Review of Discrete Fourier Transform

- $x[n] \quad -\infty < n < +\infty$

- Fourier Transform
 \[X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \]

- Z-transform
 \[X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} \]

- If $x[n] \quad 0 \leq n \leq N-1$ (finite-duration sequence)
 - Discrete Fourier Transform (DFT)

 cwliu@twins.ee.nctu.edu.tw
4 Forms of Fourier Transform

Symbol:

\(x_c(t) \) --------- aperiodic continuous signals
\(\tilde{x}_c(t) \) --------- periodic continuous signals
\(\Omega \) --------- analog frequency
\(\omega \) --------- digital frequency "Sampled" frequency
\(\omega = \Omega T \)

\(t_p \) --------- period of periodic signals such as \(x_c(t) \)
\(X(\ j \Omega \) \) --------- Fourier transform of CT signals
\(X(\ e^{j\omega} \) \) --------- Fourier transform of sequences
Continuous-Time and Continuous-Frequency

\[
\begin{align*}
X_c(j\Omega) &= \int_{-\infty}^{\infty} x_c(t)e^{-j\Omega t} \, dt \\
x_c(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X_c(j\Omega)e^{j\Omega t} \, d\Omega
\end{align*}
\]
Continuous-Time and Discrete-Frequency

\[
\begin{aligned}
X_c(n\Omega_1) &= \frac{1}{t_p} \int_{-\frac{t_p}{2}}^{\frac{t_p}{2}} \tilde{x}_c(t)e^{-jn\Omega t} dt \\
\tilde{x}_c(t) &= \sum_{n=-\infty}^{\infty} X_c(n\Omega_1)e^{jn\Omega t}
\end{aligned}
\]

where: \(\Omega_1 = \frac{2\pi}{t_p} \)

Fourier series of periodic continuous signals

Periodic
Continuous

Discrete
Aperiodic

\(\Omega_1 = \frac{2\pi}{t_p}\)
Discrete-Time and Continuous-Frequency Fourier transform of aperiodic discrete signals

\[
X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}
\]

\[
x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega
\]

Fourier transform of aperiodic discrete signals:

Discrete Aperiodic

Continuous Periodic

\(\Omega_s = \frac{2\pi}{T}\)
Discrete Fourier Transform

time-domain: periodic, discrete

frequency-domain: discrete, periodic

- DFT is identical to samples of Fourier transforms
- In DSP applications, we are able to store only a finite number of samples
- we are able to compute the spectrum only at specific discrete values of ω

cwliu@twins.ee.nctu.edu.tw
Discrete Fourier Transform

• Discrete Fourier transform (DFT) pairs

\[X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad k = 0,1,\ldots,N-1 \]

\[x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, \quad n = 0,1,\ldots,N-1, \]

where \(W_N^{-kn} = e^{-j\frac{2\pi}{N}kn} \)

• DFT/IDFT can be implemented by using the same hardware
• It requires \(N^2 \) complex multiplications and \(N(N-1) \) complex additions
More About DFT

• Properties of Discrete Fourier Transform
• Linear Convolution and Discrete Fourier Transform
• Discrete Cosine Transform
Periodic Sequence

• Consider a periodic sequence $\tilde{x}[n]$ of period N
• The sequence can be represented by Fourier series
 $$\tilde{x}[n] = \frac{1}{N} \sum_{k} \tilde{X}[k] e^{j(2\pi/N)kn}$$
• The Fourier series for any discrete-time signal with period N requires only N harmonically related complex exponentials.

$$\therefore e_{k+lN}[n] = e^{j(2\pi/N)(k+lN)n} = e^{j(2\pi/N)kn} = e_{k}[n]$$

$$\therefore \tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{j(2\pi/N)kn}$$

cwliu@twins.ee.nctu.edu.tw
To obtain $\tilde{X}[k]$, apply the Orthogonality property, we have

$$\sum_{n=0}^{N-1} \tilde{x}[n] e^{-j(2\pi/N)rn} = \sum_{n=0}^{N-1} \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{j(2\pi/N)(k-r)n}$$

Interchange the order of summation

$$\sum_{n=0}^{N-1} \tilde{x}[n] e^{-j(2\pi/N)rn} = \sum_{k=0}^{N-1} \tilde{X}[k] \left[\frac{1}{N} \sum_{n=0}^{N-1} e^{j(2\pi/N)(k-r)n} \right]$$

