

VLSI Signal Processing

Lecture 5 Systolic Array Architecture

VSP Lecture5 - Systolic Array (cwliu@twins.ee.nctu.edu.tw)

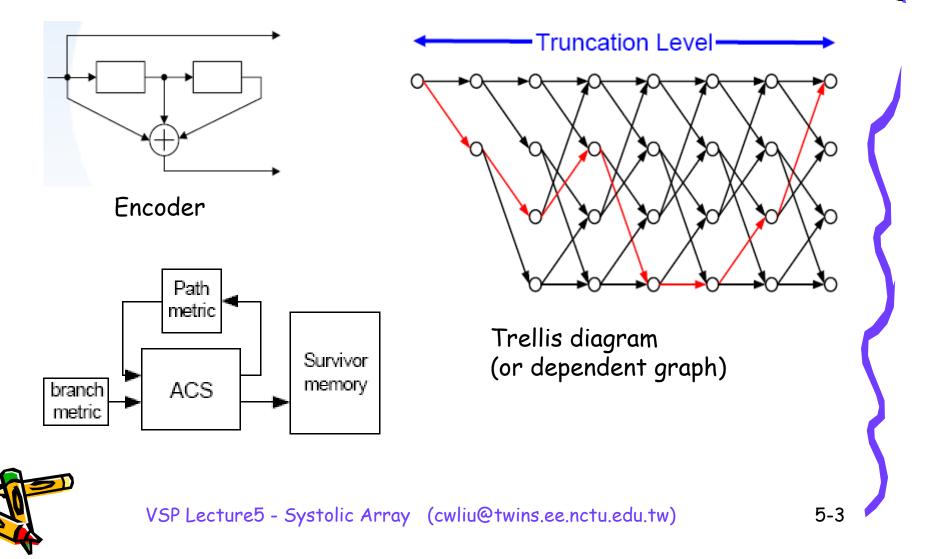
5-1

A C

Techniques for VLSI Systems

- Algorithm Strength Reduction
 - Fast algorithm
 - Using polyphase filter bank to realize long-length taps linear phase filter
 - Using FFT instead of DFT
 - Fast convolution algorithm
 - Tradeoff between performance and complexity
 - Fast Trackback Viterbi algorithm (for convolutional code, Turbo code)
 - Detect first and followed by BM algorithm for Reed-Solomon Code
 - Using CORDIC machine instead of complex multiplier
- Memory management
 - Memory bank, Register File
 - Local buffer (cache, or FIFO...)
 - Multiple-port memory is replaced by multiple single-port memory bank
- Power Management
 - Resource allocation
 - Using finite-state machine (FSM) to well timing and flow control, through enable/disable signals, in order to time-share the same PE
 - Clock gating, Data gating
 - Power-aware, Energy-aware design
- Low-power circuit design technology

Convolutinal Code



Mapping Algorithms onto Array Structures

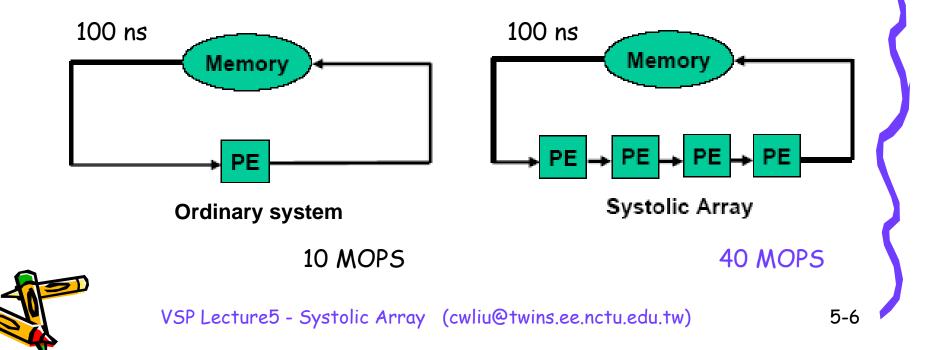
- Localized operations, intensive computations, and matrix operations are features of many DSP algorithms.
- Derive a maximal concurrency by using both pipelining and parallel processing
 - How is the inherent concurrency?
 - How is the array processor design dependent on the algorithm?
 - How is the algorithm best implemented in the array processor?
- Dependence graph (DG)
 - By tracing the associated space-time index space and using proper arcs to display the dependencies
 - It exhibits the full dependencies incurred in the execution of a specific algorithm
- Interconnection network
- Systolic Array
 - Modularity, regularity, local interconnection

