VLSI Signal Processing

Lecture 6 Fast Algorithms for Digital

 Signal Processing
Algorithm Strength Reduction

- Motivation
- The number of strong operations, such as multiplications, is reduced possibly at the expense of an increase in the number of weaker operations, such as additions.
- Reduce computation complexity
- Example: Complex multiplication
- $(a+j b)(c+j d)=e+j f, a, b, c, d, e, f \in R$
- The direct implementation requires 4 multiplications and 2 additions

$$
\left[\begin{array}{l}
e \\
f
\end{array}\right]=\left[\begin{array}{cc}
c & -d \\
d & c
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

- However, the number of multiplication can be reduced to 3 at the expense of 3 extra additions by using the identities

$$
\begin{array}{ll}
a c-b d=a(c-d)+d(a-b) & \\
3 \text { multiplications } \\
a d+b c=b(c+d)+d(a-b) & \\
5 \text { additions }
\end{array}
$$

Review of Digital Signal Processing

- Given two sequences:
- Data sequence $d_{i}, 0 \leq i \leq N-1$, of length N
- Filter sequence $g_{i}, 0 \leq i \leq L-1$, of length L
- Linear convolution

NL multiplications

$$
\underline{s_{i}}=\sum_{k=0}^{N-1} g_{i-k} d_{k}, \text { or } s_{i}=\sum_{k=0}^{L-1} g_{k} d_{i-k}, \quad i=0,1, \ldots, L+N-2
$$

- Express the convolution in the notation of polynomials

$$
\begin{aligned}
& d(x)=\sum_{i=0}^{N-1} d_{i} x^{i}, \quad g(x)=\sum_{i=0}^{L-1} g_{i} x^{i} . \text { Then } \\
& s(x)=g(x) d(x)=d(x) g(x), \text { where } s(x)=\sum_{i=0}^{L+N-2} s_{i} x^{i}
\end{aligned}
$$

CooK-Toom Algorithm

- An algorithm for linear convolution by using multiplying polynomials.
- Consider the following system

given

$$
\begin{aligned}
\langle(p) & =h_{N-1} p^{N-1}+\ldots+h_{1} p+h_{0} \\
x(p) & =x_{L-1} p^{L-1}+\ldots+x_{1} p+x_{0} \\
\rightarrow s(p) & =s_{L+N-2} p^{L+N-2}+\ldots+s_{1} p+s_{0}
\end{aligned}
$$

To find $s_{L+N-2}, \ldots, s_{1}, s_{0} \rightarrow$ By solving $L+N-1$ linear equations

Review of Polynomial Ring

- For a field F, there is a polynomial ring $F[x]$ called the ring of polynomials over F.
- Mathematical expression

$$
f(x)=f_{n} x^{n}+f_{n-1} x^{n-1}+\ldots+f_{1} x+f_{0}, f_{0}, f_{1}, \ldots, f_{n} \in F
$$

- If $f_{n} \neq 0$, then the degree of polynomial $f(x)$ is n
- β is called a zero of polynomial $f(x)$, if $\beta \in F$ and $f(\beta)=0$.
- At most n field elements are zeros of a polynomial of degree n, otherwise, it is a zero polynomial
- Lagrange Interpolation
- Let $\beta_{0}, \ldots, \beta_{n}$ be a set of distinct elements, and let $p\left(\beta_{k}\right), k=0, \ldots, n$, be given. There is exactly one polynomial $p(x)$ of degree n or less that has value $p\left(\beta_{k}\right), k=0, \ldots, n . p(x)$ is given by

$$
p(x)=\sum_{i=0}^{n} p\left(\beta_{i}\right) \frac{\prod_{j \neq i}\left(x-\beta_{j}\right)}{\prod_{j \neq i}\left(\beta_{i}-\beta_{j}\right)}
$$

Cook-Toom (CT) Algorithm

1. Choose $L+N-1$ different real numbers $\beta_{0}, \beta_{1}, \cdots \beta_{L+N-2}$
2. Compute $h\left(\beta_{i}\right)$ and $x\left(\beta_{i}\right)$, for $i=\{0,1, \cdots, L+N-2\}$
3. Compute $s\left(\beta_{i}\right)=h\left(\beta_{i}\right) \cdot x\left(\beta_{i}\right)$, for $i=\{0,1, \cdots, L+N-2\}$
4. Compute $s(p)$ by using $s(p)=\sum_{i=0}^{L+N-2} s\left(\beta_{i}\right) \frac{\prod_{j \neq i}\left(p-\beta_{j}\right)}{\prod_{j \neq i}\left(\beta_{i}-\beta_{j}\right)}$

- Algorithm Complexity
- The goal of the fast-convolution algorithm is to reduce the multiplication complexity. So, if β_{i} `s ($\mathrm{i}=0,1, \ldots, \mathrm{~L}+\mathrm{N}-2$) are chosen properly, the computation in step-2 involves some additions and multiplications by small constants
- The multiplications are only used in step-3 to compute $s\left(\beta_{i}\right)$. So, only $\mathrm{L}+\mathrm{N}-1$ multiplications are needed

Example: 2 by 2 CT Algorithm

- 2 by 2 convolution in polynomial multiplication from is $s(\mathrm{p})=\mathrm{h}(\mathrm{p}) \times(\mathrm{p})$, where $h(p)=h_{0}+h_{1} p, x(p)=x_{0}+x_{1} p$, and $s(p)=s_{0}+s_{1} p+s_{2} p^{2}$
- Direct implementation:
- require 4 multiplications and 1 addition
- CT algorithm

$$
\left[\begin{array}{l}
s_{0} \\
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{cc}
h_{0} & 0 \\
h_{1} & h_{0} \\
0 & h_{1}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]
$$

- Step 1: Choose $\beta_{0}=0, \beta_{1}=1, \beta_{2}=-1$
- Step 2: $\beta_{0}=0, \quad h\left(\beta_{0}\right)=h_{0}, \quad x\left(\beta_{0}\right)=x_{0}$;

$$
\beta_{0}=1, \quad h\left(\beta_{1}\right)=h_{0}+h_{1}, \quad x\left(\beta_{1}\right)=x_{0}+x_{1} ;
$$

$$
\beta_{0}=-1, \quad h\left(\beta_{2}\right)=h_{0}-h_{1} . \quad x\left(\beta_{2}\right)=x_{0}-x_{1}
$$

2 by 2 CT Algorithm

- Step 3 : Calculate $s\left(\beta_{0}\right), s\left(\beta_{1}\right), s\left(\beta_{2}\right)$.

$$
\begin{aligned}
& s\left(\beta_{0}\right)=h\left(\beta_{0}\right) x\left(\beta_{0}\right) \\
& s\left(\beta_{1}\right)=h\left(\beta_{1}\right) x\left(\beta_{1}\right) \\
& s\left(\beta_{2}\right)=h\left(\beta_{2}\right) x\left(\beta_{2}\right)
\end{aligned}
$$