Because:

$$\frac{1}{N} \sum_{n=0}^{N-1} e^{j(2\pi/N)(k-r)n} = \begin{cases} 1, & k - r = mN, m \in \mathbb{Z} \\ 0, & \text{otherwise} \end{cases}$$

$$\sum_{n=0}^{N-1} \tilde{x}[n] e^{-j(\frac{2\pi}{N})rn} = \tilde{X}[r]$$

The coefficients are also periodic with period N
DFS Representation of a Periodic Sequence

Define: \(W_N = e^{-j(2\pi/N)} \)

\[
\tilde{x}[n] \xrightarrow{\text{DFS}} \tilde{X}[k]
\]

Synthesis equation

\[
\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] W_N^{-kn}
\]

Analysis equation

\[
\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n] W_N^{kn}
\]

\(\tilde{X}[k] \) and \(\tilde{x}[n] \) are periodic sequence of period \(N \)
Physical Significance

Let

\[x[n] = \begin{cases} \tilde{x}[n] & 0 \leq n \leq N - 1 \\ 0 & \text{otherwise} \end{cases} \]

Then

\[X(e^{j\omega}) = \sum_{n=0}^{N-1} x[n]e^{-j\omega n} = \sum_{n=0}^{N-1} \tilde{x}[n]e^{-j\omega n} \]

\[\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n]W_N^{kn} \]

We have:

\[\tilde{X}[k] = X(e^{j\omega}) \bigg|_{\omega = 2\pi k / N} \]
\(\tilde{X}[k] \) vs \(X(e^{j\omega}) \)

Example

\[
\tilde{X}[k] \\
X(e^{j\omega})
\]
Sampling the Fourier Transform

Suppose \(X(e^{j\omega}) = \sum_{m=-\infty}^{\infty} x[m]e^{-j\omega m} \) exists

Then
\[
\tilde{X}[k] = X(e^{j\omega}) \bigg|_{\omega = (2\pi/N)k} = X(e^{(2\pi/N)k})
\]

or
\[
\tilde{X}[k] = X(z) \bigg|_{z = e^{j(2\pi/N)k}} = X(e^{(2\pi/N)k})
\]

The sampling sequence is periodic with period N

Since
\[
\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k]W^{-kn}_N = \frac{1}{N} \sum_{k=0}^{N-1} \left[\sum_{m=-\infty}^{\infty} x[m]e^{-j(2\pi/N)km} \right] W^{-kn}_N
\]

\[
= \sum_{m=-\infty}^{\infty} x[m] \left[\frac{1}{N} \sum_{k=0}^{N-1} W^{-k(n-m)}_N \right] = x[n] * \sum_{r=-\infty}^{\infty} \delta[n + rN]
\]
\[\tilde{x}[n] \quad \text{vs} \quad x[n] \]

\[\tilde{x}[n] = x[n] * \sum_{r=-\infty}^{\infty} \delta[n + rN] = \sum_{r=-\infty}^{\infty} x[n + rN] \]

By adding together an infinite number of shifted replicas of \(x[n] \)
Aliasing Problem 1

- $x[n]$ is infinite-length sequence
Aliasing Problem 2

- If $x[n]$ is finite-length sequence, $0 \leq n \leq M-1$
- Consider the case $N < M$

\[\tilde{x}[n] \neq x[n] \]
Concluding Remarks

The case $N \geq M$

Conclusion: If the length of sequence $x[n]$ is M, then the sampling points N of its Fourier transform must be larger than or equal to M, otherwise, we cannot recover $x[n]$ from $\tilde{x}[n]$, i.e.

$$x[n] = \begin{cases} \tilde{x}[n] & 0 \leq n \leq N - 1 \\ 0 & otherwise \end{cases} \text{ or } \tilde{x}[n] = x[(((n)))_N]$$
Property of DFT

• Linearity

\[x_1[n] \xrightarrow{\text{DFT}} X_1[k] \quad \text{of length } N_1 \]
\[x_2[n] \xleftarrow{\text{DFT}} X_2[k] \quad \text{of length } N_2 \]

then
\[ax_1[n] + bx_2[n] \xrightarrow{\text{DFT}} aX_1[k] + bX_2[k] \]

of length \(N_3 = \max[N_1, N_2] \)
Circular Shift of a Sequence

N=15

\(x[n] \)

\(\tilde{x}[n] \)

\(\tilde{x}[n-2] \)

\(\tilde{x}[n-2] R_N[n] \)

