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Introduction
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 The Laplace transform (LT) provides a broader characterization 
of continuous-time LTI systems and their interaction with 
signals than is possible with Fourier transform

 Signal that is not absolutely integral

 Two varieties of LT:
 Unilateral or one-sided
 Bilateral or two-sided
 The unilateral Laplace transform (ULT) is for solving differential 

equations with initial conditions.
 The bilateral Laplace transform (BLT) offers insight into the nature of 

system characteristics such as stability, causality, and frequency 
response.

Laplace transform

Fourier transform



A General Complex Exponential est
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 Complex exponential est with complex frequency s=+j

 est is an eigenfunction of the LTI system
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Eigenfunction Property of est
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 Transfer function

 H(s) is the eigenvalue of the eigenfunction est

 Polar form of H(s): 

LTI system, h(t)
x(t) = est y(t) = x(t)  h(t)
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The LTI system changes the amplitude of the input by H( + j ) and shifts 
the phase of the sinusoidal components by  ( + j ).



The Laplace Transform
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 Definition: The Laplace transform of x(t):
 Definition: The inverse Laplace transform of X(s):

 A representation of arbitrary signals as a weighted superposition of 
eigenfunctions est with s=+j. We obtain

Hence
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Convergence of Laplace Transform
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 LT is the FT of x(t)e t A necessary condition for convergence of the LT 
is the absolute integrability of x(t)e t:

 The range of  for which the Laplace transform converges is termed the 
region of convergence (ROC).

 Convergence example:
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integrable.

2. But x(t)et =e(1)tu(t) is absolutely integrable, if >1, i.e. ROC, so the Laplace 
transform of x(t), which is the Fourier transform of x(t)et, does exist. 
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The s-Plane, Poles, and Zeros
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 To represent s graphically in terms of complex plane

 s =  + j
 Horizontal axis of s-plane = real part of s; 
 vertical axis of s-plane = imaginary part of s.

 Relation between FT and LT:

 The j-axis divides the s-plane in half: left-half and right-half s-plane
 Laplace transform X(s):
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Example 6.1
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<Sol.>

Determine the Laplace transform of x(t) = eatu(t), and depict the ROC and locations of 
poles and zeros in the s-plane. Assume that a is real. 

1. First find the LT of x(t):        
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Example 6.2
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<Sol.>

Determine the Laplace transform of y(t) = eatu(t), and depict the ROC and locations of 
poles and zeros in the s-plane. Assume that a is real. 

1. First find the LT of y(t):

2. To evaluate the limit value, we use s =  + j to re-write Y(s): 

3. ROC: <a or Re(s)<a, and 
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Concluding Remarks
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 Examples 6.1 & 6.2 reveal that the same Laplace transform but different 
ROCs for the different signals x(t) and y(t)

 This ambiguity occurs in general with signals that are one sided. To see why, 
let x(t)=g(t)u(t) and y(t)= g(t)u( t). We may thus write

 The value of s for which the integral represented by G(s, ) converges 
differ from those for which the integral represented by G(s, ) converges, 
and thus the ROCs are different
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We conclude that X(s) = Y(s) whenever G(s, ) = G(s, ). 

The ROC must be specified for the Laplace transform to be unique !!!
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The Unilateral (or One-Sided) LT
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 We may assume that the signals involved are causal, that is, zero for t < 0.

 The unilateral Laplace transform (ULT) of a signal x(t) is defined by

 Note that ULT and LT are equivalent for signals that are causal.

 The ambiguity of LT is removed in ULT
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Properties of ULT
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 Properties of ULT are similar to those of the FT

 Here we assume that 

 Linearity:

 Scaling:

 Time Shift:
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This property applies only if 
the shift does not move a 
nonzero t  0 component of 
signal to t < 0, or does not 
move a nonzero t < 0 
portion of the signal to t  0:



Properties of ULT
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 s-Domain Shift:

 Convolution:

 Differentiation in the s-Domain:

 Example 6.3:
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Example 6.4 RC Circuit
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Find the Laplace transform of the output of the RC circuit 
for the input x(t) = te2tu(t). 
<Sol.>