History and Motivation

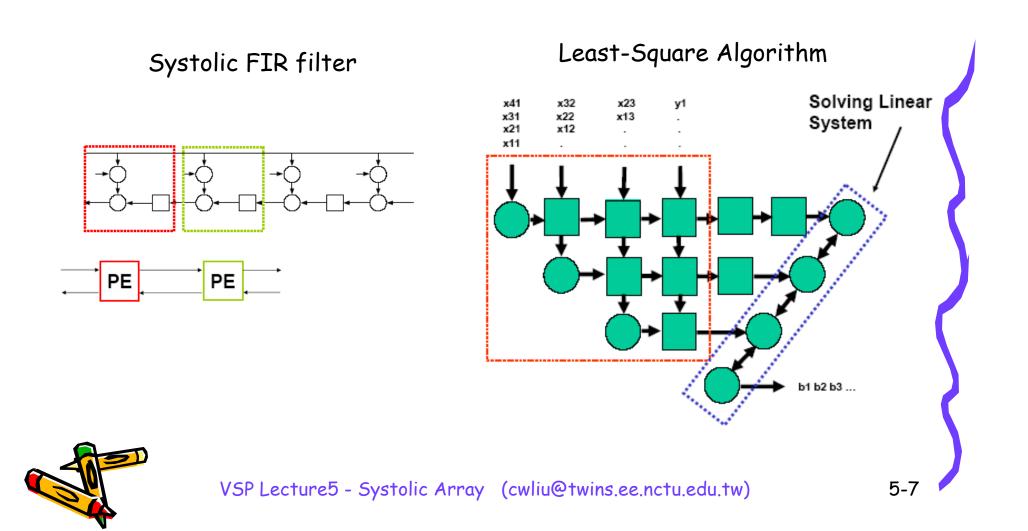
- Introduced by HT Kung and Leiserson, 1978
- Designs for matrix computations
- Illustrated by snapshots of operation
- Motivations
 - Improve performance of special-purpose systems (e.g. maximize processing per memory access)
 - Reduce design and implementation costs

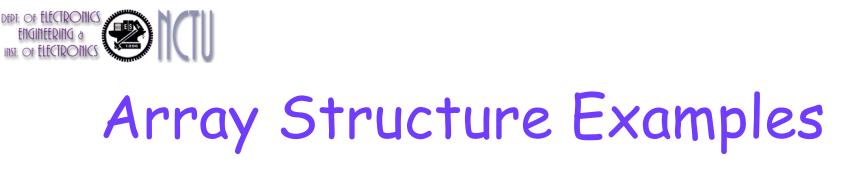
What is a Systolic Architecture

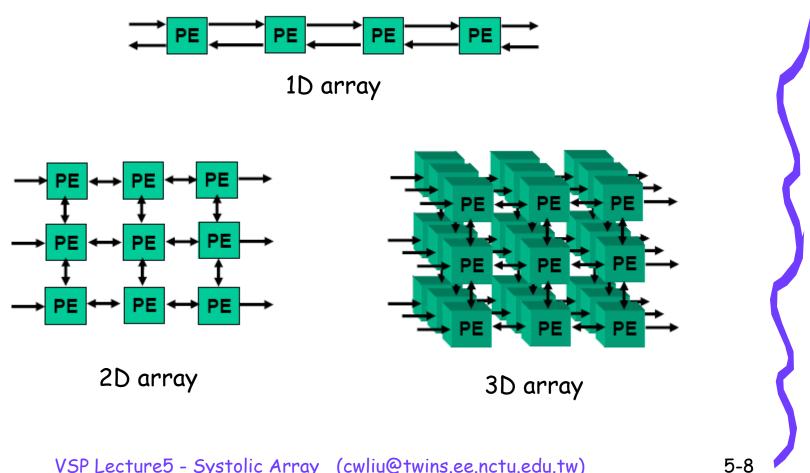
- A network of processing elements (PEs) that computes and rhythmically passes data through it
- Multiple PEs to maximize processing per memory access



