

VLSI Signal Processing

Lecture 3 Scheduling Techniques

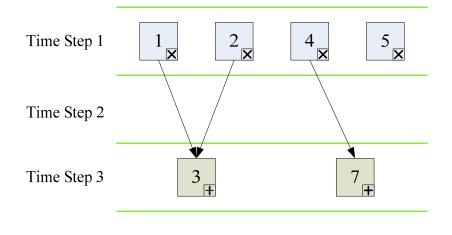
ADSP Lecture1 - Pipelining & Retiming (cwliu@twins.ee.nctu.edu.tw)

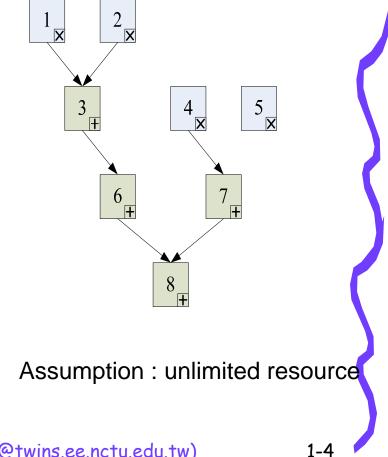
1-1

A C

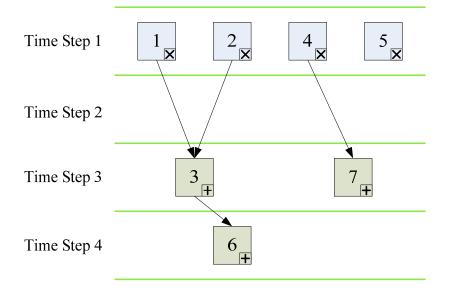
DEDITION INCOMPANY A Prendix B: Scheduling and Allocation Techniques

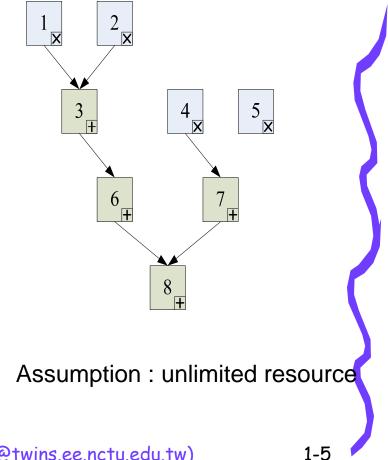
- ASAP(as soon as possible) Scheduling
- ALAP (as late as possible) Scheduling
- List Scheduling
- Force-directed Scheduling
- ILP (Integer Linear Programming)
 Scheduling

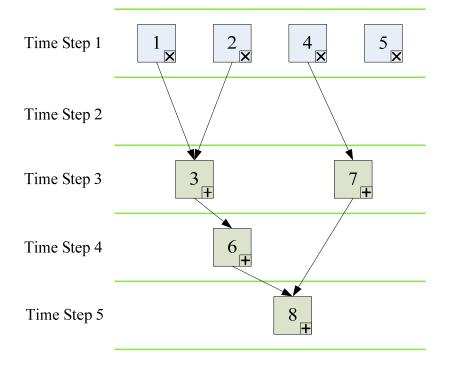


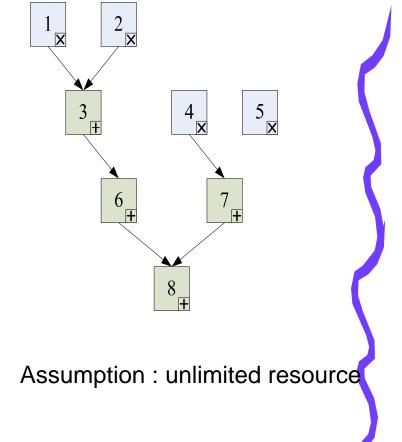

1 ×	2 ×	4 ×	5		
				$\begin{array}{c} \mathbf{X} \\ 3 \\ \mathbf{H} \end{array} \qquad \begin{array}{c} 4 \\ \mathbf{X} \end{array} \qquad \begin{array}{c} 5 \\ \mathbf{X} \end{array}$	
					5
				8	$\left(\right)$
				Assumption : unlimited resource	сө