1. The impulse response of the RC circuit is 
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Properties of ULT
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 Differentiation in the Time-Domain: 

     
0 0

u st std x t x t e s x t e dt
dt  

   L   
0

u std dx t x t e dt
dt dt

    
 L

=

Integration by part

     0u
d x t sX s x
dt

 L x(t)e-st approaches zero as t

     

   

1 2

1 2
0 0

1
2 1

1
0

0

n n
n

n n
t t

n
n n

n
t

d ds X s x t s x t
dt dt

ds x t s x
dt

 



 

 
 


  




 

  

  u

n

n

d x t
dt

L

The general form for the differentiation property



Properties of ULT
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 Integration Property: 

 Initial- and Final-Value Theorem: 
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Remarks
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 For initial-value theorem: 

 This theorem does not apply to rational functions X(s) in which the 
order of the numerator polynomial is greater than or equal to that of the 
denominator polynomial

 For final-value theorem

 This theorem applies only if all the poles of X(s) are in the left half of the 
s-plane, with at most a single pole at s=0

 Example 6.6 

<Sol.>
Determine the initial and final values of a signal x(t) whose ULT is    
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   
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  

 

2. Final value:

   0 0

7 10 7 10lim lim 5
2 2s s

s sx s
s s s 

 
   

 

Note that X(s) is the Laplace transform of 2( ) 5 ( ) 2 ( )tx t u t e u t 



Inversion of the ULT
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 Direct inversion of the LT (ILT) requires a contour integration

 We shall determine the ILT using the one-to-one relationship between a 
signal and its ULT



Inversion by Partial-Fraction Expansion
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 The inverse transform can be obtained by expressing X(s) as a sum of 
terms for which we already known the time function

 Suppose    
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

1
1 1 0

1
1 1 0

M M
M M

N N
N

b s b s b s b
s a s a s a







   


   



M < N

If M  N, we may use long division to express X(s) as    
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1. Using the differentiation property and the pair   1ut L
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2. Factor the denominator polynomial as a product of pole factors to obtain
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Inversion by Partial-Fraction Expansion
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 Case I: If all poles dk are distinct:

 Case II: If a pole di is repeated r times:

 
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   
 

1

1 !
k u

n
d t

n
k

At Ae u t
n s d




 

L





Example 6.7
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<Sol.>

Find the inverse Laplace transform of  
  2
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
 

Use a partial-fraction expansion of X(s) to write  
 

31 2
21 2 2

AA AX s
s s s

  
  

Solving for A1, A2, and A3, we obtain  
 2

1 1 2
1 2 2

X s
s s s

  
  

1) The pole of the first term is at s=－1, so 

  1
1

ute u t
s

 


L

2) The second term has pole at s = －2; thus, 

 2 1
2

ute u t
s

  


L

3) The double pole in the last term is also at s = －2; hence, 

 
 

2
2

22
2

utte u t
s

 


L        2 22t t tx t e u t e u t te u t    
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<Sol.>

Find the inverse unilateral Laplace transform of  
3 2

2

2 9 4 10
3 4

s s sX s
s s
  


 

2 3 2

3 2

2

2

2 3
3 4 2 9 4 10

2 6 8
    3 12 10
      3  9 12
                   3  2

s
s s s s s

s s s
s s
s s

s


    

 

  

  


  2

3 22 3
3 4

sX s s
s s


  

 

  1 22 3
1 4

X s s
s s

   
             1 42 3 2t tx t t t e u t e u t     



Conjugate Poles
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 If the coefficients in the denominator are real, then all the complex poles 
occur in complex-conjugate pairs. 

 Combine complex-conjugate poles to obtain real-valued expansion 
coefficients

1. Suppose that  + j0 and   j0 make up a pair of complex-conjugate poles. Then

1 2

0 0

A A
s j s j   


   

A1 and A2 must be complex conjugates of each other
 it’s hard to solve A1 and A2 from real-valued coefficients

2. Combine conjugate poles:  + j0 and   j0. Then

     
1 2 1 2

2 2
0 0 0

B s B B s B
s j s j s     

 


     
where both B1 and B2 are real valued.

