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Introduction

» The Laplace transform (LT) provides a broader characterization
of continuous-time LT| systems and their interaction with
signals than is possible with Fourier transform

» Signal that is not absolutely integral
5 Y IMECETAL Laplace transform

. L. | I
» Two varieties of LT: % Fourier transform

Unilateral or one-sided
Bilateral or two-sided

The unilateral Laplace transform (ULT) is for solving differential
equations with initial conditions.

The bilateral Laplace transform (BLT) offers insight into the nature of
system characteristics such as stability, causality, and frequency
response.
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A General Complex Exponential est

» Complex exponential e with complex frequency s=c+jw

e* =e” cos(mt)+ je” sin(wt).
Re{e*}

c<0

\ O't

| [\ [2\ ﬁuﬁ e
e d U \/4,[ -
J // ,_‘t:] _eo-t

4 exponentially damped cosine

Re{s}=c: exponential damping factor

Im{s}=w: frequency of the cosine and sine factor

Im{e*'}

. %\ <o
f\ NP
)V

27z \ !47[ u-— u"—"—'

_eO't

7
7

exponentially damped sine

» estis an eigenfunction of the LTI| system
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Eigenfunction Property of est

—t est

LTI system, h(t)
y(t) =h(t)*x(t) = [ h(z)x(t-7)dz

» Transfer function|H (S) = j_ih(r)e_”dr _ J‘:h(r)es(t_r)dr

— p%t * h —Srd
» H(s) is the eigenvalue of the eigenfunction e €. (r)e dz

» Polar form of H(s): H(s) = ‘H (s)‘e”’(s) =e"H(s)
| H(s) | = amplitude of H(s); ¢(s) = phase of H(s)
Then y(t) :‘H (S)‘ejqj(s)eSt lets=c +jw
L y(t)=|H (o + jo)|e e 71
=|H (o + jo)|e” cos(at+¢(c+ jw))+ j|H (o + jo) e sin(at+¢(c+ jo))

The LTI system changes the amplitude of the input by | H(c + jw) | and shifts
the phase of the sinusoidal components by ¢(c + jw).
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The Laplace Transform

x(t) «—— X(s)

- X (s)z_[oo x(t)e dt
» Definition:The Laplace transform of x(t): 1—00 |
» Definition: The inverse Laplace transform of X(s): X(t) = 2_j jJ X (s)e’ds
7T ) doie

» A representation of arbitrary signals as a weighted superposition of
eigenfunctions e with s=c+jw. Ve obtain
H (O_+ Ja)) _ 00 h(t)e—(G+Ja))tdt

o —00

m h{)e "« >H(o+ jo)

= _oo [h(t)e_at]e_ja’tdt Laplace transform is the FT of h(t)e~
Hence I _ . 1 e .\ (o+ o)t
n(t)e ™t == [" H(o+ jo)e'do = h(Y) —EL@ H (o + jw)e” 1 da
s=otjo = Lo H (s)e®ds

Sy s = jdw 2 Sl
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Convergence of Laplace Transform

» LT is the FT of x(t) e~ =» A necessary condition for convergence of the LT
is the absolute integrability of x(t) e % J-oo ‘X(t)e_‘”‘dt o

» The range of ¢ for which the Laplace transform converges is termed the
region of convergence (ROC).

» Convergence example:

|. Fourier transform of x(t)=e'u(t) does not exist, since x(t) is not absolutely

integrable.
2. But x(t) et =e(!l-9%y(t) is absolutely integrable, if 5>1, i.e. ROC, so the Laplace

transform of x(t), which is the Fourier transform of x(t)e", does exist.

x(1) e-ot x(t) e

_/u(t)
c >1 —
)( — c >1
| 1 1 -




The s-Plane, Poles, and Zeros
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jo
» To represent s graphically in terms of complex plane ;
+ X
» S=C +j60 o 74
. . x = pole; 0 = zero
» Horizontal axis of s-plane = real part of s; 1T
. . . . — @ % o
» vertical axis of s-plane = imaginary part of s. _4 -1 |o 4
) -2+
. - -3+ X
» Relation between FT and LT: | X ( Ja)) =X (S)‘
o=0 s-plane

the Fourier transform is given by the LT evaluated along the imaginary axis

» The jw-axis divides the s-plane in half: left-half and right-half s-plane

» Laplace transform X(s):

X(s)=

b, s" +hb, "+ +D,

s" +a,,S" T+ +aS+a,

e e

c, = zeros of X(s); d, = poles of X(s)



Example 6.1

Determine the Laplace transform of x(t) = e®u(t), and depict the ROC and locations of
poles and zeros in the s-plane. Assume that a is real.