- Step 4: Compute $s(p)$ by using Lagrange interpolation theorem

$$
\begin{aligned}
s(p) & =s\left(\beta_{0}\right) \frac{\left(p-\beta_{1}\right)\left(p-\beta_{2}\right)}{\left(\beta_{0}-\beta_{1}\right)\left(\beta_{0}-\beta_{2}\right)}+s\left(\beta_{1}\right) \frac{\left(p-\beta_{0}\right)\left(p-\beta_{1}\right)}{\left(\beta_{1}-\beta_{0}\right)\left(\beta_{1}-\beta_{2}\right)} \\
& +s(\beta 2) \frac{\left(p-\beta_{0}\right)\left(p-\beta_{1}\right)}{\left(\beta_{2}-\beta_{0}\right)\left(\beta_{2}-\beta_{1}\right)} \\
& =s\left(\beta_{0}\right)+p\left(\frac{s\left(\beta_{1}\right)-s\left(\beta_{2}\right)}{2}\right)+p^{2}\left(-s\left(\beta_{0}\right)+\frac{s\left(\beta_{1}\right)+s\left(\beta_{2}\right)}{2}\right)
\end{aligned}
$$

$$
=s_{0}+p s_{1}+p^{2} s_{2}
$$

2 by 2 CT Linear Convolution

- The preceding computation leads to the following matrix form

$$
\begin{aligned}
& {\left[\begin{array}{l}
s_{0} \\
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
s\left(\beta_{0}\right) \\
s\left(\beta_{1}\right) / 2 \\
s\left(\beta_{2}\right) / 2
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
h\left(\beta_{0}\right) & 0 & 0 \\
0 & h\left(\beta_{1}\right) / 2 & 0 \\
0 & 0 & h\left(\beta_{2}\right) / 2
\end{array}\right] \cdot\left[\begin{array}{c}
x\left(\beta_{0}\right) \\
x\left(\beta_{1}\right) \\
x\left(\beta_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
h_{0} & 0 & 0 \\
0 & \left(h_{0}+h_{1}\right) / 2 & 0 \\
0 & 0 & \left(h_{0}-h_{1}\right) / 2
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 0 \\
1 & 1 \\
1 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]
\end{aligned}
$$

- The computation is carried out as follows ($\mathbf{5}$ additions, $\mathbf{3}$ multiplications)

$$
\begin{array}{lll}
\text { 1. } \quad H_{0}=h_{0}, & H_{1}=\frac{h_{0}+h_{1}}{2}, & H_{2}=\frac{h_{0}-h_{1}}{2} \quad \text { (pre-computed) } \\
\text { 2. } \quad X_{0}=x_{0}, & X_{1}=x_{0}+x_{1}, & X_{2}=x_{0}-x_{1} \\
\text { 3. } & S_{0}=H_{0} X_{0}, & S_{1}=H_{1} X_{1},
\end{array} S_{2}=H_{2} X_{2} \quad l
$$

4. $s_{0}=S_{0}, \quad s_{1}=S_{1}-S_{2}, \quad s_{2}=-S_{0}+S_{1}+S_{2}$

Remarks

- Direct implementation needs 4 mutiplications and 1 addition
- If we take sequence h_{i} as filter coefficients and sequence x_{i} as the signal sequence, then the terms H_{i} need not be recomputed each time the filter is used. They can be precomputed once off-line and stored.
- 2 by 2 CT algorithm needs 3 multiplications and 5 additions (ignoring the additions in the precomputation).
- The number of multiplications is reduced by 1 at the expense of 4 extra additions

Remarks

- Some additions in the preaddition or postaddition matrix can be shared. When we count the number of additions, we only count one instead of two or three.
- As can be seen from examples, the CT algorithm can be understood as a matrix decomposition

$$
\left[\begin{array}{l}
s_{0} \\
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{cc}
h_{0} & 0 \\
h_{1} & h_{0} \\
0 & h_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right] \quad \begin{array}{r}
\text { or } \\
s=T \cdot x \\
C \dot{H} D
\end{array}
$$

Cook-Toom Algorithm

- Generally, the equation can be expresses as $s=T x=C H D x$
- C is called the postaddition matrix and D the preaddition matrix. H is a diagonal matrix with $H_{i}, i=0,1, \ldots, L+N-2$ on the diagonal
- Since $T=C H D$, it implies that the CT algorithm provides a way to factorize the convolution matrix T into three multiplying matrices and the total number of multiplications is determined by the non-zero elements on the main diagonal of the matrix H (note matrices C and D contain only small integers)
- Although the number of multiplications is reduced, the number of additions has increased. The Cook-Toom algorithm can be modified in order to further reduce the number of additions

Concluding Remarks

- The Cook-Toom algorithm is efficient as measured by the number of multiplications
- As the size of the problem increases, the number of additions increase rapidly
- The choices of $\beta_{i}=0, \pm 1$ are good, while the choices of $\pm 2, \pm 4$ (or other small integers) result in complicated pre-addition and post-addition matrices.
- For larger problems, CT algorithm becomes cumbersome
- \rightarrow Winograd Algorithm

Review of Integer Ring (1)

- For every integer c and positive integer d, there is a unique pair of integer Q, called the quotient, and integer s, the remainder, such that $c=d Q+s$, where $0 \leq s \leq d-1$
- Notation: $Q=\lfloor c / d\rfloor, s=R_{d}[c]$
- Euclidean Algorithm: Given two positive integers s and $t, t<s$, their GCD can be computed by an iterative application of the division algorithm.

s	$=Q^{(1)} t+t^{(1)}$
t	$=Q^{(2)} t^{(1)}+t^{(2)}$
$t^{(1)}$	$=Q^{(3)} t^{(2)}+t^{(3)}$
\vdots	
$t^{(n-2)}$	$=Q^{(n)} t^{(n-1)}+t^{(n)}$
$t^{(n-1)}$	$=Q^{(n-1)} t^{(n)}$

1. the process stops when a remainder of zero is obtained.
2. The last nonzero remainder $t^{(n)}$ is the GCD ($\left.s, t\right)$
3. Matrix notation expression

$$
\left[\begin{array}{c}
s^{(r)} \\
t^{(r)}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
1 & -Q^{(r)}
\end{array}\right]\left[\begin{array}{c}
s^{(r-1)} \\
t^{(r-1)}
\end{array}\right]
$$

Review of Integer Ring (2)

- For any integer s and t, there exists integers a and b s.t. GCD[$s, t]=a s+b t$
- It is possible to uniquely determine a nonnegative integer given its moduli with respect to each of several integers, provided that the integer is known to be smaller than the product of the moduli.
- Example: $\left\{m_{1}=3, m_{2}=5\right\} \quad M=3 \times 5=15$

0
1

2
3
0
1
4
:---:
0
1

$\rightarrow \rightarrow$| M_{1} | M_{2} |
| :---: | :---: |
| 5 | \rightarrow |
| 2 | 0 |
| 6 | \rightarrow |
| 7 | \rightarrow |
| 8 | 1 |
| 8 | \rightarrow |
| 9 | \rightarrow |
| 1 | 2 |
| 2 | 3 |
| 0 | 4 |

