
Fig. 13.41 One bit slice partial product generator for the race-free Booth multiplier in Problem 12.
13. Obtain a 2-unfolded carry-ripple digit-serial multiplier by unfolding the
F 14. This problem is concerned with fixed-point bit-serial and digit-serial
Assume the signal wordlength to be 8 (i.e., the wordlengths for y and x are 8 bits). Assume the coefficient $-7 / 8$ is encoded as 1.001 and $3 / 4$ is encoded as 0.11 . In the multiplication with respect to coefficients, only multiplication with respect to nonzero bits is carried out.
(a) Draw the block diagram of the computation by exploiting associativity. The inner loop bound of your architecture should be limited by 1 multiply-add time.
(b) Design a functionally correct bit-level pipelined bit-serial architecture for the structure in part (a).
(c) The loop latency in part (b) imposes a constraint on the minimum wordlength for the signals y and x. What is the minimum feasible signal wordlength for the system in part (b)?

 architecture and show all switching instances.
(b) Draw the complete modified Booth recoded bit-serial multiplier
12. This problem considers design of a Booth recoding circuit for low power. The control circuitry for Booth recoding in Problem 11 contains only two XOR gates and one inverter. However, the generation of the control signals A_{i}, B_{i}, and C_{i} through different logic levels with different propagation delay time leads to an increase in the glitching activity in the partial product generation and accumulation circuit, hence leading to high power dissipation. Glitching and power consumption can be reduced by using a redundant recoding scheme, which balances the paths from each input to the outputs of the control circuitry [11].

Consider the multiplication $A \times Y$, and denote the recoded multiplier bits as y_{j}^{\prime}. Four control signals are used in the new race-free Booth recoder, neg, $x 1, x 2$ and $z p$. neg $=1$ implies y_{j}^{\prime} is negative, and neg $=0$ implies y_{j}^{\prime} is nonnegative. $x 1=1$ implies $\left|y_{j}^{\prime}\right|=1 ; x 2=\overline{x 1} . z p$ distinguishes $\left|y_{j}^{\prime}\right|=2$ from $\left|y_{j}^{\prime}\right|=0$. The new recoding scheme is summarized in the Table 13.5, where * denotes a don't-care condition. One bit-slice of the partial product generator obtained using this recoding scheme is shown in Fig. 13.41.
a) Prove that the circuit in Fig. 13.41 generates the correct partial products for the Booth multiplication.
(b) Derive the Booth recoder (control) circuit such that the propagation delay of all paths from each input bit, including $y_{2 j+1}, y_{2 j}$, $y_{2 j-1}, a_{i}$ and a_{i-1}, to each bit of the partial product, $A y_{j}^{\prime}$, are

This problem considers the design of a low-latency bit-serial multiplier by transforming the ripple-carry Lyon's multiplier using associativity and retiming.
(a) Show that the architecture in Fig. 13.44(a) can be transformed to
 the critical path and latencies of these 2 architectures.
(b) Design a low-latency bit-serial multiplier by applying similar trans-

 sample and the coefficient. Show all switching instances in your architecture.

 with respect to nonzero bits only using the architecture in part
 a signal wordlength of 12 . $\stackrel{\otimes}{\text { \# }}$

Fig. 13.42 IIR filter diagram for Problem 15. $b=1 / 8, c=-3 / 4$. Assume all numbers
complement representation.
(a) Obtain an equivalent structure by using associativity such that to be represented using two's
inner loop bound in the (b) Complete the bit-level pipelined bit-seriald time.
in part (a). Treat minimization of delay elements in the design as a secondary objective.
16. This problem addresses a bit-level pipelined bit-serial implementation of the recursive computation

$$
y(n)=\frac{3}{16} y(n-1)+\frac{5}{8} y(n-2)+\frac{1}{2} x(n)
$$

using two's complement
The bit-serial designent representation and a signal wordlength of 10 . precision available. Associe accuracy in the bound of the inner loop is limited must be exploited so that the loop word level. Design the bit-serial architectultiply and 1 add time at the 10. What is the minimum feasible wordlength for a signal wordlength of 17. Consider the bit-serial implementation of the he bit-serial implementation of the computation

$y(n)=0.25 y(n-1)+x(n)$

(13.40)

What wordlength has been used in the circuit? For this wordlength complete the missing switching instances. Unfold this bit-serial struc digit size 3.
> 24. This problem considers design of digit-serial distributed arithmet
> using a 3 -bit digit-serial distributed arithmetic assuming a wordl
of 9 . The bits $x_{i, 3 k+l}$ should be processed in the l-th ROM ($l=\mathrm{C}$
in k-th clock cycle $(k=0,1,2)$. Using 3 ROMs and a multi-input
accumulator, design the 3 -bit digit-serial distributed arithmetic
tecture. This architecture processes 3 consecutive input bits in a
cycle and all input words are processed in 3 clock cycles. Assum
ROM contents to be represented using 16 bits. Design two for
shift-accumulators using bit-parallel (i) carry-ripple and (ii) carr
adders. The output of the shift-accumulator is represented usi
bits. The critical path of the carry-ripple design should be $17 t_{F}$,
that of the carry-save design should be $3 t_{F A}$, where $t_{F A}$ is the pro
tion delay of a full adder. The carry-save design requires an addit
carry-propagate adder at the end.
(a) Calculate the latencies of both designs in terms of $t_{F A}$.
(b) Which design is more suitable for high speed? Why?
(c) Which design is more suitable for low power? Why?

REFERENCES

1. L. B. Jackson, J. F. Kaiser, and H. S. McDonald, "An approach to I
mentation of digital filters," IEEE Trans. on Audio Electroacoustics, v
2. P. B. Denyer and D. Renshaw, VLSI Signal Processing: A Bit-Serial App Addison-Wesley, 1986.
3. R. Jain et al., "Custom design of a VLSI PCM-FDM transmultiplexor system specification to circuit layout using a computer aided design sys IEEE J. Solid State Circuits, vol. 21, pp. 73-85, Feb. 1986.
4. K. K. Parhi, "A systematic approach for design of digit-serial processing tectures," IEEE Trans. on Circuits and Systems, vol. 38, no. 4, pp. 358 April 1991.
5. R. I. Hartley and K. K. Parhi, Digit-Serial Computation. Kluwer, 1995
6. N. E. Weste and K. Eshraghian, Principles of CMOS VLSI design: A S Perspective. Addison-Weslev. 1993.

7. Obtain the CSD representation of the following two's complement num-
bers:

$$
c_{0}=1.11111111, \quad c_{1}=1.11110010, \quad c_{2}=0.01100110,
$$

$c_{3}=0.01001100111$.
21. This problem considers a bit-serial implementation of the IIR filter $y(n)=a_{1} y(n-1)+a_{2} y(n-2)+x(n)$, where $a_{1}=0.00011011100$, $a_{2} y(n-2)+x(n)$, (a) Represent the coefficients a_{1} and $a_{2}=0.01001111110$.
(b) Using CSD representation and the a_{2} in CSD representation. obtain a bit-level pipelined bit-serial IIR graph in Fig. 13.27(b), signal wordlength of 12 . What is the minimum ferchitecture for a of this architecture? (c) Apply the Horner's
improve your design in part (b). What is the minimum feasible wordlength of this design?
tecture using concept to implement a distributed arithmetic architecture using a ROM containing $2^{N} / 4$ words.