Example







VSP Lecture 5 - Systolic Array (cwliu@twins.ee.nctu.edu.tw)

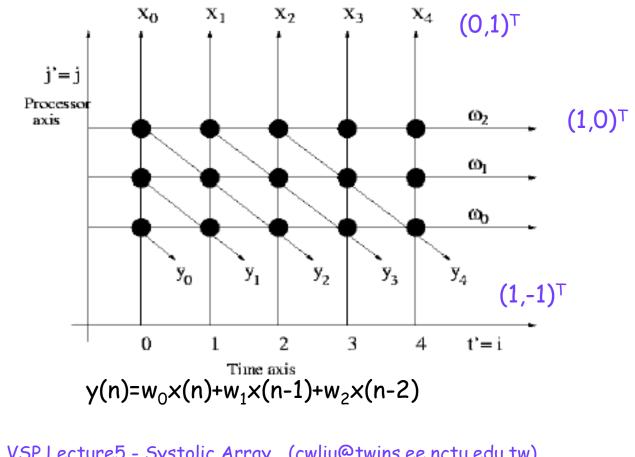
- A new class of pipelined array architectures
- Benefits
 - Simple and regular design (cost-effective)
 - Concurrency and communication
 - Modular and expandable
- Drawbacks
 - Not all algorithms can be implemented using a systolic architecture
 - Cost in hardware and area
 - Cost in latency

Systolic Fundamentals

- Systolic architecture are designed by using linear mapping techniques on regular dependence graph (DG)
- Regular Dependence Graph: the presence of an edge in a certain direction at any node in the DG represents presence of an edge in the same direction at all nodes in the DG
- DG corresponds to space representation \rightarrow no time instance is assigned to any computation
- Systolic architectures have a space-time representation where each node is mapped to a certain processing element (PE) and is scheduled at a particular time instance.
- Systolic design methodology maps an N-dimensional DG to a lower dimensional systolic architecture

Regular Dependence Graph

Space representation for FIR filter



VSP Lecture 5 - Systolic Array (cwliu@twins.ee.nctu.edu.tw)

Definitions

- Projection vector $\mathbf{d} = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$ (also called iteration vector)
 - Two nodes that are displaced by d or multiples of d are executed by the same processor
- Scheduling vector $\mathbf{s}^T = (s_1, s_2)$
 - Any node with index ${\bf I}$ would be executed at time ${\bf s}^{\sf T}{\bf I}$
- Processor space vector $\mathbf{p}^T = (p_1, p_2)$
 - Any node with index $\mathbf{I}^{\mathsf{T}}=(i,j)$ would be executed by processor

$$\mathbf{p}^T \mathbf{I} = (p_1, p_2) \begin{bmatrix} i \\ j \end{bmatrix}$$

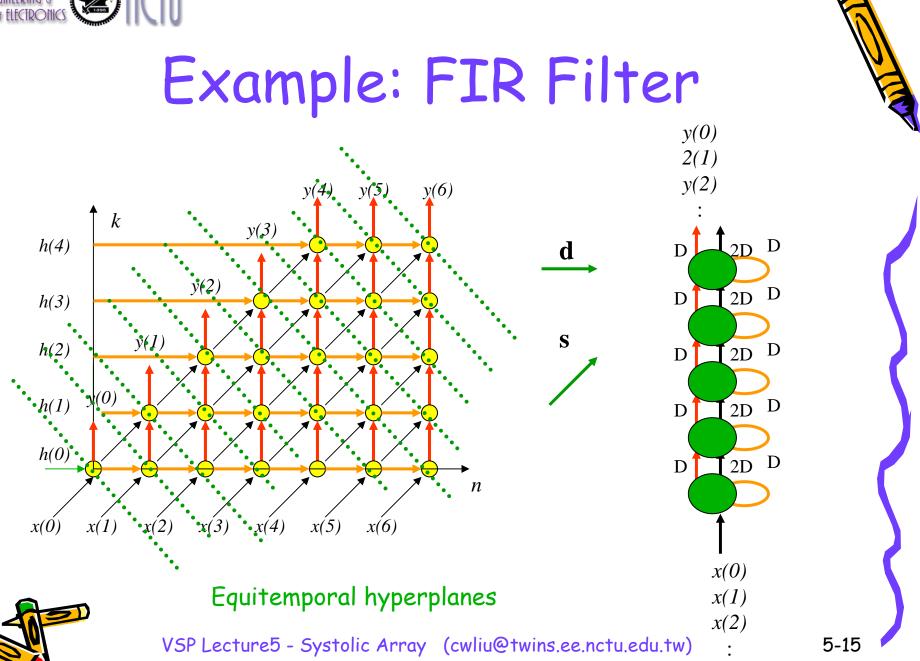
VSP Lecture 5 - Systolic Array (cwliu@twins.ee.nctu.edu.tw)