10
11
12

13
13
14
:---:
0
1
2

Unique representation

Example

$$
\left\{m_{1}, m_{2}, m_{3}\right\}=\{3,4,5\}
$$

$$
\boldsymbol{M}=3 \times 4 \times 5=60
$$

	M_{1}	M_{2}	
0	0	0	0
1	1	1	1
2	2	2	2
3	0	3	3
4	1	0	4
5	2	1	0
$6 \rightarrow$	0	2	1
7	1	3	2
8	2	0	3
9	0	1	4
10	1	2	0
11	2	3	1

	M_{1}	M_{2}	M_{3}
$12 \rightarrow$	0	0	2
$13 \rightarrow$	1	1	3
14	2	2	4
15	0	3	0
16	1	0	1
17	2	1	2
18	0	2	3
19	1	3	4
$20 \rightarrow$	2	0	0
$21 \rightarrow$	0	1	1
22	1	2	2
$23 \rightarrow$	2	3	3

	M_{1}	M_{2}	M_{3}
24	0	0	4
25	1	1	0
26	2	2	1
27	0	3	2
$28 \rightarrow$	1	0	3
$29 \rightarrow$	2	1	4
30	0	2	0
31	1	3	1
32	2	0	2
33	0	1	3
34	1	2	4
$35 \rightarrow$	2	3	0

	M	M_{2}	M_{3}
48	0	0	3
49	1	1	4
50	2	2	0
51	0	3	1
52	1	0	2
53	2	1	3
54	0	2	4
55	1	3	0
56	2	0	1
57	0	1	2
58	1	2	3
59	2	3	4

Chinese Remainder Theorem (1)

- Given a set of integers $m_{0}, m_{1}, \ldots, m_{k}$ that are pairwise relatively prime (co-prime), then for each integer $c, 0 \leq c<M=m_{0} m_{1} \ldots m_{k}$, there is a one-to-one map between c and the vector of residues

$$
\left(R_{m_{0}}[c], R_{m_{1}}[c], \ldots, R_{m_{k}}[c]\right)
$$

- Conversely, given a set of co-prime integers m_{0}, m_{1}, \ldots, m_{k} and a set of integers $c_{0}, c_{1}, \ldots, c_{k}$ with $c_{i}<m_{i}$. Then the system of equations

$$
c_{i}=c\left(\bmod m_{i}\right), \quad i=0,1, \ldots, k
$$

has at most one solution for $0 \leq c<M$

Chinese Remainder Theorem (2)

- Define $M_{i}=M / m_{i}$, then $G C D\left[M_{i}, m_{i}\right]=1$. So there exists integers N_{i} and n_{i} with

$$
G C D\left[M_{i}, m_{i}\right]=1=N_{i} M_{i}+n_{i} m_{i}, i=0,1, \ldots, k
$$

- The system of equations $c_{i}=c\left(\bmod m_{i}\right), 0 \leq i \leq k$, is uniquely solved by

$$
c=\sum_{i=0}^{k} \frac{c_{i}}{} N_{i} \frac{M_{i}}{\mu}(\bmod M)
$$

given

GCD Example

- $\operatorname{GCD}(993,186)$

993	186		
930	126		
63	60		
60	60		
3	0	\quad	$993=5 \times 186+63$
:---:			
$186=2 \times 63+60$			
$63=1 \times 60+3$			
$60=20 \times 3+0$			

$$
\begin{aligned}
\qquad G C D(993,186) & =3 \\
& =63-1 \times 60 \\
& =63-1 \times(186-2 \times 63) \\
& =3 \times 63-1 \times 186 \\
& =3 \times(993-5 \times 186)-1 \times 186 \\
& =3 \times 993-16 \times 186 \\
\text { VSP Lecture6 - Fast Algorithms for DSP } & (\text { cwliu@twins.ee.nctu.edu.tw })
\end{aligned}
$$

Remark

1. $N_{i} M_{i}+n_{i} m_{i}=\operatorname{GCD}\left(M_{i}, m_{i}\right)=1$, then we have $N_{i} M_{i}=1 \quad\left(\bmod m_{i}\right)$
2. $c\left(\bmod m_{i}\right)=\sum_{i=0}^{k} c_{i} N_{i} M_{i}\left(\bmod m_{i}\right)$

$$
\begin{aligned}
& =c_{i} N_{i} M_{i} \quad\left(\bmod m_{i}\right) \\
& =c_{i} \quad\left(\bmod m_{i}\right)
\end{aligned}
$$

Example

- $m_{0}=3, m_{1}=4, m_{2}=5$. Then by Euclidean theorem, we have

$$
\begin{array}{lll}
m_{0}=3, & M_{0}=20, & (-1) 20+(7) 3=1 ; \\
m_{1}=4, & M_{1}=15, & (-1) 15+(4) 4=1 ; \\
m_{2}=5, & M_{0}=12, & (-2) 12+(5) 5=1 ;
\end{array}
$$

- The integer c can be calculated as

$$
\begin{aligned}
c & =\sum_{i=0}^{k} c_{i} N_{i} M_{i}(\bmod M) \\
& =\left(-20 c_{0}-15 c_{1}-24 c_{2}\right)(\bmod 60)
\end{aligned}
$$

- Example

$$
\begin{aligned}
& c=17 \text {, i.e. }\left(c_{0}, c_{1}, c_{2}\right)=(2,1,2) \\
& \text { Conversely, } c=(-20 \times 2-15 \times 1-24 \times 2)(\bmod 60)=17
\end{aligned}
$$

Remarks

- By taking residues, large integers are broken down into small pieces (that may be easy to add and multiply)
- Examples:

$7 \rightarrow(1$, 3, 2 $)$ $+3 \rightarrow(0$, 3, 3 $)$
$10 \rightarrow(1 \bmod 3,6 \bmod 4,5 \bmod 5)=(1,2,0)$
$7 \rightarrow(1$,
$\times 3$,

CRT for Polynomials (1)

- Given a set of polynomials $m^{(0)}(x), m^{(1)}(x), \ldots, m^{(k)}(x)$, that are pair-wise relatively prime (co-prime), then for each polynomial $c(x), \operatorname{deg}(c(x))<\operatorname{deg}(M(x)), M(x)=m^{(0)}(x) m^{(1)}(x) \ldots m^{(k)}(x)$, there is a one-to-one map between $c(x)$ and the vector of residues

$$
\left(R_{m^{(0)}(x)}[c(x)], R_{m^{(1)}(x)}[c(x)], \ldots, R_{m^{(k)}(x)}[c(x)]\right)
$$

- Conversely, given a set of co-prime polynomials $m^{(0)}(x)$, $m^{(1)}(x), \ldots, m^{(k)}(x)$ and a set of polynomials $c^{(0)}(x), c^{(1)}(x), \ldots, c^{(k)}(x)$ with $\operatorname{deg}\left(c^{(i)}(x)\right)<\operatorname{deg}\left(m^{(i)}(x)\right)$. Then the system of equations

$$
c^{(i)}(x)=c(x)\left(\bmod m^{(i)}(x)\right), \quad i=0,1, \ldots, k
$$

has at most one solution for $\operatorname{deg}(c(x))<\operatorname{deg}(M(x))$

Chinese Remainder Theorem (2)

