VLSI Signal Processing

Lecture 3 Folding Transformation

Trading Time for Area in DSP

Folding is "Inverse" of Unfolding

Parallel Operations
Node A

Folding by N

Unfolding by N
 Architecture

- Folding is a technique to reduce the silicon area by timemultiplexing many operations into single function units
- Folding introduces registers
- Computation time increased

Cycle	Adder Input (Left)	Adder Input (top)	System output
0	$\mathbf{a}(0)$	$\mathbf{b}(0)$	-
1	$\mathbf{a}(0)+\mathbf{b}(0)$	$\mathbf{c}(0)$	-
2	$\mathbf{a}(1)$	$\mathbf{b}(1)$	$\mathbf{a}(0)+\mathbf{b}(0)+\mathbf{c}(0)$
3	$\mathbf{a}(1)+\mathbf{b}(1)$	$\mathbf{c}(1)$	-
4	$\mathbf{a}(2)$	$\mathbf{b}(2)$	$\mathbf{a}(1)+\mathbf{b}(1)+\mathbf{c}(1)$
5	$\mathbf{a}(2)+\mathbf{b}(2)$	$\mathbf{c}(2)$	-

Operations in Folding Hardware

$$
y(n)=a(n)+b(n)+c(n)
$$

Cycle 0
Cycle 1

Cycle 2

Cycle 3

What's Related to Folding

- Reduce hardware by folding factor N
- $T_{\text {computation }}$ increased by N times
- Extremes
- Fully parallel v.s. 1 function unit (or node) per algorithm operation
- Extra registers
- Control unit
- Latency

Folding Transformation

Delay Calculation

- N is the folding factor (i.e. the number of cycles to perform an iteration)
- $\mathrm{N} \ell+\mathrm{u}$ and $\mathrm{N} \ell+\mathrm{v}$ are the time units at which b-th iteration of the nodes U and V are scheduled respectively, and u and v are the time partitions at which the nodes are scheduled to execute and satisfy $0 \leq u, v<N$
- H_{u} is pipelined into P_{u} stages with output available at $N \ell+u+P_{u}$
- The ℓ-th iteration of U is used by $(\ell+w(e))$-th iteration of node V, which is executed at $N(1+w(e))+v$. So, the result should be stored for:

$$
\begin{aligned}
& D_{F}(U V)=[N(l+w(e))+v]-\left[N e+P_{u}+u\right]=N w(e)-P_{u}+v-u \\
& \quad \text { Independent of } \underset{3-8}{\ell}
\end{aligned}
$$

Folding Set Related to Node

- $\mathrm{N} \ell+v, 0 \leq v \leq N-1$, related to $S \rightarrow$ (S|v)
- A folding set is an ordered set of operations to be executed on the same node
- Folding set contains N entries
- Example: $S_{1}=\left\{A_{1}, \varnothing, A_{2}\right\}$
- Operation A_{1} is executed at time instances 3l, denoted by $\left(S_{1} \mid 0\right)$
- Operation A_{2} is executed at time instances $3 \ell+2$, denoted by $\left(S_{1} \mid 2\right\}$
- \varnothing is null operation

Folding Example

- Biquad Filter

Example

- Fold the biquad filter by $\mathrm{N}=4$

- Assume $T_{A}=1$ u.t. and $T_{M}=2$ u.t. with 1 and 2 stages of pipelining, respectively (i.e. $P_{A}=1, P_{M}=2$)

Folding Equations

Folded Biquad Filter

Additions
$S_{1}=\{4,2,3,1\}$
Multiplications
$S_{1}=\{5,8,6,7\}$

Folding equations for each of the 11 edges are as follows:

$D_{F}(1 \rightarrow 2)=4(1)-1+1-3=1$	$D_{F}(1 \rightarrow 5)=4(1)-1+0-3=0$
$D_{F}(1 \rightarrow 6)=4(1)-1+2-3=2$	$D_{F}(1 \rightarrow 7)=4(1)-1+3-3=3$
$D_{F}(1 \rightarrow 8)=4(2)-1+1-3=5$	$D_{F}(3 \rightarrow 1)=4(0)-1+3-2=0$
$D_{F}(4 \rightarrow 2)=4(0)-1+1-0=0$	$D_{F}(5 \rightarrow 3)=4(0)-2+2-0=0$
$D_{F}(6 \rightarrow 4)=4(1)-2+0-2=0$	$D_{F}(7 \rightarrow 3)=4(1)-2+2-3=1$
$D_{F}(8 \rightarrow 4)=4(1)-2+0-1=1$	

Example

Not valid folding

$$
D_{F}(U \rightarrow V)<0
$$

Folding of Biquad Filter

$D_{F}(U \rightarrow V)<0 \Longrightarrow$ Not Valid folding

Retiming

 move delay

Folding Retimed Biquad Filter

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{F}}(5 \rightarrow 3)=4(0)-2+2-0=0 \\
& \mathrm{D}_{\mathrm{F}}(6 \rightarrow 4)=4(1)-2+0-2=0 \\
& \mathrm{D}_{\mathrm{F}}(7 \rightarrow 3)=4(1)-2+2-3=1 \\
& \mathrm{D}_{\mathrm{F}}(8 \rightarrow 4)=4(1)-2+0-1=1
\end{aligned}
$$

($\left.\mathrm{S}_{1} \mid 2\right)$
$D_{F}(1 \rightarrow 8)=4(2)-1+1-3=5$
$D_{F}(3 \rightarrow 1)=4(0)-1+3-2=0$
$D_{F}(4 \rightarrow 2)=4(0)-1+1-0=0$
$D_{F}(5 \rightarrow 3)=4(0)-2+2-0=0$

Valid folding
$\boldsymbol{D}_{\boldsymbol{F}}(\boldsymbol{U} \rightarrow \boldsymbol{V}) \geq 0$

Causalization: Retiming for Folding

- A folded architecture is realizable if and only if all delays $D_{F}(U V)$ are non-negative
- Retiming for folding
- All $D_{F}^{\prime}(U V)$ of the retimed graph G^{\prime} are nonnegative
- $N w_{r}(e)-P_{u}+v-u \geq 0$... where $w_{r}(e)=w(e)+r(V)-$ $r(U)$
$N(w(e)+r(V)-r(U))-P_{U}+v-u \geq 0$
$r(U)-r(V) \leq D_{F}(U V) / N \leq\left\lfloor D_{F}(U V) / N\right\rfloor$
Retiming values are integers

Register Minimization

- Folding may insert registers.
- Lifetime analysis is used for register minimization techniques in a DSP hardware
- A variable is live from the time it is produced until the time it is consumed. After then, it is dead.
- Linear lifetime chart: represents the lifetime of the variables in a linear fashion.
- Max. number of live variables in linear lifetime chart \rightarrow Min. number of registers in implementation

Data Format Converter

- e.g. 3-by-3 Matrix transposition
- input sequence: $A B C D E F G H I$
- output sequence: ADGBEHCFI
- Step 1: lifetime analysis

Lifetime Table

Forward Backward Register Allocation

Steps for Forward-Backward Register allocation :

1. Determine the minimum number of registers using lifetime analysis.
2. Input each variable at the time step corresponding to the beginning of its lifetime. If multiple variables are input in a given cycle, these are allocated to multiple registers with preference given to the variable with the longest lifetime.
3. Each variable is allocated in a forward manner until it is dead or it reaches the last register. In forward allocation, if the register i holds the variable in the current cycle, then register $i+1$ holds the same variable in the next cycle. If $(i+1)$-th register is not free then use the first available forward register.
4. Being periodic the allocation repeats in each iteration. So hash out the register R_{j} for the cycle $I+\mathrm{N}$ if it holds a variable during cycle I.
5. For variables that reach the last register and are still alive, they are allocated in a backward manner on a first come first serve basis.
6. Repeat steps 4 and 5 until the allocation is complete.