Systolic Design Methodology

- Many systolic architectures can be designed for a given algorithm by selecting different projection, processor space, and scheduling vectors.
- Feasibility constraints
 - If point I_A and point I_B differ by d, $d = I_A I_B$, i.e. they are lying on the same direction along projection vector, they must be executed by the same processor. That is, $p^TI_A = p^TI_B$ or $p^Td = 0$
 - If point \mathbf{I}_A and point \mathbf{I}_B are mapped to the same processor, i.e. $\mathbf{I}_A \mathbf{I}_B = \mathbf{d}$, they cannot be executed at the same time. That is, $\mathbf{s}^T \mathbf{I}_A \neq \mathbf{s}^T \mathbf{I}_B$ or $\mathbf{s}^T \mathbf{d} \neq \mathbf{0}$
 - If an edge e exists in DG, then an edge p^Te is introduced in the systolic array with s^Te delay

Array Architecture Design

- Step 1: mapping algorithm to DG
 - Based on the space-time indices in the recursive algorithm
 - Shift-Invariance (Homogeneity) of DG
 - Localization of DG: broadcast vs. transmitted data
- Step 2: mapping DG to SFG
 - Processor assignment: a projection method may be applied (projection vector **d**)
 - Scheduling: a permissible linear schedule may be applied (schedule vector s)
 - Preserve the inter-dependence
 - Nodes on an equitemporal hyperplane should not be projected to the same PE
- Step 3: mapping an SFG onto an array processor



Space-Time Representation

- The space representation or DG can be transformed to a space-time representation by interpreting one of the spatial dimensions as temporal dimension
- 2D DG:

$$\begin{bmatrix} i'\\j'\\t' \end{bmatrix} = T \begin{pmatrix} i\\j\\t \end{pmatrix} = \begin{bmatrix} 0 & 0 & 1\\ \mathbf{p}^T & 0\\ \mathbf{s}^T & 0 \end{bmatrix} \begin{bmatrix} i\\j\\t \end{bmatrix}$$