- Define $M^{(i)}(x)=M(x) / m^{(i)}(x)$, then $G C D\left[M^{(i)}(x), m^{(i)}(x)\right]=1$. So there exists polynomials $N^{(i)}(x)$ and $n^{(i)}(x)$ with $G C D\left[M^{(i)}(x), m^{(i)}(x)\right]=1=N^{(i)}(x) M^{(i)}(x)+n^{(i)}(x) m^{(i)}(x), i=0,1, \ldots, k$
- The system of equations $c^{(i)}(x)=c(x)\left(\bmod m^{(i)}(x)\right), 0 \leq i \leq k$, is uniquely solved by

$$
c(x)=\sum_{i=0}^{k} c^{(i)}(x) N^{(i)}(x) M^{(i)}(x)(\bmod M(x))
$$

Remarks

- The remainder of a polynomial with regard to modulus $x^{i}+f(x)$, where $\operatorname{deg}(f(x))<i$, can be evaluated by substituting x^{i} by $-f(x)$ in the polynomial
- Example
$\begin{array}{ll}\text { (a). } & R_{x+2}\left[5 x^{2}+3 x+5\right]=5(-2)^{2}+3(-2)+5=19 \\ \text { (b). } & R_{x^{2}+2}\left[5 x^{2}+3 x+5\right]=5(-2)+3 x+5=3 x-5 \\ \text { (c). } & R_{x^{2}+x+2}\left[5 x^{2}+3 x+5\right]=5(-x-2)+3 x+5=-2 x-5\end{array}$

Winograd Algorithm

- Recall that we wish to compute $s(p)=h(p) x(p)$ for linear convolution
- Consider the following system:

$$
s(p)=h(p) x(p) \bmod m(p)
$$

- As long as deg(s)<deg(m), then the system can be used for solving linear convolution problem
- If $m(p)=m^{(0)}(p) m^{(1)}(p) . . . m^{(k)}(p)$. Efficient implementation for linear convolution can be constructed using the CRT by choosing and factoring the polynomial $m(p)$ appropriately.

Winograd Algorithm

- 1. Choose a polynomial $m(p)$ with degree higher than the degree of $h(p) x(p)$ and factor it into $\mathrm{k}+1$ relatively prime polynomials with real coefficients, i.e., $m(p)=m^{(0)}(p) m^{(1)}(p) \cdots m^{(k)}(p)$
- 2. Let $M^{(i)}(p)=m(p) / m^{(i)}(p)$. Use the Euclidean GCD algorithm to solve $N^{(i)}(p) M^{(i)}(p)+n^{(i)}(p) m^{(i)}(p)=1$ for $N^{(i)}(p)$.
- 3. Compute: $h^{(i)}(p)=h(p) \bmod m^{(i)}(p), \quad x^{(i)}(p)=x(p) \bmod m^{(i)}(p)$ for $i=0,1, \cdots, k$
- 4. Compute: $s^{(i)}(p)=h^{(i)}(p) x^{(i)}(p) \bmod m^{(i)}(p), \quad$ for $\quad i=0,1, \cdots$, ,

This step requires multiplications

- 5. Compute $s(p)$ by using:

$$
s(p)=\sum_{i=0}^{k} s^{(i)}(p) N^{(i)}(p) M^{(i)}(p) \bmod m(p)
$$

Example: 2×3 Winograd Algorithm

- The linear convolution $h(p) x(p)$ has degree 3
with

$$
m(p)=p(p-1)\left(p^{2}+1\right)
$$

- Let: $\quad m^{(0)}(p)=p, \quad m^{(1)}(p)=p-1, \quad m^{(2)}(p)=p^{2}+1$
- Construct the following table using the relationships $M^{(i)}(p)=m(p) / m^{(i)}(p)$ and $\quad N^{(i)}(p) M^{(i)}(p)+n^{(i)}(p) m^{(i)}(p)=1 \quad$ for $\quad i=0,1,2$

i	$m^{(i)}(p)$	$M^{(i)}(p)$	$n^{(i)}(p)$	$N^{(i)}(p)$
0	p	$p^{3}-p^{2}+p-1$	$p^{2}-p+1$	-1
1	$p-1$	$p^{3}+p$	$-\frac{1}{2}\left(p^{2}+p+2\right)$	$\frac{1}{2}$
2	$p^{2}+1$	$p^{2}-p$	$-\frac{1}{2}(p-2)$	$\frac{1}{2}(p-1)$

- Compute residues from $h(p)=h_{0}+h_{1} p$, $x(p)=x_{0}+x_{1} p+x_{2} p^{2}$.

$$
\begin{array}{cc}
h^{(0)}(p)=h_{0}, & x^{(0)}(p)=x_{0} \\
h^{(1)}(p)=h_{0}+h_{1}, & x^{(1)}(p)=x_{0}+x_{1}+x_{2} \\
h^{(2)}(p)=h_{0}+h_{1} p, & x_{(2)}(p)=\left(x_{0}-x_{2}\right)+x_{1} p
\end{array}
$$

Example: 2×3 Winograd Algorithm

$$
\begin{aligned}
& s^{(0)}(p)=h_{0} x_{0}=s_{0}^{(0)}, \quad s^{(1)}(p)=\left(h_{0}+h_{1}\right)\left(x_{0}+x_{1}+x_{2}\right)=s_{0}^{(1)} \\
& s^{(2)}(p)=\left(h_{0}+h_{1} p\right)\left(\left(x_{0}-x_{2}\right)+x_{1} p\right) \bmod \left(p^{2}+1\right) \quad \text { Require multiplication } \\
& \quad=h_{0}\left(x_{0}-x_{2}\right)-h_{1} x_{1}+\left(h_{0} x_{1}+h_{1}\left(x_{0}-x_{2}\right)\right) p=s_{0}^{(2)}+s_{1}^{(2)} p
\end{aligned}
$$

- Notice, we need 1 multiplication for $s^{(0)}(p), 1$ for $s^{(1)}(p)$, and 4 for $s^{(2)}(p)$
- However it can be further reduced to 3 multiplications as shown below:

$$
\left[\begin{array}{c}
s_{0}^{(2)} \\
s_{1}^{(2)}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right] \cdot\left[\begin{array}{ccc}
h_{0} & 0 & 0 \\
0 & h_{0}-h_{1} & 0 \\
0 & 0 & h_{0}+h_{1}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{0}+x_{1}-x_{2} \\
x_{0}-x_{2} \\
x_{1}
\end{array}\right]
$$

- Then:

$$
\begin{aligned}
& \qquad \begin{aligned}
s(p)= & \sum_{i=0}^{2} s^{(i)}(p) N^{(i)}(p) M^{(i)}(p) \bmod m(p) \\
= & {\left[-s^{(0)}(p)\left(p^{3}-p^{2}+p-1\right)+\frac{s^{(1)}(p)}{2}\left(p^{3}+p\right)+\frac{s^{(2)}(p)}{2}\left(p^{3}-2 p^{2}+p\right)\right] } \\
& \quad \bmod \left(p^{4}-p^{3}+p^{2}-p\right)
\end{aligned} \\
& \text { VSP Lecture6 - Fast Algorithms for DSP (cwliu@twins.ee.nctu.edu.tw) }
\end{aligned}
$$