A rotation of the cylinder
Circular Shift of a Sequence

N=15

$x[n]$

$\tilde{x}[n]$

$\tilde{x}[n+13]$

$\tilde{x}[n+13]R_{15}[n]$

A rotation of the cylinder
Property of DFT

• **Circular Shift**

If

\[x[n] \xRightarrow{\text{DFT}} X[k] \]

of length \(N \)

then

\[x[((n - m))_N] \xRightarrow{\text{DFT}} e^{-j(2\pi k/N)m}X[k] \]

\[0 \leq m \leq N - 1 \]

A rotation of the sequence in the interval

that is

\[x[((n - m))_N] \xRightarrow{\text{DFT}} W_N^{mk}X[k] \]

\[0 \leq n \leq N - 1 \]

On the other hand

\[W_N^{-ln} x[n] \xRightarrow{\text{DFT}} X[((k - l))_N] \]

\[0 \leq l \leq N - 1 \]
Other Properties of DFT

- Duality
 - 8.6.3

- Symmetry
 - 8.6.4
More About DFT

• Properties of Discrete Fourier Transform
• Linear Convolution and Discrete Fourier Transform
• Discrete Cosine Transform
Review of Convolution

- Given two sequences:
 - Data sequence \(x_i, 0 \leq i \leq N-1 \), of length \(N \)
 - Filter sequence \(h_i, 0 \leq i \leq L-1 \), of length \(L \)

- Linear convolution

\[
y_i = x_i \ast h_i = h_i \ast x_i, \quad i = 0,1,\ldots,L+N-2
\]

- Direct computation, for example 2-by-2 convolution

\[
\begin{bmatrix}
 s_0 \\
 s_1 \\
 s_2
\end{bmatrix} =
\begin{bmatrix}
 h_0 & 0 \\
 h_1 & h_0 \\
 0 & h_1
\end{bmatrix}
\begin{bmatrix}
 x_0 \\
 x_1
\end{bmatrix}
\]

require 4 multiplications and 1 addition

\(NL \) multiplications
Linear Convolution
Linear Shift vs Circular Shift

Conventional shift (linear shift)
Circular Shift Example

\[x_1[n] = x[\left((n - m) \right)_N] \quad (0 \leq n \leq N - 1) \]
Periodic/Circular Convolution

Circular Shift

\(\tilde{x}_2[m] \)

\(\tilde{x}_1[m] \)

\(\tilde{x}_2[-m] \)

\(\tilde{x}_2[1 - m] = \tilde{x}_2[-(m - 1)] \)

\(\tilde{x}_2[2 - m] = \tilde{x}_2[-(m - 2)] \)

ns.ee.nctu.edu.tw
Circular Convolution Definition

- Suppose two finite-length duration sequences: $x_1[n]$ and $x_2[n]$ of length N

\[x_3[n] = \sum_{m=0}^{N-1} \tilde{x}_1[m] \tilde{x}_2[n-m] \quad 0 \leq n \leq N - 1 \]

or \[x_3[n] = \sum_{m=0}^{N-1} x_1[((m))_N] x_2[((n-m))_N] \quad 0 \leq n \leq N - 1 \]

$x_3[n]$ is also a finite-length duration sequences of length N
Computation for Circular Convolution

1. To period the two sequence with period N (large enough)
2. To compute the periodic convolution of the two periodic sequences
3. To get out the duration sequence between [0, N-1]
Example

Step 1
Periodic the sequences:

\[x_1[n] \]

\[x_2[n] \]

\[x_3[n] = \sum_{m=0}^{N-1} \tilde{x}_1[m] \tilde{x}_2[n-m] \]

Step 2
Periodic convolution

Step 3
Get out a period
Circular Convolution Property

• Usually, we use the following notation to represent the circular convolution of length N

$$x_3[n] = x_1[n] \boxtimes x_2[n]$$

• Circular convolution property

$$x_1[n] \boxtimes x_2[n] \xrightarrow{\text{DFT}} X_1[k]X_2[k]$$

$$x_1[n]x_2[n] \xrightarrow{\text{DFT}} \frac{1}{N} X_1[k] \boxtimes X_2[k]$$

where

$$X_1[k] \boxtimes X_2[k] = \sum_{l=0}^{N-1} X_1[l]X_2[(((k-l))_N]$$
Circular Convolution Implementation

- Direct Implementation

\[x \rightarrow h \rightarrow s \]

Circular Convolution

\[\begin{bmatrix} s_0 \\ s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} h_0 & h_3 & h_2 & h_1 \\ h_1 & h_0 & h_3 & h_2 \\ h_2 & h_1 & h_0 & h_3 \\ h_3 & h_2 & h_1 & h_0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \]

\(\sim O(N^2) \)

4×4 cyclic convolution

16 multiplications
12 additions
Using Circular Convolution to Implement Linear Convolution

• Consider two sequences $x_1[n]$ of length L and $x_2[n]$ of length P, respectively.