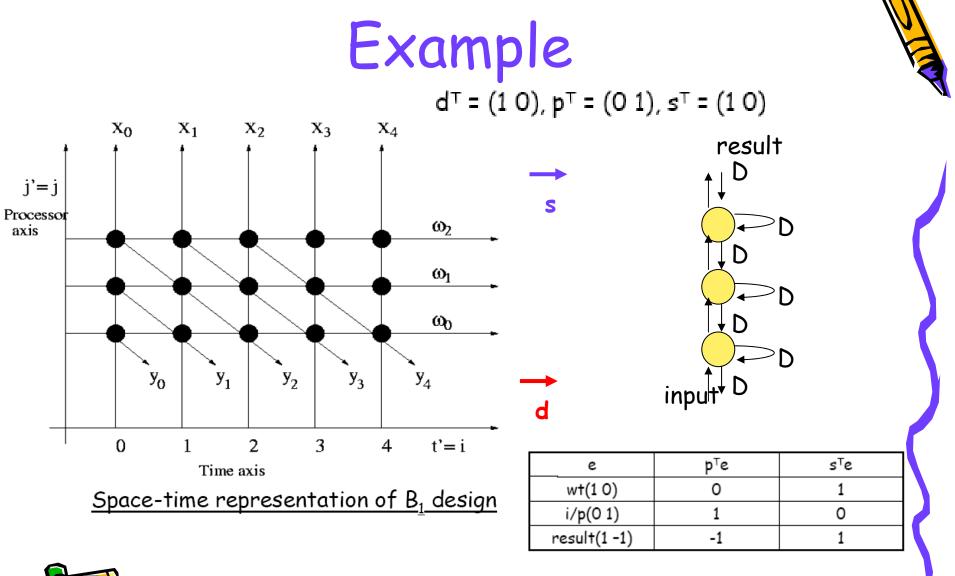
Scheduling time instance

5-16

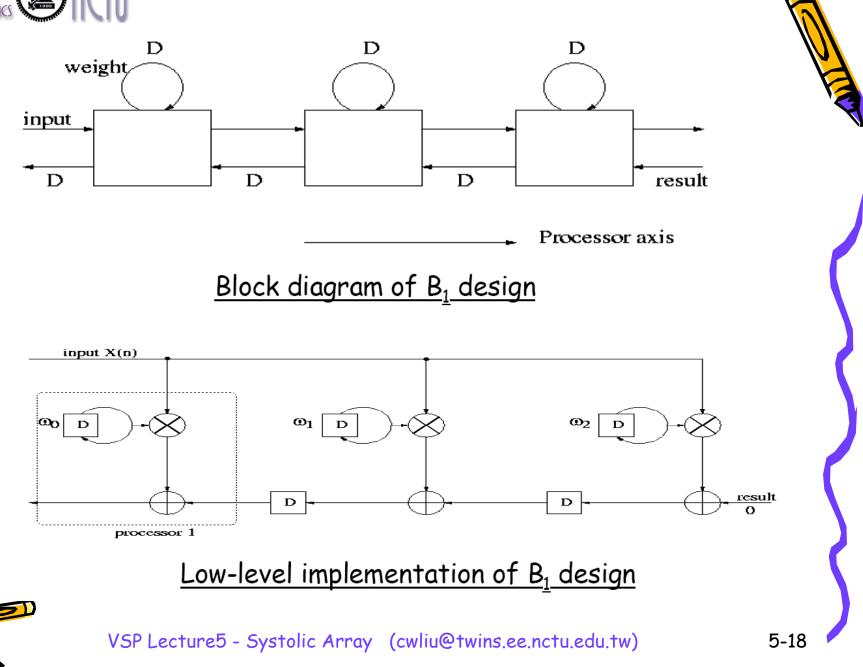
$$i'=t, \quad j'=\mathbf{p}^T I, \quad t'=\mathbf{s}^T I$$

Processor axis (2D-DG is mapped to a 1D systolic array)

VSP Lecture5 - Systolic Array (cwliu@twins.ee.nctu.edu.tw)



VSP Lecture5 - Systolic Array (cwliu@twins.ee.nctu.edu.tw)



Selection of Scheduling Vector

• Linear scheduling

 $S_{X} = \mathbf{s}^{T} \mathbf{I}_{X} = (\mathbf{s}_{1} \mathbf{s}_{2}) (\mathbf{i}_{x}, \mathbf{j}_{x})^{T}$ $S_{Y} = \mathbf{s}^{T} \mathbf{I}_{Y} = (\mathbf{s}_{1} \mathbf{s}_{2}) (\mathbf{i}_{y}, \mathbf{j}_{y})^{T}$

Affine scheduling (A transformation followed by a translation)

 $S_{X}=\mathbf{s}^{\mathsf{T}}\mathbf{I}_{X}+\gamma_{x}=(\mathbf{s}_{1} \mathbf{s}_{2})(\mathbf{i}_{x},\mathbf{j}_{x})^{\mathsf{T}}+\gamma_{x}$ $S_{y}=\mathbf{s}^{\mathsf{T}}\mathbf{I}_{y}+\gamma_{y}=(\mathbf{s}_{1} \mathbf{s}_{2})(\mathbf{i}_{y},\mathbf{j}_{y})^{\mathsf{T}}+\gamma_{y}$

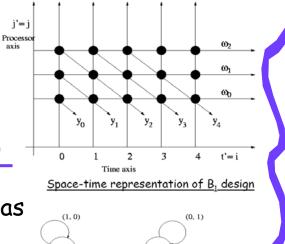
- For a dependence relation $X \rightarrow Y$, where $I_X^{T}=(i_x,j_x)^{T}$ and $I_y^{T}=(i_y,j_y)^{T}$. Then we have $S_y \ge S_X + T_x$, where S_X and S_y are scheduling times for node X and Y, respectively, and T_X is the computation time for node X.
- Each edge of a DG leads to an inequality for selection of scheduling vectors