Step 2: forward-backward register allocation

cycle	input	R1	R2	R3	R4	output
0	a					
1	b	a				
2	c	${ }^{1}$	a			
3	d	${ }^{1}$	b	a		
4	e	${ }^{1}$	c	b	(a)	a
5	f	e	(d)	,	b	d
6	(g)	${ }^{\mathrm{f}}$	e		c	g
7	h		f	e		
8		${ }^{4}$		f	(e)	e
9		${ }_{\mathrm{i}}$	(h)		f	h
10			i			
11				i		
12					(i)	i

cycle	input	R1	R2	R3	R4	output
0	a					
1	b	a				
2	c	${ }^{\circ}$	a			
3	d		b	a		
4	e	${ }^{1}$	c	b	(a)	a
5	f	e	(d)	c		d
6	(g)	${ }^{1}$	e	b	c	g
7	h	c	f	e	(b)	b
8	i $>$	${ }^{\text {h }}$	c	f	(e)	e
9		i	(h)	c		h
10			i	f	(c)	c
11				i		f
12					(i)	i

Register Minimization

- Register minimization in folded architectures :
> Perform retiming for folding
- Write the folding equations
- Use the folding equations to construct a lifetime table
- Draw the lifetime chart and determine the required number of registers
> Perform forward-backward register allocation
> Draw the folded architecture that uses the minimum number of registers.
-Example : Biquad Filter
-Steps 1 \& 2 have already been done.
-Step 3:The lifetime table is then constructed. The $2^{\text {nd }}$ row is empty as $D_{F}(2 \rightarrow U)$ is not present.
Note: As retiming for folding ensures causality, we need not add any latency.

Node	$\mathrm{T}_{\text {in }} \rightarrow \mathrm{T}_{\text {out }}$
1	$4 \rightarrow 9$
2	--
3	$3 \rightarrow 3$
4	$1 \rightarrow 1$
5	$2 \rightarrow 2$
6	$4 \rightarrow 4$
7	$5 \rightarrow 6$
8	$3 \rightarrow 4$

Register Minimization of Biquad Filter

Node	$\mathrm{T}_{\text {ln }} \rightarrow \mathrm{T}_{\text {out }}$
1	$4 \rightarrow 9$
2	-
3	$3 \rightarrow 3$
4	$1 \rightarrow 1$
5	$2 \rightarrow 2$
6	$4 \rightarrow 4$
7	$5 \rightarrow 6$
8	$3 \rightarrow 4$

$D_{F}(1 \rightarrow 2)=4(1)-1+1-3=1$
$D_{F}(1 \rightarrow 5)=4(1)-1+0-3=0$
$D_{F}(1 \rightarrow 6)=4(1)-1+2-3=2$
$D_{F}(1 \rightarrow 7)=4(1)-1+3-3=3$
$D_{F}(1 \rightarrow 8)=4(2)-1+1-3=5$
$D_{F}(3 \rightarrow 1)=4(0)-1+3-2=0$
$D_{F}(4 \rightarrow 2)=4(0)-1+1-0=0$
$D_{F}(5 \rightarrow 3)=4(0)-2+2-0=0$
$D_{F}(6 \rightarrow 4)=4(1)-2+0-2=0$
$D_{\mathrm{F}}(7 \rightarrow 3)=4(1)-2+2-3=1$
$D_{F}(8 \rightarrow 4)=4(1)-2+0-1=1$
One entry for each node:

- $T_{\text {input }}=u+P_{u}, \quad u=f o l d i n g$ order, $P_{u}=$ pipeline time unit data is produced
- $\mathrm{T}_{\text {output }}=\mathrm{u}+\mathrm{P}_{\mathrm{u}}+\max _{\mathrm{V}}\left\{\mathrm{D}_{\mathrm{F}}(\mathrm{U} \rightarrow \mathrm{V})\right\}$, $\max _{V}\left\{\mathrm{D}_{\mathrm{F}}(\mathrm{U} \rightarrow \mathrm{V})\right\}=$ (longest folded path)
-Step 4 : Lifetime chart is constructed and registers determined.