Example: 2×3 Winograd Algorithm

- Substitute $s^{(0)}(p), \quad s^{(1)}(p), \quad s^{(2)}(p)$ into $s(p)$ to obtain the following table

p^{0}	p^{1}	p^{2}	p^{3}
$s_{0}^{(0)}$	$-s_{0}^{(0)}$	$s_{0}^{(0)}$	$-s_{0}^{(0)}$
0	$\frac{1}{2} s_{0}^{(1)}$	0	$\frac{1}{2} s_{0}^{(1)}$
0	$\frac{1}{2} s_{0}^{(2)}$	$-s_{0}^{(2)}$	$\frac{1}{2} s_{0}^{(2)}$
0	$\frac{1}{2} s_{1}^{(2)}$	0	$-\frac{1}{2} s_{1}^{(2)}$

- Therefore, we have

Example: 2×3 Winograd

 Algorithm$$
\begin{aligned}
& - \text { Notice that } \\
& {\left[\begin{array}{c}
s_{0}^{(0)} \\
\frac{1}{2} s_{0}^{(1)} \\
\frac{1}{2} s_{0}^{(2)} \\
\frac{1}{2} s_{1}^{(2)}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{ccccc}
h_{0} & 0 & 0 & 0 & 0 \\
0 & \frac{h_{0}+h_{1}}{2} & 0 & 0 & 0 \\
0 & 0 & \frac{h_{0}}{2} & 0 & 0 \\
0 & 0 & 0 & \frac{h_{1}-h_{0}}{2} & 0 \\
0 & 0 & 0 & 0 & \frac{h_{0}+h_{1}}{2}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{0} \\
x_{0}+x_{1}+x_{2} \\
x_{0}+x_{1}-x_{2} \\
x_{0}-x_{2} \\
x_{1}
\end{array}\right]}
\end{aligned}
$$

- So, finally we have:

$$
\left[\begin{array}{l}
s_{0} \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 2 & 1 & -1 \\
1 & 0 & -2 & 0 & 2 \\
-1 & 0 & 0 & -1 & -1
\end{array}\right] \cdot\left[\begin{array}{ccccc}
h_{0} & 0 & 0 & 0 & 0 \\
0 & \frac{h_{0}+h_{1}}{2} & 0 & 0 & 0 \\
0 & 0 & \frac{h_{0}}{2} & 0 & 0 \\
0 & 0 & 0 & \frac{h_{1}-h_{0}}{2} & 0 \\
0 & 0 & 0 & 0 & \frac{h_{0}+h_{1}}{2}
\end{array}\right]
$$

$$
\underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]}_{\text {Algorithms for DSP }} \cdot\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right]
$$

Remarks

- It requires 5 multiplications and 11 additions, compared with 6 multiplications and 2 additions.
- In above example, the order in which the additions are done is unspecified.
- One can experiment with the order of the additions to minimize their number, however, there is no theory developed to aid in doing this.
- The number of multiplications is highly dependent on the degree of $m(p)$
- The degree of $m(p)$ should be as small as possible. By CRT, the extreme case is $\operatorname{deg}(m(p))=\operatorname{deg}(s(p))+1$
- Let $s^{\prime}(p)=s(p)-h_{N-1} x_{L-1} m(p)$. Note that $s^{\prime}(p)(\bmod m(p))=s(p)(\bmod$ $m(p)$)
- Modified Winograd Algorithm:
- Choose $m(p)$ with a degree equal to that of $s(p)$
- Apply CRT to $s^{\prime}(p)$
- $s(p)=s^{\prime}(p)+h_{N-1} x_{L-1} m(p)$.

Iterated Convolution

- To make use of efficient short-length convolution algorithms iteratively, one can build long convolutions
- These algorithms do not achieve minimal multiplication complexity, but achieve a good balance between multiplications and addition complexity
- Iterated Convolution algorithm
- Decompose the long convolution algorithm for short convolutions
- Construct fast convolution algorithm for short convolutions
- Use the short convolution algorithms to iteratively (or hierarchically) implement the long convolution

Example

- 4×4 linear convolution algorithm
- Let $h(p)=h_{0}+h_{1} p+h_{2} p^{2}+h_{3} p^{3}, \quad x(p)=x_{0}+x_{1} p+x_{2} p^{2}+x_{3} p^{3}$ and $s(p)=h(p) x(p)$
- First, we need to decompose the 4 X 4 convolution into a 2 X 2 convolution
- Define $h_{0}^{\prime}(p)=h_{0}+h_{1} p, \quad h_{1}^{\prime}(p)=h_{2}+h_{3} p$

$$
x_{0}^{\prime}(p)=x_{0}+x_{1} p, \quad x_{1}^{\prime}(p)=x_{2}+x_{3} p
$$

- Then, we have: Polyphase decomposition !!

$$
\begin{aligned}
h(p) & =h_{0}^{\prime}(p)+h_{1}^{\prime}(p) p^{2}, \\
x(p) & =x_{0}^{\prime}(p)+x_{1}^{\prime}(p) p^{2}, \\
s(p) & \text { i.e., } x(p)=x(p, q)=h_{0}^{\prime}(p)+h_{1}^{\prime}(p) q \\
s(p) & =h(p) x(p)=h(p, q) x(p, q) \\
& =\left[h_{0}^{\prime}(p)+h_{1}^{\prime}(p) q\right] \cdot\left[x_{0}^{\prime}(p)+x_{1}^{\prime}(p) q\right] \\
& =h_{0}^{\prime}(p) x_{0}^{\prime}(p)+\left[h_{0}^{\prime}(p) x_{1}^{\prime}(p)+h_{1}^{\prime}(p) x_{0}^{\prime}(p)\right] q+h_{1}^{\prime}(p) x_{1}^{\prime}(p) q^{2} \\
& =s_{0}^{\prime}(p)+s_{1}^{\prime}(p) q+s_{2}^{\prime}(p) q^{2}=s(p, q)
\end{aligned}
$$

Remarks

- The 4×4 convolution is decomposed into two levels of nested 2×2 short convolutions
- The top-level, which is expressed in terms of variable q, can be using by 2×2 convolution algorithms

$$
\left[\begin{array}{l}
s_{0}^{\prime}(p) \\
s_{1}^{\prime}(p) \\
s_{2}^{\prime}(p)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
h_{0}^{\prime}(p) & 0 & 0 \\
0 & h_{0}^{\prime}(p)-h_{1}^{\prime}(p) & 0 \\
0 & 0 & h_{1}^{\prime}(p)
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{0}^{\prime}(p) \\
x_{1}^{\prime}(p)
\end{array}\right]
$$

- The polynomial multiplications, for computing $s_{0}^{\prime} s^{\prime} s_{1}, s^{\prime}{ }_{2}$, are again 2×2 convolutions, i.e. the second level 2×2 shor \dagger convolutions

Linear Convolution

Circular Shift

Conventional shift (linear shift)

Circular Convolution

- Given two sequences x_{i} and $h_{i}, 0 \leq i \leq n-1$, of block length n
- Notation: $((n-k)) \equiv n-k(\bmod n)$
- Cyclic (or circular) convolution $s_{i}^{\prime}, 0 \leq i \leq n-1$, is given by

$$
s_{i}^{\prime}=\sum_{k=0}^{n-1} h_{((i-k))} x_{k}
$$

Coefficients with indices larger than $n-1$ are folded back into terms with indices small than n