Regular Iteration Algorithm (RIA)

- Standard input RIA form
 - If the index of the inputs are the same for all equations
- Standard output RIA form
 - If all the output indices are the same
- For FIR filtering, we have O/I- relationship

$$w(i+1,j) = w(i,j)$$

x(i,j+1) = x(i,j)
y(i+1,j-1) = y(i,j) + w(i+1,j-1)x(i+1,j-1)



(0, 0)

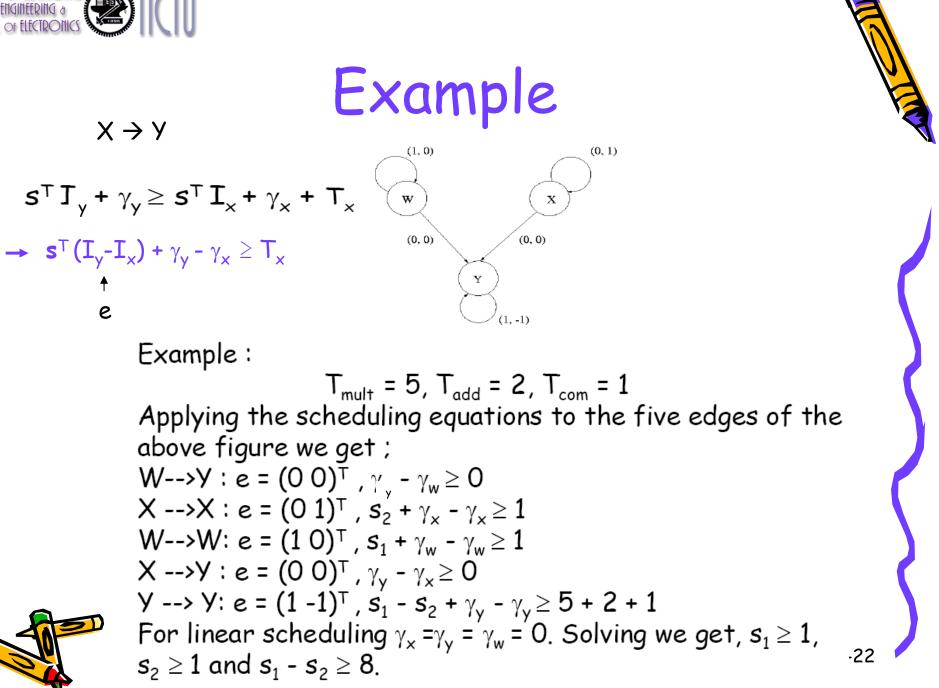
• We can express it in standard output RIA form as

$$w(i,j) = w(i-1,j) \times (i,j) = x(i,j-1) y(i,j) = y(i-1,j+1) + w(i,j)x(i,j)$$

 It is obvious that the FIR filtering problem cannot be expressed in standard input RIA form

Selection of \mathbf{s}^{T}

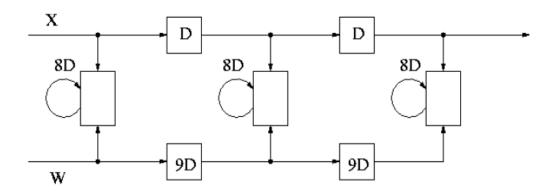
- Capture all the fundamentals edge in the reduced dependence graph (RDG), which is constructed by the regular iteration algorithm (RIA)
- Construct the scheduling inequalities according $S_y \ge S_x + T_x$, if there is an edge $X \rightarrow Y$ $s^T I_y + \gamma_y \ge s^T I_x + \gamma_x + T_x$



٠

Taking s^T = (9 1), d = (1 -1) such that $s^Td \neq 0$ and p^T = (1,1) such that p^Td = 0 we get HUE = 1/8. The edge mapping is as follows :