-Step 5 : Forward-backward register allocation

cycle	input	R1	R2	output
0				
1				
2				
3	n_{8}			
4	n^{1}	(a)		n_{8}
5	n,	$\triangle \mathrm{n}_{1}$		
6		(i)	Δ_{n}	n_{7}
7			sns	
8			${ }^{3} \mathrm{n}_{5}$	
9			(3)	n_{1}

Register Minimization for Biquad Filter

Controller for Folded Architecture

Remarks

- Shift Registers (or FIFO)

Moving data consumes power

Connecting Outputs FIFO

- Connecting outputs to prevent from moving data (also to reduce latency)

Controller to choose output

Connecting Inputs/Outputs FIFO

RAM

FIFO with Pointer

No moving of data but complexity in address calculation

Implementation Using Memory

- Data Generation?

Hardware Slowdown

- N active clock edges lead one sample ahead (one iteration), which is implemented using N -cascaded registers.
- N independent data streams can be interleaved into the N -slowdown hardware. (e.g. 2-channel stereo audio can share the same pre-filter hardware by hardware slowdown)
- The slowdown operations can be viewed as folding N identical hardware into a single one; i.e. the w(e) is multiplied by N .

Review of Multi-rate Systems

- Decimation : decimator (downsampler)

$u[0], u[1], u[2] \ldots \rightarrow \mid \mathbf{N} \rightarrow u[0], \quad u[N]$,	$u[2 N] \ldots$
	$y_{0}[n]=u[N n]$
example : u[k]: $1,2,3,4,5,6,7,8,9, \ldots$	
2 -fold downsampling: $1,3,5,7,9, \ldots$	

- Interpolation : expander (upsampler)

$$
u[0], \quad u[1], \quad u[2], \ldots \rightarrow \uparrow \mathbf{N} \rightarrow u[0], 0, . .0, u[1], 0, \ldots, 0, u[2] \ldots
$$

example : $u[k]: 1,2,3,4,5,6,7,8,9, \ldots \quad y_{E}[n]=u[n / N]$, if $N \mid n$ 2-fold upsampling: $1,0,2,0,3,0,4,0,5,0, . . \mathrm{Y}^{[n]=0}$, otherwise

Decimation by M

Time domain representation
$y_{D}[n]=u[N n]$

Interpolation by L

$y_{E}[n]=u[n / N]$, if N / n
Time domain representation $y_{E}[n]=0$, otherwise

Filter Banks Introduction

General `subband processing' set-up/overview: -Signals split into frequency channels/subbands ('analysis bank') -Per-channel/subband processing -Reconstruction (`synthesis bank')
-Multi-rate structure: down-sampling / up-sampling

Perfect Reconstruction

- Assume subband processing does not modify subband signals (lossless coding/decoding)
- The overall aim could be to have $y[k]=x[k-d]$, i.e. the output signal is just the input signal up to a certain delay
- But downsampling may introduce aliasing

Example: FDM

- Frequency division multiplexing
- M different source signals multiplexed into 1 transmit signal by expanders \& synthesis filters
- Received signal decomposed into M source signals by analysis filters \& decimators ($N \geq M$)

- Non-ideal synthesis \& analysis filters results in crosstalk between channels.