 
 

   
1 2 01 2

2 2 22 2 2
0 0 0

C s CB s B
s s s

 
     


 

     
where C1=B1 and C2=(B2 + α)/ω0

2
0

2
1

01 )(
)()()cos(







 
s

sCtuteC ULTt
2
0

2
02

02 )(
)()sin(





 

s
CtuteC ULTt

in term of the perfect square



Example 6.9
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Find the inverse Laplace transform of 

<Sol.>

 
2

3 2

4 6
2

sX s
s s




 

 
 

1 2
21 1 1

B s BAX s
s s


 

  

)1)1)((1()22)(1(2 2223  sssssss
write the quadratic s2 + 2s + 2 in terms of the perfect square

Then

   
 

2

21
1

4 61 2
1 1s

s

sA X s s
s




   

 

     
     

22
1 2

2
1 1 2 2

4 6 2 1 1 1

2 4 4

s s B s B s

B s B B s B

      

      

 
 

   

2

2 2

2 2 2
1 1 1

2 1 12 4
1 1 1 1 1

sX s
s s

s
s s s


 

  


  

    

           2 2 cos 4 sint t tx t e u t e t u t e t u t   
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Example 6.6: Solving Differential Equations 
with Initial Conditions
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 Recall      0u
d x t sX s x
dt

 L

The initial condition

<Sol.>

Use the Laplace transform to find the voltage across the 
capacitor, y(t), for the RC circuit in response to the applied 
voltage x(t) = (3/5)e－2tu(t) and initial condition y(0－)=－2. F

Using Kirchhoff’s voltage law, we have the differential equation

     1 1d y t y t x t
dt RC RC

 
RC = 0.2 s      5 5d y t y t x t

dt
 

       0 5 5sY s y Y s X s        1 5 0
5

Y s X s y
s

   
3/ 5( ) ( )

2
ux t X s

s
 


L y(0－)=－2     

3 2
2 5 5

Y s
s s s


 

  

  1 1 2 1 3
2 5 5 2 5

Y s
s s s s s

 
    

    
     2 53t ty t e u t e u t  



Solving Differential Equations 
with Initial Conditions
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 From the general differential equation:

 Assume that the input is zero for t < 0. Taking the unilateral Laplace 
transform of both sides, we obtain

       

       

1

1 1 01

1

1 1 01                                              

N N

NN N

M M

M MM M

d d dy t a y t a y t a y t
dt dt dt

d d db x t b x t b x t b x t
dt dt dt



 



 

    

   





         A s Y s C s B s X s 
  1

1 1 0
N N

NA s s a s a s a
    

  1
1 1 0

M M
M MB s b s b s b s b

    

   
1

1

1 0 0

lN k
k

k l
k l t

dC s a s y t
dt 




  

 

where

     
 

 
 

       f n

B s X s C s
Y s

A s A s

Y s Y s

 

 

Natural response 
due to I.C. with 
zero input

Initial conditions

The Laplace transform offers a clear separation between the natural response 
to initial conditions and the forced response with the input

Forced response 
due to input with 
zero I.C.
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<Sol.>

Use the unilateral Laplace transform to determine the output of the system described by 
the differential equation          

2

2 5 6 6d d dy t y t y t x t x t
dt dt dt

   

in response to the input x(t) = u(t). 

 0 1y   and  
0

2
t

d y t
dt 



Identity the forced response of the system, y(f)(t), and the natural response y(n)(t).

1. Apply ULT on the both sides of the differential equations, we obtain:

             2

0

5 6 0 5 0 6
t

ds s Y s y t sy y s X s
dt 

 



      

Assume that 

           
0

2 2

0 5 0
6
5 6 5 6

t

dsy y t y
s X s dtY s
s s s s



 



 


 
   

)()()( )()( sYsYsY nf 

      
6

2 3
f sY s

s s s



 

      
7

2 3
n sY s

s s



 

and

         2 32f t ty t u t e u t e u t           2 35 4n t ty t e u t e u t  
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Bilateral Laplace Transform (BLT)

33

 The BLT involves the values of the signal for both t  0 and t < 0

 Assume that 

 Linearity:

 Example 6.14

      stx t X s x t e dt
 


  L BLT is well suited problems involving 

noncausal signals and systems

( ) ( ) with ROC xx t X s RL

( ) ( ) with ROC yy t Y s RL ROC should be given

( ) ( ) ( ) ( ) with ROC x yax t by t aX s bY s R R   L

The ROC may be larger than Rx  Ry if a 
pole and a zero cancel in aX(s) + bY(s).