• The linear convolution $x_3 = x_1[n] * x_2[n]$

$$x_3[n] = \sum_{m=-\infty}^{\infty} x_1[m]x_2[n-m]$$

a sequence of length $L+P-1$

• Choose N, such that $N \geq L+P-1$, then

$$x_1[n] \ast_N x_2[n] = x_1[n] * x_2[n]$$

The same concept related to Winograd Algorithm

cwliu@twins.ee.nctu.edu.tw
Linear Convolution

\[x_1[n] \]

\[x_2[-1 - m] \]

\[x_2[n - m] \]

\[x_2[L + P - 1 - m] \]
Circular Convolution with $N = L + P - 1$

Time aliasing in the circular convolution of two finite-length sequence can be avoided if $N \geq L + P - 1$
Concluding Remarks

• The convolution of two finite-length sequences can be interpreted by circular convolution with large enough length.
• Circular convolution can be implemented by DFT/FFT.

However, in real applications....
- For an FIR system, the input sequence is of indefinite duration.
- To store the entire input signal requires?
 • A large delay in processing.
 • An indefinite memory.
- Block convolution.
Block Convolution

• **Step 1**: To segment a sequence into sections of length L

• **Step 2**: Each section is convolved with the finite-length impulse response of length P by using DFT/FFT of length $N=L+P-1$

• **Step 3**: The filtered sections are fitted together in an appropriate way

 • Overlap-add method
 • Overlap-save method
Overlap-Add Method

Step 1 Zero padding

Zero padding

Zero padding

Zero padding
$y_r[n] = x_r[n] * h[n] = x_r[n] \otimes h[n]$ with $L+P-1$ length

$y[n] = x[n] * h[n] = \sum_{r=0}^{\infty} y_r[n - rL]$
Overlap-Save Method

- Suppose \(L > P \).
- Consider an \(L \)-point circular convolution of a \(P \)-point impulse response \(h[n] \) with an \(L \)-point input sequence \(x_r[n] \)
 - Due to aliasing problem, the first \((P-1)\)-point of the result is incorrect
 - the remaining points \([P, L-1]\) are identical to those that would be obtained by linear convolution

- **Step1**: To segment a sequence into sections of length \(L \) such that each section overlaps the preceding section by \((P-1)\) points
- **Step2**: Each section is convolved with the finite-length impulse response of length \(P \) by using DFT/FFT of length \(L \)
- **Step3**: The first \((P-1)\)-point of each filtered sequence must be discarded. The remaining samples from successive sections are then abutted to construct the final output.
Step 1

\[x_0[n] \]

\[L - (P - 1) \]

\[L - 1 \]

\[n \]

\[x_1[n] \]

\[x_2[n] \]

\[L - 1 \]

\[n \]
Step 2 & Step 3
Fast Convolution with the FFT

• Given two sequences x_1 and x_2 of length N_1 and N_2 respectively
 - Direct implementation requires N_1N_2 complex multiplications
• Consider using FFT to convolve two sequences:
 - Pick N, a power of 2, such that $N \geq N_1+N_2-1$
 - Zero-pad x_1 and x_2 to length N
 - Compute N-point FFTs of zero-padded x_1 and x_2, one obtains X_1 and X_2
 - Multiply X_1 and X_2
 - Apply the IFFT to obtain the convolution sum of x_1 and x_2
 - Computation complexity: $2(N/2) \log_2 N + N + (N/2)\log_2 N$
Example

- A sequence $x[n]$ of length 1024
- FIR filter $h[n]$ of length 34

- Direct computation: $34 \times 1024 = 34816$
- Using radix-2 FFT: 35840 (N=2048)
- Using overlap-add radix-2 FFT:
 - $x[n]$ is segmented into a set of contiguous blocks of equal length 95
 - Apply radix-2 FFT of length 128
 - Each segment requires 1472 multiplications
 - This algorithm requires total 16192 multiplications