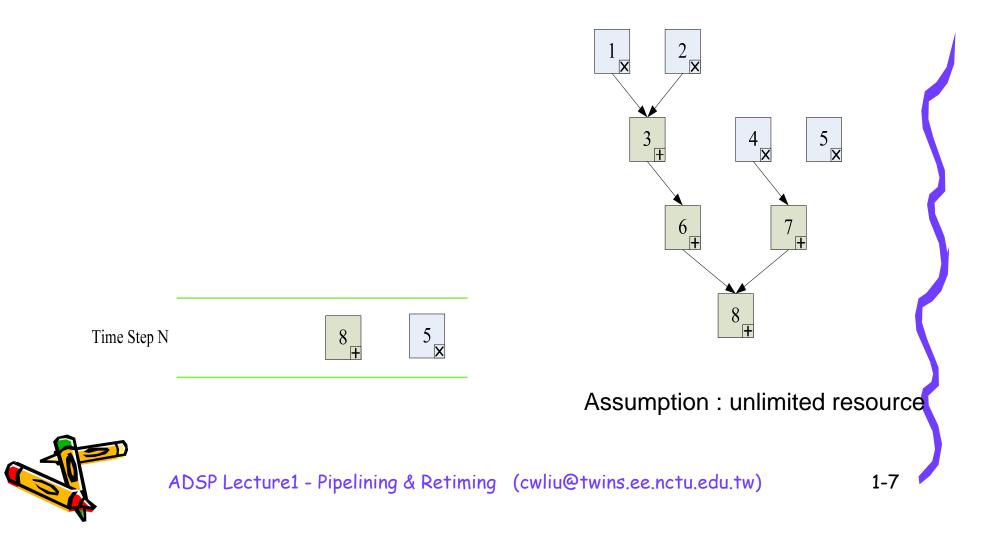
Time Step 1



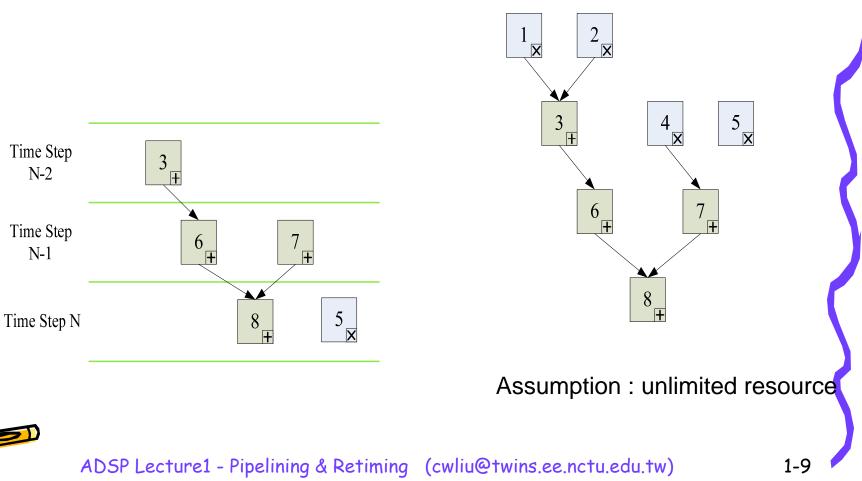




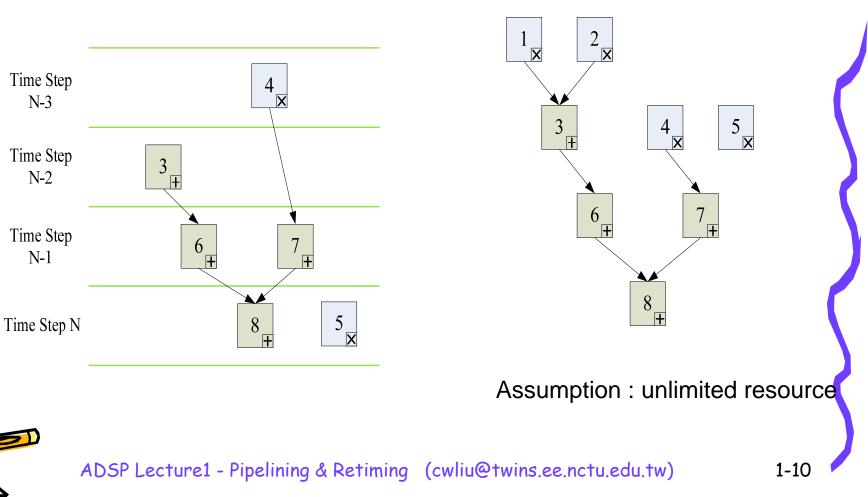


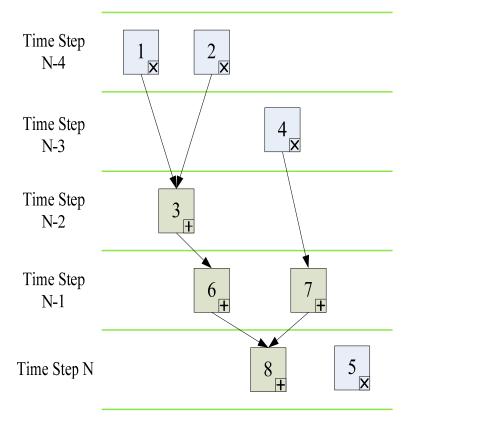


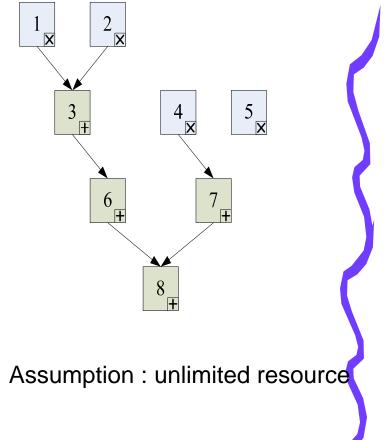
HIGHHERRING & HECTRONICS ALAP (as late as possible) Scheduling



thanterning a malane as possible) Scheduling







1-11

- Evaluation
 - Hardware resource
 - Feasible iteration period
- Shrink solution space

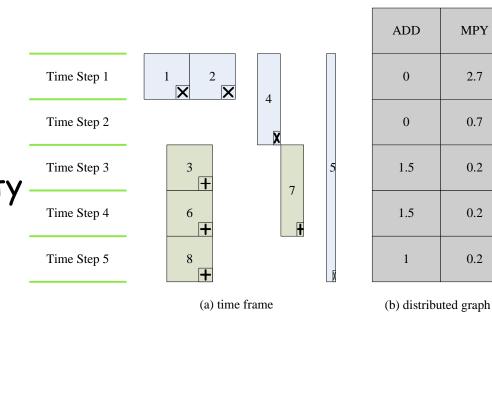
List Scheduling

- Heuristic
- Modified ASAP
- Order of unscheduling node determined by a priority function