     2 1
2

tx t e u t X s
s

  


L with  ROC Re 2s  
and

           
2 3 1

2 3
t ty t e u t e u t Y s

s s
    

 
L with  ROC Re 2s  

3
1

)3)(2(
1)3()()(








sss

ssYsX
Then

3)Re(   ROC  with)()()( 3   stuetytx t

If the intersection of ROCs is an empty set, the LT of ax(t)+by(t) does not exist



Properties of BLT
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 Time Shift:

 Differentiation in the Time Domain:

 Integration with respect to Time:

   stx t e X s  L
Since the BLT is evaluated over 
both positive and negative t, the 
ROC is unchanged by a time shift.

   d x t sX s
dt

L with ROC at least Rx

The ROC associated with sX(s) may be larger than Rx if X(s) has a 
single pole at s = 0 on the ROC boundary

   t X s
x d

s
 


 L with  ROC Re 0xR s 

Integration corresponds to division by s. Since this introduces a pole 
at s = 0 and we are integrating to the right, the ROC must lie to the 
right of s = 0



Example 6.15
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<Sol.>
Find the Laplace transform of       

2
3 2

2 2tdx t e u t
dt

  

1. We know from Ex. 6.1 that  3 1
3

te u t
s

 


L with  ROC Re 3s  

2. The time-shift property implies that

   3 2 212
3

t se u t e
s

   


L with  ROC Re 3s  

3. Apply the time-differentiation property twice, we obtain

with  ROC Re 3s          
2 2

3 2 2
2 2

3
t sd sx t e u t X s e

dt s
     


L



Properties of the ROC
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 Recall that the BLT is not unique unless the ROC is specified.

 The ROC is related to he characteristics of a signal x(t) indeed.

 (1) For rational LTs, the ROC cannot contain any poles
Suppose d is a pole of X(s), then X(d)= 

 (2) The ROC consists of strips parallel to the j-axis in the s-plane.

 (3) The ROC for a finite-duration and bounded x(t) is the entire s-plane

Convergence of the BLT for a signal x(t) implies that

    tI x t e dt
 


   for some values of .

The set of  with finite I() determines the ROC of BLT.

ROC consists of strips parallel to the j-axis in the s-plane.

 

 

,        0

,           0

b t

a

bt

a

I Ae dt

A e

A b a


















    
  



I() is finite for all finite values of 



Properties of the ROC 
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 (4) Convergence of the BLT for a signal x(t) implies that

    tI x t e dt
 


   for some values of .

Let’s separate I() into two one-sided parts, i.e. positive- and negative-time sections:

     I I I    

where    
0 tI x t e dt 

 
     

0

tI x t e dt
 

  and

In order for I() to be finite, both I() and I() must be finite. 

This implies that x(t) must be bounded in some sense.

Suppose we can bound x(t) for both I() and I() by finding the smallest p s.t.

  , 0ptx t Ae t  and largest n s.t.   , 0ntx t Ae t 

A signal x(t) that satisfies these bounds is said to be of exponential order.

x(t) grows no faster than ept for positive t and ent for negative t



Properties of the ROC
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Using the exponential order bounds on x(t) , we may write

I+() is finite whenever  > p

0)(0
)(








 

  t

n

tt nn eAdteAeI 




 
 

  0

)(

0
)( t

p

tt pp eAdteAeI 




I() is finite whenever  < n

(4) If x(t) is right-sided, and if the line Re{s} = p is in the ROC, 
then all values of s for which Re{s} > p will also be in the ROC.