FDM

Folded Multi-rate Systems

$$
\begin{aligned}
& \longrightarrow-H_{u}-P_{D_{F}(U \Rightarrow v)}^{N_{u} l+u} \\
& D_{F}(U \rightarrow V)=\left[N_{V} l+v\right]-\left[N_{U}\left(M\left(l-w_{2}\right)-w_{1}\right)+u+P_{u}\right] \\
& =\left(N_{V}-M N_{U}\right) l+N_{U}\left(M w_{2}+w_{1}\right)-P_{U}+v-u \\
& =N_{U}\left(M w_{2}+w_{1}\right)-P_{U}+v-u \geq 0
\end{aligned}
$$

Nobel Identities for Multirate Systems

Identities

if and only if L and N are coprime !!!!!
Example 1: $u[k]=1,2,3,4,5,6,7,8,9, \ldots \quad(L=2, N=3)$
a) 2 -fold up: $1,0,2,0,3,0,4,0, \ldots$
| a) 3-fold down: 1,4,7,...
b) 3-fold down:1,0,4,0,7,0,...
| b) 2-fold up: 1,0,4,0,7,...

Example 2: $u[k]=1,2,3,4,5,6,7,8,9, \ldots \quad(L=2, N=4)$
a) 2 -fold up: $1,0,2,0,3,0,4,0, \ldots$
| a) 4-fold down: 1,5,9,...
b) 4 -fold down:1,3,5,7,9,...
| b) 2-fold up: 1,0,5,0,9,...

Retiming MR-DFG

$r\left(D_{u v}\right)$: \# of delays, moved from each of its output arcs to each of its input arcs

$$
\begin{aligned}
& w_{1}{ }^{\prime}=w_{1}+M r\left(D_{U V}\right)-r(U) \quad w_{2}{ }^{\prime}=w_{2}+r(V)-r\left(D_{U V}\right) \\
& D_{F}{ }^{\prime}(U \rightarrow V)=N_{U}\left(M w_{2}{ }^{\prime}+w_{1}{ }^{\prime}\right)-P_{U}+v-u \\
& =D_{F}(U \rightarrow V)+N_{U}(\operatorname{Mr}(V)-r(U)) \geq 0 \\
& r(U)-M r(V) \leq\left\lfloor\frac{D_{F}(U \rightarrow V)}{N_{U}}\right\rfloor
\end{aligned}
$$

Folding Transformation

- Folding transformation time-multiplexes several algorithmic operations (e.g. multiply \& add) into reduced functional units to save silicon area

Example

- Procedures

1. Operation scheduling \& binding
2. Delay calculation
3. Causalization
4. Data generation with SIU

Terminology

- Scheduling: Determine for each operation the time at which it should be performed such that no precedence constraint is violated.
- Allocation: Specify the hardware resources that will be necessary
- Assignment: Provide a mapping from each operation to a specific functional unit and from each variable to a register
- Scheduling (except for a few versions) is NPcomplete \rightarrow heuristics have to be used

Static Scheduling

- Static scheduling means mapping to time and processor (functional unit, register, etc.) is identical in all iterations
- A static schedule is either overlapped (expositing inter-iteration parallelism) or no-overlapped
- An overlapped schedule is also called loop folding, software pipelining

Scheduling

- Acyclic Precedence Graph a graph by removing all edges with delay elements from an SDFG
- Intra-iteration scheduling
- obviously, the schedule can be improved by retiming
periodic nonoverlapping schedule

- Scheduling with multiple iterations (by unfolding)

acyclic precedence graph

A0	B0	C1		
C0			A1	
B1				

Basic Scheduling Algorithms

- As soon as possible (ASAP)
- As late as possible (ALAP)
- Force-directed scheduling
- time-constrained scheduler
- List scheduling
- resource constrained scheduler

SIU Optimization

$$
\begin{aligned}
& D_{F}(1 \rightarrow 2)=4(1)-1-1-3=1 \\
& D_{F}(1 \rightarrow 6)=4(1)-1+2-3=2 \\
& D_{F}(1 \rightarrow 8)=4(2)-1+1-3=5
\end{aligned}
$$

cycle	input	R1	R2	output
0				
1				
2				
3	n_{8}			
4	n	-		n_{8}
5	n_{7}	$\triangle_{n_{1}}$		
6		(n)	\triangle_{n}	n_{7}
7			S^{5}	
8			${ }^{5}$	
9			(1)	n_{1}

Remark: single MUL/ADD can perform various linear DSP kernels with different SIU architectures.