MPY

2.7

0.7

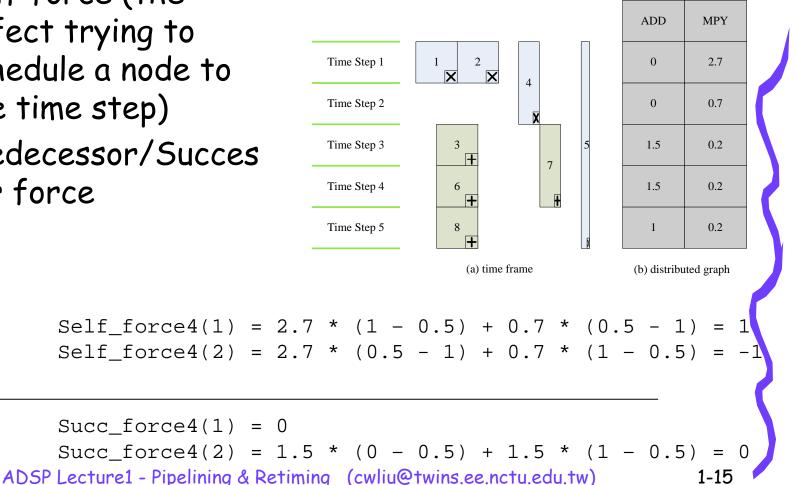

0.2

0.2

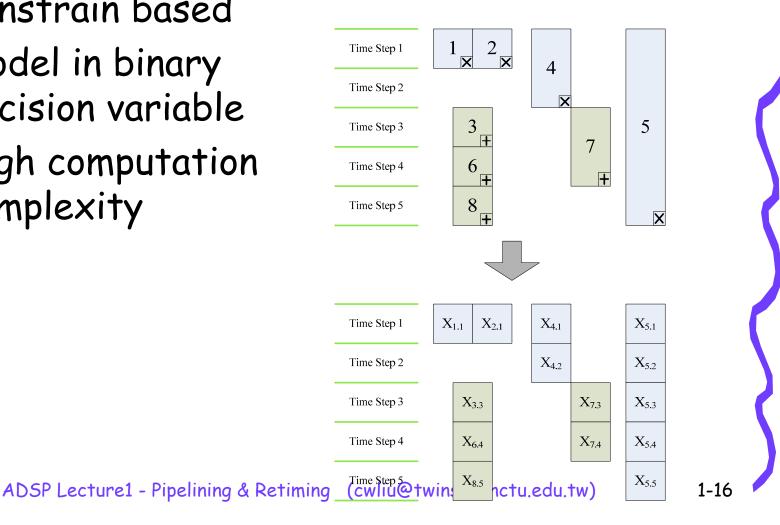
0.2

Force-directed Scheduling (1/2)

- Time frame (the likely scheduling positions got from ASAP and ALAP)
- Distributed graph ٠ (the sum of different type operation probability in each time Step)


1-14

Force-directed Scheduling (2/2)


- Self force (the effect trying to schedule a node to the time step)
- Predecessor/Succes sor force

DEPT. OF ELECTRON ENGINEERING a ^o"(Integer Linear Programming) INST. OF ELECTRONICS Scheduling (1/2)

- Constrain based
- Model in binary decision variable
- High computation complexity

DEPT. OF ELECTRONICS ENGLINEERING & CONTRACT CINE OF ELECTRONIC (Integer Linear Programming) Scheduling (2/2)

- Position constrains
 - $\begin{array}{rcl} X_{1.1} &=& 1 \\ X_{4.1} &+& X_{4.2} &=& 1 \\ X_{5.1} &+& X_{5.2} &+& X_{5.3} &+& X_{5.4} &+& X_{5.5} &=& 1 \end{array}$
- Resource constrains

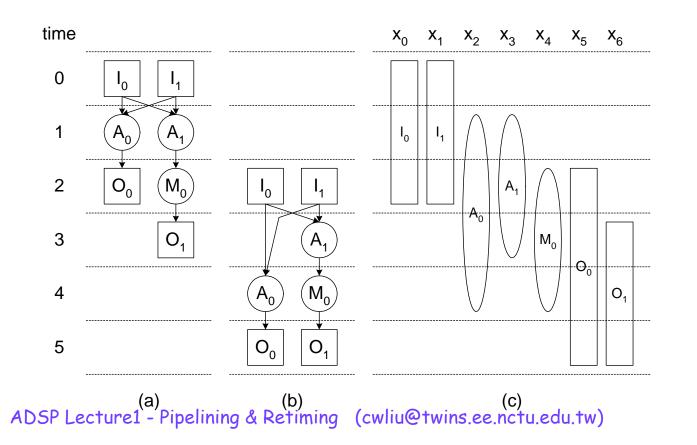
For multipliers X1.1 + X2.1 + X4.1 + X5.1 <= Nmpy X4.2 + X5.2 <= Nmpy