(5) If x(t) is left-sided, and if the line Re{s} = n is in the ROC, 
then all values of s for which Re{s} < n will also be in the ROC.

(6) If x(t) is two-sided, the ROC is of the form p <  < n.

if p > n, then there are no values of  for which the BLT converges.



Illustration Examples:






p n

p

j

j

j

n

p

np



Example 6.16
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Consider the two signals      2
1

t tx t e u t e u t         2
2

t tx t e u t e u t   and

Identify the ROC associated with the bilateral Laplace transform of each signal.

<Sol.>

1. We check the absolute integrability of x1(t)  e  t by writing

   
   

   

1 1

0 1 2

0

0
1 2

0

1 1
1 2

t

t t

t t

I x t e dt

e dt e dt

e e



 

 



 

 



   




   





 

     


 

The first converges for  <  1, while the second term converges for  >  2. Hence, both 
terms converge for  2 <  <  1. This is the intersection of the ROC for each term.

The ROC for each term and the intersection of the ROCs, which is shown as the 
doubly shaded region, are depicted in Fig. 6.15 (a). 
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2. For the second signal, , we have 

   
   

   

1 2

0 2 1

0

0
2 1

0

1 1
2 1

t

t t

t t

I x t e dt

e dt e dt

e e



 

 



 

 



   




   





 

     


 

)(2 I

     2
2

t tx t e u t e u t   

The first converges for  <  2 and the second term converges for  >  1. 
Here, there is no value of  for which both terms converge, so the intersection is empty. 
As illustrated in Fig. 6.15(b), the bilateral Laplace transform of x2(t) does not exist.  

 

jj



Inversion of the BLT
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 Similar to the inversion of the ULT but the ROC is necessary to determine 
a unique inverse transform.

 Suppose

 By partial-fraction expansion in terms of non-repeated poles:

   
 

B s
X s

A s


1
1 1 0

1
1 1 0

M M
M M

N N
N

b s b s b s b
s a s a s a







   


   




If M  N, then we use long division to express    
0

M N
k

k
k

X s c s X s




  

M < N

   
0 0

u

M N M N
k k

k k
k k

c t c s
 

 

 L

Note that the ROC of X(s) is the same as the ROC of X(s)
~

the LT of the impulse and its derivatives converge everywhere in the s-plane


 


N

k k

k

ds
AsX

1

)(~
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 Two possibilities for the inverse BLT of X(s)
 1. Right-sided

 2. Left-sided

 Example 6.17

~

   with  ROC  Re( )kd t k
k k

k

AA e u t s d
s d

   


L

   with  ROC  Re( )kd t k
k k

k

AA e u t s d
s d

 


L

The ROC of a right-side exponential signal lies to the right of the pole, 
while the ROC of a left-sided exponential signal lies to the left of the pole. 

Find the inverse bilateral Laplace transform of      
5 7

1 1 2
sX s

s s s
 


   with ROC 1 Re 1s  

<Sol.>
Use the partial-fraction expansion   1 2 1

1 1 2
X s

s s s
  

  


j

right-sided left-sided

       22t t tx t e u t e u t e u t    
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 By partial-fraction expansion in terms of repeated poles

 Two possibilities for the inverse BLT of X(s)
 1. Right-sided

 2. Left-sided

 For pairs of complex-conjugate poles

 Two possibilities for the inverse BLT

 1. Right-sided

 2. Left-sided

 n
k

A
s d~

   
1

1 !
k

n
d tAt e u t

n





   
1

1 !
k

n
d tAt e u t

n





If the ROC lies to the left of the pole dk

If the ROC lies to the right of the pole dk

 
 

1
2 2

0

C s
s



 



 

   1 0costC e t u t  If the ROC lies to the right of s =   j0,

   1 0costC e t u t   If the ROC lies to the left of s =   j0,
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 Causality 
 If the signal is known to be causal, then we choose the right-sided 

inverse transform of each term. (i.e. the unilateral Laplace transform)

 Stability
 A stable signal is absolutely integrable and thus has a Fourier transform;

stability and the existence of Fourier transform (i.e. Re(s)=0) are 
equivalent conditions