We can express the cyclic convolution by polynomial product :

$$
s^{\prime}(p)=s(p)\left(\bmod p^{n}-1\right)=h(p) x(p)\left(\bmod p^{n}-1\right)
$$

Direct Implementation

- Consider the following system

Remarks

- The cyclic convolution can be computed as a linear convolution reduced by modulo p^{n-1}
- There are $2 n-1$ outputs of linear convolution, while there are n outputs of cyclic convolution
- The cyclic convolution can be computed by using CRT with $m(p)=p^{n-1}$

Example: 4×4 Cyclic Convolution

- 4×4 cyclic convolution by using $m(p)=\mathrm{p}^{4}-1$
- Let $h(p)=h_{0}+h_{1} p+h_{2} p^{2}+h_{3} p^{3}, \quad x(p)=x_{0}+x_{1} p+x_{2} p^{2}+x_{3} p^{3}$
- Let $\quad m^{(0)}(p)=p-1, \quad m^{(1)}(p)=p+1, \quad m^{(2)}(p)=p^{2}+1$
- Get the following table using the relationships $M^{(i)}(p)=m(p) / m^{(i)}(p)$ and $N^{(i)}(p) M^{(i)}(p)+n^{(i)}(p) m^{(i)}(p)=1$

i	$m^{(i)}(p)$	$M^{(i)}(p)$	$n^{(i)}(p)$	$N^{(i)}(p)$
0	$p-1$	$p^{3}+p^{2}+p-1$	$-\frac{1}{4}\left(p^{2}+2 p+3\right)$	$\frac{1}{4}$
1	$p+1$	$p^{3}-p^{2}+p-1$	$\frac{1}{4}\left(p^{2}-2 p+3\right)$	$-\frac{1}{4}$
2	$p^{2}+1$	$p^{2}-1$	$\frac{1}{2}$	$-\frac{1}{2}$

- Compute the residues

$$
\begin{gathered}
h^{(0)}(p)=h_{0}+h_{1}+h_{2}+h_{3}=h_{0}^{(0)}, \quad \mathrm{p}=1 \\
h^{(1)}(p)=h_{0}-h_{1}+h_{2}-h_{3}=h_{0}^{(1)}, \quad \mathrm{p}=-1 \\
h^{(2)}(p)=\left(h_{0}-h_{2}\right)+\left(h_{1}-h_{3}\right) p=h_{0}^{(2)}+h_{1}^{(2)} p \quad \mathrm{p}^{2}=-1
\end{gathered}
$$

$$
\begin{gathered}
x^{(0)}(p)=x_{0}+x_{1}+x_{2}+x_{3}=x_{0}^{(0)}, \\
x^{(1)}(p)=x_{0}-x_{1}+x_{2}-x_{3}=x_{0}^{(1)}, \\
x^{(2)}(p)=\left(x_{0}-x_{2}\right)+\left(x_{1}-x_{3}\right) p=x_{0}^{(2)}+x_{1}^{(2)} p \\
s^{(0)}(p)=h^{(0)}(p) \cdot x^{(0)}(p)=h_{0}^{(0)} \cdot x_{0}^{(0)}=s_{0}^{(0)}, \\
s^{(1)}(p)=h^{(1)}(p) \cdot x^{(1)}(p)={h_{0}{ }^{(1)} \cdot x_{0}^{(1)}=s_{0}^{(1)}}^{s^{(2)}(p)=s_{0}^{(2)}+s_{1}^{(2)} p=\left[h^{(2)}(p) \cdot \bar{x}^{(2)}(p)\right] \bmod \left(p^{2}+1\right)} \\
=\left(h_{0}^{(2)} \cdot x_{0}^{(2)}-h_{1}^{(2)} \cdot x_{1}^{(2)}\right)+p\left({h_{0}}^{(2)} x_{1}^{(2)}+h_{1}^{(2)} x_{0}^{(2)}\right)
\end{gathered}
$$

- Since

$$
\begin{aligned}
& s_{0}^{(2)}=h_{0}^{(2)} x_{0}^{(2)}-h_{1}^{(2)} x_{1}^{(2)}=h_{0}^{(2)}\left(x_{0}^{(2)}+x_{1}^{(2)}\right)-\left(h_{0}^{(2)}+h_{1}^{(2)}\right) x_{1}^{(2)}, \\
& \left.s_{1}^{(2)}=h_{0}^{(2)} x_{1}^{(2)}+h_{1}^{(2)} x_{0}^{(2)}=h_{0}^{(2)}\left(x_{0}^{(2)}+x_{1}^{(2)}\right)+h_{1}^{(2)}-h_{0}^{(2)}\right) x_{0}^{(2)}
\end{aligned},
$$

$$
\begin{aligned}
& \text { - or in matrix-form } \\
& {\left[\begin{array}{c}
s_{0}^{(2)} \\
s_{1}^{(2)}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{ccc}
h_{0}^{(2)} & 0 & 0 \\
0 & h_{1}^{(2)}-h_{0}^{(2)} & 0 \\
0 & 0 & h_{0}^{(2)}+h_{1}^{(2)}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{0}^{(2)}+x_{1}^{(2)} \\
x_{0}^{(2)} \\
x_{1}^{(2)}
\end{array}\right]}
\end{aligned}
$$

- Computations so far require 5 multiplications

$$
\begin{aligned}
& \text { - Then } \begin{aligned}
s(p)= & \sum_{i=0}^{2} s^{(i)}(p) N^{(i)}(p) M^{(i)}(p) \bmod m(p) \\
= & {\left[S_{0}^{(0)}\left(\frac{p^{3}+p^{2}+p+1}{4}\right)+s_{0}^{(1)}\left(\frac{p^{3}-p^{2}+p-1}{-4}\right)+S_{0}^{(2)}\left(\frac{p^{2}-1}{-2}\right)\right]+s_{1}^{(2)}\left(p \cdot \frac{p^{2}-1}{-2}\right) } \\
= & \left(\frac{s_{0}^{(0)}}{4}+\frac{s_{0}^{(1)}}{4}+\frac{s_{0}^{(2)}}{2}\right)+p\left(\frac{s_{0}^{(0)}}{4}-\frac{s_{0}^{(1)}}{4}+\frac{s_{1}^{(2)}}{2}\right)+p^{2}\left(\frac{s_{0}^{(0)}}{4}+\frac{s_{0}^{(1)}}{4}-\frac{s_{0}^{(2)}}{2}\right) \\
& \quad+p^{3}\left(\frac{1}{4} S_{0}^{(0)}-\frac{1}{4} s_{0}^{(1)}-\frac{1}{2} S_{1}^{(2)}\right)
\end{aligned}
\end{aligned}
$$

- So, we have

$$
\left[\begin{array}{c}
s_{0} \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & -1 & 0 & 1 \\
1 & 1 & -1 & 0 \\
1 & -1 & 0 & -1
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{1}{4} s_{0}^{(0)} \\
\frac{1}{4} s_{0}^{(1)} \\
\frac{1}{2} s_{0}^{(2)} \\
\frac{1}{2} s_{1}^{(2)}
\end{array}\right]
$$