For adders

X3.3 + X7.3 <= Nadd X6.4 + X7.4 <= Nadd

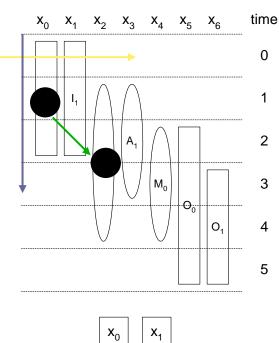
- Dependency constrains

Time Step 1	X _{1.1} X _{2.1}	X _{4.1}		X _{5.1}
Time Step 2		X _{4.2}		X _{5.2}
Time Step 3	X _{3.3}		X _{7.3}	X _{5.3}
Time Step 4	X _{6.4}		X _{7.4}	X _{5.4}
Time Step 5	X _{8.5}			X _{5.5}
				7



1-17

• Scheduling ranges



1-18

ILP-based Scheduling

X₂

x₅

x ₃ x ₄ x ₅ x ₆	time	The Boolean variable x_{ij} indicates if the vertex <i>i</i> is scheduled at time <i>j</i> • Resource constraints (operations cannot exceed the resource - $x_{0,0} + x_{1,0} \le 1$; $x_{0,1} + x_{1,1} \le 1$; $x_{0,2} + x_{1,2} \le 1$ (for input)	es)
	0	$- x_{21} + x_{31} \le 1; x_{22} + x_{32} \le 1; x_{23} + x_{33} \le 1 \text{ (for adder)}$	
		- $x_{5,3} + x_{6,3} \le 1$; $x_{5,4} + x_{6,4} \le 1$; $x_{5,5} + x_{6,5} \le 1$ (for output) • Allocation constraints (each node executes only once)	1
A ₁	2	$- x_{0.0} + x_{0.1} + x_{0.2} = 1$ - $x_{1.0} + x_{1.1} + x_{1.2} = 1$	
	3	$- x_{2,1} + x_{2,2} + x_{2,3} + x_{2,4} = 1$ $- x_{3,1} + x_{3,2} + x_{3,3} = 1$	1
	4	$- x_{4,2} + x_{4,3} + x_{4,4} = 1$ - $x_{5,2} + x_{5,3} + x_{5,4} + x_{5,5} = 1$	
	5	 - x_{6.3}+ x_{6.4}+ x_{6.5} = 1 • Dependency constraints (for each edge))
x_1 x_3 x_4 Atosp Lectu	ıre1 - Pip	$\begin{array}{r} - x_{0,0} + 2 x_{0,1} + 3 x_{0,2} - 2 x_{2,1} - 3 x_{2,2} - 4 x_{2,3} - 5 x_{2,4} \leq -1 \\ - x_{1,0} + 2 x_{1,1} + 3 x_{1,2} - 2 x_{2,1} - 3 x_{2,2} - 4 x_{2,3} - 5 x_{2,4} \leq -1 \\ - x_{0,0} + 2 x_{0,1} + 3 x_{0,2} - 2 x_{3,1} - 3 x_{3,2} - 4 x_{3,3} \leq -1 \\ - x_{1,0} + 2 x_{1,1} + 3 x_{1,2} - 2 x_{3,1} - 3 x_{3,2} - 4 x_{3,3} \leq -1 \\ - 2 x_{2,1} + 3 x_{2,2} + 4 x_{2,3} + 5 x_{2,4} - 3 x_{5,2} - 4 x_{5,3} - 5 x_{5,4} - 6 x_{5,5} \leq -1 \\ - 2 x_{3,1} + 3 x_{3,2} + 4 x_{3,3} - 3 x_{4,2} - 4 x_{4,3} - 5 x_{4,4} \leq -1 \\ - 3 x_{4,2} + 4 x_{4,3} + 5 x_{4,4} - 4 x_{6,3} - 5 x_{6,4} - 6 x_{6,5} \leq -1 \\ \end{array}$	\