 In both cases, the ROC includes the jω-axis in the s-plane, or Re(s) = 0.
 The inverse LT of a stable signal is obtained by comparing the poles’ 

locations with jω-axis.
 If a pole lies to the left/right of the jω-axis, then the right/left-sided 

inverse transform is chosen (the ROC should include the j-axis)
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The Transfer Function
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 Recall that the transfer function H(s) of an LTI system is

 If we take the bilateral Laplace transform of y(t), then

 From differential equation: 

    sH s h e d 
 


 

LTI system, h(t)
x(t) y(t) = x(t)  h(t) 

x(t) = est y(t) = H(s)est

     Y s H s X s    
 

Y s
H s

X s
 This definition applies only at 

values of s for which X(s)  0

   
0 0

k kN M

k kk k
k k

d da y t b x t
dt dt 

 
After Substituting est for x(t) and estH(s) for y(t), we obtain

     
0 0

k kN M
st st

k kk k
k k

d da e H s b e
dt dt 

 
 

 
 

rational transfer function

 
 
 
1

1

M
kk

N
kk

b s c
H s

s d












  0

0

M k
kk

N k
kk

b s
H s

a s




 


Knowledge of the poles dk, zeros ck, and factor                  completely determine the system /M Nb b a
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j

j





 The impulse response h(t) is the inverse LT of the transfer function H(s)

 Causality

 Stability 

j

j





right-sided inverse LT

the ROC includes the j-axis 
in the s-plane



Causal and Stable LTI System
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 To obtain a unique inverse transform of H(s), we must know the ROC or 
have other knowledge(s) of the impulse response

 The relationships between the poles, zeros, and system characteristics can 
provide some additional knowledges

 Systems that are stable and causal must have all their poles in the 
left half of the s-plane:

j


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<Sol.>

A system has the transfer function   2 1
3 2

H s
s s

 
 

Find the impulse response, (a) assuming that the system is stable; (b) assuming that the 
system is causal; (c) can this system be both stable and causal?

(a) This system has poles at s =  3 and s = 2.

     3 22 t th t e u t e u t  
Stable  the ROC contains j-axis.  
the pole at s=3 contributes a right-sided term; 
the pole at s=2 contributes a left-sided term. 

(b) This system has poles at s =  3 and s = 2.

Causal  right-sided  )()(2)( 23 tuetueth tt  

(c) This system has poles at s =  3 and s = 2  this system cannot be both stable and causal



Inverse System
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 Given an LTI system with impulse response h(t), the impulse response of 
the inverse system, h inv(t), satisfies the condition      *invh t h t t

    1invH s H s     
1invH s

H s
or

a stable and causal inverse system exists only if all of the zeros of H(s) are in 
the left half of the s-plane.

the poles of the inverse system Hinv(s) are the zeros of H(s), and vice versa 

A (stable and causal) H(s) has all of its poles and zeros in the left half of the s-plane

H(s) is minimum phase.

A nonminimum-phase system cannot have a stable and causal inverse system.
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<Sol.>

Consider an LTI system described by differential equation 

         
2

23 2d d dy t y t x t x t x t
dt dt dt

   

Find the transfer function of the inverse system. Is it a stable and causal inverse system? 

First find the system’s transfer function H(s):    
 

2 2
3

Y s s sH s
X s s

 
 



       2

1 3 3
2 1 2

inv s sH s
H s s s s s

 
  

   

The inverse system has pole at s =1 and s =－2. Hinv(s) cannot be both stable and causal. 



Determining Frequency Response 
from Poles & Zeros
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 Control system



Summary
 The Laplace transform represents continuous-time signals 

as weighted superpositions of complex exponentials
 The transfer function is the Laplace transform of the impulse 

response
 The unilatreal Laplace transform applies to causal signals (or one-

sided signals)
 The bilateral Laplace transform applies to two-sided signals; 

it is not unique unless the ROC is specified.

 The Laplace transform
 is most often used in the transient and stability analysis of system

 The Fourier transform 
 is usually employed as a signal representation tool and in solving 

system problems in which steady-state characteristics are of interest.