Example

- Notice that:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\frac{1}{4} s_{0}^{(0)} \\
\frac{1}{4} s_{0}^{(1)} \\
\frac{1}{2} s_{0}^{(2)} \\
\frac{1}{2} s_{1}^{(2)}
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] .} \\
& {\left[\begin{array}{ccccc}
\frac{1}{4} h_{0}^{(0)} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{4} h_{0}^{(1)} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} h_{0}^{(2)} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2}\left(h_{1}^{(2)}-h_{0}^{(2)}\right) & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2}\left(h_{0}^{(2)}-h_{1}^{(2)}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
x_{0}^{(0)} \\
x_{0}^{(1)} \\
x_{0}^{(2)}+x_{1}^{(2)} \\
x_{0}^{(2)} \\
x_{1}^{(2)}
\end{array}\right]}
\end{aligned}
$$

- Therefore, we have

$$
\begin{aligned}
& {\left[\begin{array}{l}
s_{0} \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & 0 & -1 \\
1 & -1 & 1 & 1 & 0 \\
1 & 1 & -1 & 0 & 1 \\
1 & -1 & -1 & -1 & 0
\end{array}\right] .} \\
& {\left[\begin{array}{ccccc}
\frac{h_{0}+h_{1}+h_{2}+h_{3}}{4} & 0 & 0 & 0 & 0 \\
0 & \frac{h_{0}-h_{1}+h_{2}-h_{3}}{4} & 0 & 0 & 0 \\
0 & 0 & \frac{h_{0}-h_{2}}{2} & 0 & 0 \\
0 & 0 & 0 & \frac{-h_{0}+h_{1}+h_{2}-h_{3}}{2} & 0 \\
0 & 0 & 0 & 0 & \frac{h_{0}+h_{1}-h_{2}-h_{3}}{2}
\end{array}\right] .} \\
& {\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]} \\
& 5 \text { multiplications } \\
& 15 \text { additions }
\end{aligned}
$$

Discrete Fourier Transform

- Discrete Fourier transform (DFT) pairs

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \quad k=0,1, \ldots, N-1 \quad \begin{array}{l}
N \text { complex multiplications } \\
N-1 \text { complex additions }
\end{array} \\
& x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}, \quad n=0,1, \ldots, N-1,
\end{aligned}
$$

- DFT/IDFT can be implemented by using the same hardware
- It requires N^{2} complex multiplications and $N(N-1)$ complex additions

Decimation in Time

$$
\begin{aligned}
& X_{N}[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n} \quad \longleftarrow-\text { point DFT }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{l=0} x[2 l] W_{N}^{2 l k}+\sum_{l=0} x[2 l+1] W_{N}^{(2 l+1) k} \\
& =\sum_{l=0}^{N / 2-1} x[2 l][\underbrace{W_{N}^{2}}_{W_{N / 2}}]^{l k}+\underbrace{W_{N}^{k}}_{\text {twiddle factor }} \sum_{W_{N / 2}}^{N / 2-1} x[2 l+1][\underbrace{W_{N}^{2}}_{W_{N}}]^{l k} \\
& =\underbrace{\sum_{l=0}^{N / 2-1} x[2 l] W_{N / 2}^{l k}+W_{N}^{k} \sum_{l=0}^{N / 2-1} x[2 l+1] W_{N / 2}^{l k}}_{\text {two } N / 2-\text { point DFT's!!! }}
\end{aligned}
$$

$N+2(N / 2)^{2}$ complex multiplications vs. N^{2} complex multiplication

Using a briefer system of notation:

$$
X_{N}[k]=G_{N / 2}[k]+W_{N}^{k} H_{N / 2}[k]
$$

where $G_{N / 2}[k]$ and $H_{N / 2}[k]$ are the $N / 2$-point DFTs involving $x[n]$ with even and odd n, respectively.

Flow Graph of the DIT FFT

Corollary:

Any N-point DFT with even N can be computed via two $N / 2$ point DFTs. In turn, if $N / 2$ is even then each of these $N / 2-$ point DFTs can be computed via two $N / 4$-point DFTs and so on. In the case of $N=2^{r}$, all $N, N / 2, N / 4 \ldots$ are even and such a process of "splitting" ends up with all 2-point DFTs!

8-point DIT DFT

Remarks

- It requires $v=\log _{2} N$ stages. Each stage has $N / 2$ butterfly operation (radix-2 DITFFT), which requires 2 complex multiplications and 2 complex additions
- Each stage has N complex multiplications and N complex additions
- The number of complex multiplications (as well as additions) is equal to $\mathrm{N} \log _{2} \mathrm{~N}$
- By symmetry property, we have (butterfly operation)

8-point FFT

Bit-Reversed order
Normal order

In-Place Computation

The same register array can be used in each stage

Stage 1
Stage 2
Stage 3

Normal-Order Sorting v.s. Bit-Reversed Sorting

Normal Order
Bit-reversed Order

DFT v.s. Radix-2 FFT

- DFT: N^{2} complex multiplications and $\mathrm{N}(\mathrm{N}-1)$ complex additions
- Recall that each butterfly operation requires one complex multiplication and two complex additions
- FFT: (N/2) $\log _{2} N$ multiplications and $N \log _{2} N$ complex additions
- In-place computations: the input and the output nodes for each butterfly operation are horizontally adjacent \rightarrow only one storage arrays will be required

Decimation in Frequency (DIF)

- Recall that the DFT is $X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{n k}, 0 \leq k \leq N-1$
- DIT FFT algorithm is based on the decomposition of the DFT computations by forming small subsequences in time domain index " n ": $n=2 l$ or $n=2 l+1$
- One can consider dividing the output sequence $X[k]$, in frequency domain, into smaller subsequences: $k=2 r$ or $k=2 r+1$:

$$
\begin{aligned}
X[k]
\end{aligned} \begin{aligned}
& X[2 r] \\
& X[2 r+1]
\end{aligned} \quad 0 \leq r \leq \frac{N}{2}-1 \quad \text { Substitution of variables }
$$

DIF FFT Algorithm (1)

$$
0 \leq r \leq \frac{N}{2}-1
$$

$$
X[2 r]=\sum_{n=0}^{N / 2-1}\left(\underline{\left.x[n]+x\left[n+\frac{N}{2}\right]\right)}\right) W_{\frac{1}{2}}^{n r} \text { is just N/2-point DFT. Similarly, }
$$

$$
X[2 r+1]=\sum_{n=0}^{N / 2-1}\left(x[n]-x\left[n+\frac{N}{2}\right]\right) W_{N}^{n(2 r+1)}=\sum_{n=0}^{N / 2-1}\left\{x[n]-x\left[n+\frac{N}{2}\right]\right\} W_{N}^{n} W_{N / 2}^{n r}
$$

DIF FFT Algorithm (2)

$v=\log _{2} \mathrm{~N}$ stages, each stage has N/2 butterfly operation.
($\mathrm{N} / 2$) $\log _{2} \mathrm{~N}$ complex multiplications, N complex additions

Remarks

- The basic butterfly operations for DIT FFT and DIF FFT respectively are transposed-form pair.

