{L-1} & \cdots & z^{-L}H_1 \\ H_1 & H_0 & \cdots & z^{-L}H_2 \\ \cdots & \cdots & \cdots & \cdots \\ H_{L-1} & H_{L-2} & \cdots & H_0 \end{bmatrix} \cdot \begin{bmatrix} X_0 \\ X_1 \\ \cdots \\ X_{L-1} \end{bmatrix}$$

L-parallel FIR filter of length N/L requires

- 1. L^2 (N/L) multiplications, i.e. LN multiplications
- 2. L^2 (N/L -1) +L(L-1) additions, i.e. L(N-1) additions
 - ~ LN multiply-add operations

VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw)

- First by applying L-fold polyphase decomposition for H(z)
 - There are L filters of length N/L
- By applying Winograd algorithm
 - 2 polynomials of degree L-1 can be implemented by using 2L-1 product terms.
 - Each product terms are equivalent to filtering operations in the block formulation
 - Consequently, it can be realized using approximately (2L-1) FIR filters of length N/L

 \rightarrow It requires 2N-N/L multiplications