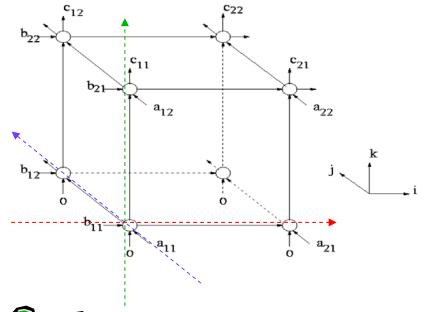
e	p™e	s⊺e				
wt(1 0)	1	9				
i/p(0 1)	1	1				
result(1 -1)	0	8				

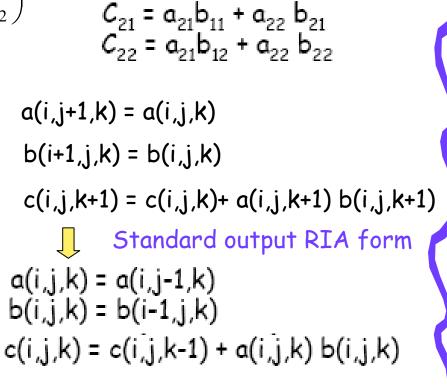


Systolic architecture for the example

Matrix-Matrix Multiplication

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$





 $C_{11} = a_{11}b_{11} + a_{12}b_{21}$

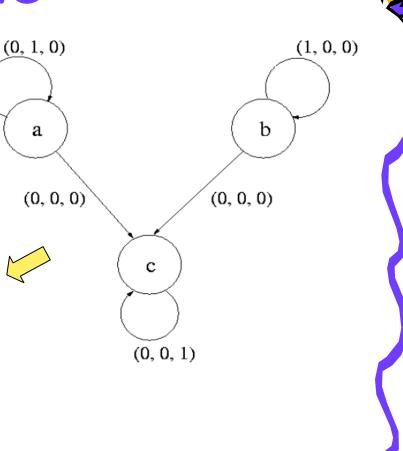
 $C_{12} = a_{11}b_{12} + a_{12}b_{22}$

VSP Lecture 5 - Systolic Array (cwliu@twins.ee.nctu.edu.tw)

Example

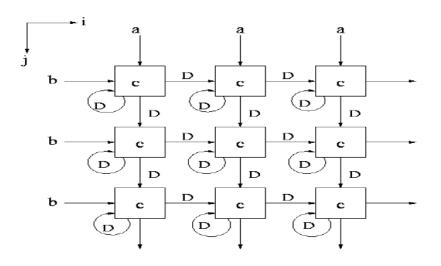
- Applying scheduling inequality with $T_{mult-add} = 1$, and $T_{com} = 0$ we get $s_2 \ge 0$, $s_1 \ge 0$, $s_3 \ge 1$, $\gamma_c \gamma_a \ge 0$ and $\gamma_c - \gamma_b \ge 0$. Take $\gamma_a = \gamma_b = \gamma_c = 0$ for linear scheduling.
- Solution 1 :
 s^T = (1,1,1), d^T = (0,0,1), p₁ = (1,0,0),
 p₂ = (0,1,0), P^T = (p₁ p₂)^T
- Solution 2 :
 - $s^{T} = (1,1,1), d^{T} = (1,1,-1), p_{1} = (1,0,1),$
 - p₂ = (0,1,1), P[⊤] = (p₁ p₂)[⊤]

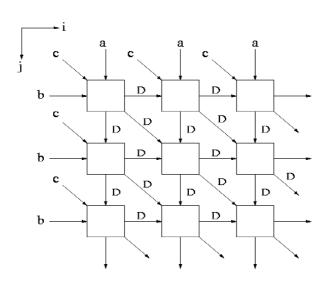
VSP Lecture5 - Systolic Array (cwliu@twins.ee.nctu.edu.tw)



Example

Sol. 1		Sol. 2			
e	p™e	s [⊤] e	e	р⊤е	s ^T e
a(0, 1, 0)	(0, 1)	1	a(0, 1, 0)	(0, 1)	1
b(1, 0, 0)	(1, 0)	1	b(1, 0, 0)	(1, 0)	1
<i>C</i> (0, 0, 1)	(0,0)	1	C(0, 0, 1)	(1, 1)	1





VSP Lecture 5 - Systolic Array (cwliu@twins.ee.nctu.edu.tw)