DIT BF unit

DIF BF unit

- The I/O values of DIT FFT and DIF FFT are the same
- Applying the transpose transform to each DIT FFT algorithm, one obtains DIF FFT algorithm

Fast Convolution with the FFT

- Given two sequences x_{1} and x_{2} of length N_{1} and N_{2} respectively
- Direct implementation requires $\mathrm{N}_{1} \mathrm{~N}_{2}$ complex multiplications
- Consider using FFT to convolve two sequences:
- Pick N, a power of 2 , such that $N \geq N_{1}+N_{2}-1$
- Zero-pad x_{1} and x_{2} to length N
- Compute N-point FFTs of zero-padded x_{1} and x_{2}, then we obtain X_{1} and X_{2}
- Multiply X_{1} and X_{2}
- Apply the IFFT to obtain the convolution sum of x_{1} and x_{2}
- Computation complexity: $2(N / 2) \log _{2} N+N+(N / 2) \log _{2} N$

Implementation Issues

- Radix-2, Radix-4, Radix-8, Split-Radix,Radix-2², ...,
- I/O Indexing
- In-place computation
- Bit-reversed sorting is necessary
- Efficient use of memory
- Random access (not sequential) of memory. An address generator unit is required.
- Good for cascade form: FFT followed by IFFT (or vice versa)
- E.g. fast convolution algorithm
- Twiddle factors
- Look up table
- CORDIC rotator

Algorithm Strength Reduction

- Motivation
- The number of strong operations, such as multiplications, is reduced possibly at the expense of an increase in the number of weaker operations, such as additions.
- Reduce computation complexity
- Example: Complex multiplication
- $(a+j b)(c+j d)=e+j f, a, b, c, d, e, f \in R$
- The direct implementation requires 4 multiplications and 2 additions

$$
\left[\begin{array}{l}
e \\
f
\end{array}\right]=\left[\begin{array}{cc}
c & -d \\
d & c
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

- However, the number of multiplication can be reduced to 3 at the expense of 3 extra additions by using the identities

$$
\begin{array}{ll}
a c-b d=a(c-d)+d(a-b) & 3 \text { multiplications } \\
a d+b c=b(c+d)+d(a-b) & 5 \text { additions }
\end{array}
$$

Complex Multiplication

Reduce the number of strong operation (less switched capacitance), however, increase the critical path
\rightarrow Speed?, Area?, Power?

FIR Filters

$$
\begin{gathered}
x(1), x(2), x(3), \ldots \rightarrow H(z) \\
y(n)=h(n) * x(n) \Leftrightarrow Y(z)=H(z) X(z) \\
{\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{ccc}
h_{0} & 0 & 0 \\
h_{1} & h_{0} & 0 \\
0 & h_{1} & h_{0} \\
0 & 0 & h_{1}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right] \quad Y(z)=H(z) \cdot X(z)=\left(\sum_{n=0}^{N-1} h(n) z^{-n}\right) \cdot\left(\sum_{n=0}^{\infty} x(n) z^{-n}\right)} \\
\sim \text { Time-domain } h(n) * x(n)=\sum_{i=0}^{N-1} h(i) x(n-i), \quad n=0,1,2, \cdots, \infty
\end{gathered}
$$

Example: Linear Phase FIR

Linear phase FIR filter: with approximately constant frequencyresponse magnitude and linear phase (constant group delay) in passband

N -tap

By exploiting substructure sharing to reduce area

($\mathrm{N}+1$)/2 multipliers N -1 adders, if odd N

An Efficient Decomposition

- Example: 2-fold decomposition

$$
\begin{aligned}
H(z) & =h[0]+h[1] z^{-1}+h[2] z^{-2}+h[3] z^{-3}+h[4] z^{-4}+h[5] z^{-5}+h[6] z^{-6} \\
& =\underbrace{\left(h[0]+h[2] z^{-2}+h[4] z^{-4}+h[6] z^{-6}\right)}_{H_{0}\left(z^{2}\right)}+z^{-1} \underbrace{\left(h[1]+h[3] z^{-2}+h[5] z^{-4}\right)}_{H_{1}\left(z^{2}\right)}
\end{aligned}
$$

- Example 3-fold decomposition

$$
\begin{aligned}
H(z) & =h[0]+h[1] z^{-1}+h[2] z^{-2}+h[3] z^{-3}+h[4] z^{-4}+h[5] z^{-5}+h[6] z^{-6} \\
& =\underbrace{\left(h[0]+h[3] z^{-3}+h[6] z^{-6}\right)}_{H_{0}\left(z^{3}\right)}+z^{-1} \underbrace{\left(h[1]+h[4] z^{-3}\right)}_{H_{1}\left(z^{3}\right)}+z^{-2} \underbrace{\left(h[2]+h[5] z^{-3}\right)}_{H_{2}\left(z^{3}\right)}
\end{aligned}
$$

- General case (N-fold decomposition)

$$
H(z)=\sum_{k=-\infty}^{\infty} h[k] z^{-k}=\sum_{l=0}^{N-1} z^{-l} H_{l}\left(z^{N}\right) \text {, where } H_{l}(z)=\sum_{k=-\infty}^{\infty} h[N k+l] z^{-k}
$$

Traditional Parallel Architecture

- 2-fold parallel architecture

$$
X(z)=X_{0}\left(z^{2}\right)+z^{-1} X_{1}\left(z^{2}\right) \quad H(z)=H_{0}\left(z^{2}\right)+z^{-1} H_{1}\left(z^{2}\right)
$$

$$
\left[\begin{array}{l}
Y_{0} \\
Y_{1}
\end{array}\right]=\left[\begin{array}{cc}
H_{0} & z^{-2} H_{1} \\
H_{1} & H_{0}
\end{array}\right]\left[\begin{array}{l}
X_{0} \\
X_{1}
\end{array}\right]
$$

4(N/2) multiplications

Traditional Parallel FIR

$$
\left[\begin{array}{c}
Y_{0} \\
Y_{1} \\
\cdots \\
Y_{L-1}
\end{array}\right]=\left[\begin{array}{cccc}
H_{0} & z^{-L} H_{L-1} & \cdots & z^{-L} H_{1} \\
H_{1} & H_{0} & \cdots & z^{-L} H_{2} \\
\cdots & \cdots & \cdots & \cdots \\
H_{L-1} & H_{L-2} & \cdots & H_{0}
\end{array}\right] \cdot\left[\begin{array}{c}
X_{0} \\
X_{1} \\
\cdots \\
X_{L-1}
\end{array}\right]
$$

L-parallel FIR filter of length N / L requires

1. $L^{2}(N / L)$ multiplications, i.e. $L N$ multiplications
2. $L^{2}(N / L-1)+L(L-1)$ additions, i.e. $L(N-1)$ additions
~ LN multiply-add operations

Fast FIR Algorithm (FFA)

- First by applying L-fold polyphase decomposition for $H(z)$
- There are L filters of length N/L
- By applying Winograd algorithm
- 2 polynomials of degree L-1 can be implemented by using 2L-1 product terms.
- Each product terms are equivalent to filtering operations in the block formulation
- Consequently, it can be realized using approximately (2L-1) FIR filters of length N/L
\rightarrow It requires $2 N-N / L$ multiplications