<Sol.>

a s -1 _
. Firstfind the LT of x(t: X (s) =] e“u(t)edt = [ "e™dt = ——e

s_a 0

2. To evaluate the limit value,we use s = ¢ + jo to re-write X(s):

-1 ot .
X (S) = _ g (7 A)g i ) if o>a,then e (=9 goes to zero at t —
o+ Jo—a .
3. ROC: 6>a or Re(s)>a, and Jo
-1
X(s)=—— 0-1)
o+ jo—a
1 1 .
= = , Re(s)>a 0

o+ jow—a Ss-—a



Example 6.2

Determine the Laplace transform of y(t) = —e®u(—t), and depict the ROC and locations of
poles and zeros in the s-plane. Assume that a is real.

<Sol.>
o0 0
| First find the LT of y(t): Y (S) = j —e®u(~t)eMdt = I _e gt = ie‘(s‘a)
o0 =0 s—a
2. To evaluate the limit value, we use s = G + jw to re-write Y(s):
0
1 —(o-a)t, jot .
Y (s) = _ e e M) if o<a,then e(“9 goes to zero at t — —w
o+ jo—a B
3. ROC: c<a or Re(s)<a, and Jo \
|
1 i
Y (s)= _ (1-0) |
o+ jJo—a |
|
1 1 ¥
- — , Re(s)<a °l “
o+ jow—a s-a |
s-plane :
|
______________________________________________________________________ |
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Concluding Remarks

» Examples 6.1 & 6.2 reveal that the same Laplace transform but different
ROC:s for the different signals x(t) and y(t)

» This ambiguity occurs in general with signals that are one sided.To see why,
let x(t)=g(t)u(t) and y(t)=— g(t)u(— t).WWe may thus write

X (S)=Iow9(t)e_5tdt where G(s,t):jg(t)e““dt
:G(s,oo)—G(S,O)
And, Y (s) =~ g(t)edt= "g(t)e “dt =G(s,~)~G(s,0)
We conclude that X(s) = Y(s) whenever G(s, ) = G(s, —x).

» The value of s for which the integral represented by G(s, ) converges
differ from those for which the integral represented by G(s, —o0) converges,
and thus the ROCs are different

The ROC must be specified for the Laplace transform to be unique !!!
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The Unilateral (or One-Sided) LT

» We may assume that the signals involved are causal, that is, zero for t < 0.

» The unilateral Laplace transform (ULT) of a signal x(t) is defined by
X(s)= jw x(t)e"dt x(t) <> X(s)

The lower limit of 0~ implies that we do include discontinuities and impulses

» Note that ULT and LT are equivalent for signals that are causal.

1 equivalent to 4 LT 1 :
— e*u(t) < > with ROC Re{s} > a
S—a ( ) S—a { }

eatu(t) , ULT
Since one-sided, do not specify ROC

» The ambiguity of LT is removed in ULT
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Properties of ULT

» Properties of ULT are similar to those of the FT
» Here we assume that X(t) <—— X(s) and y(t) «——> Y(s)
» Linearity: ax(t)+by(t) «—=2—> aX(s)+bY(s)

. 1

» Scaling: X(at) —> gX(

S

j fora>0
a

» Time Shift:
x(t—-7) «—=—> e¥X(s) forall zsuchthatx(t—z)u(t)=x(t-7)u(t—7)

This property applies only if *® x®

the shift does not move a h . | L\} /\ t
nonzero t > 0 component of 0| A -\ flo ~
signal to t < 0, or does not

move a nonzero t < 0 xt+ D Xt =D

ortion of the signal to t > O: ‘
P g I — f : : /—\ /_\ t
_________________________________________________ -1 0 1 N -1 0M1 ~r ~
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Properties of ULT

» s-Domain Shift: e¥x(t) «—~—> X(s-s;)
» Convolution: X(1)*Y(t) «—— X(s)Y(s)
» Differentiation in the s-Domain: —tx(t) «—=— —X(s)

» Example 6.3:
Find the unilateral Laplace transform of X(t) = (—e3tu (t))*(tu (t))

<Sol.> | 1 | 1
Since —€°'U (t) «— 2 and U (t) 2y =

S — S
Apply the s-domain differentiation property, we have tu (t) «20 5 1/s°

Now, from the convolution property, we obtain




1 kQ

Example 6.4 RC Circuit —MA—

Find the Laplace transform of the output of the RC circuit x(t) C_,_) 200 1F == y(1)
for the input x(t) = te?u(t). _ —

<Sol.>
1. The impulse response of the RC circuitis h(t)= %e_t/(RC)u ()
Then o (s) = 1 1 _ 1 5
RC_ -1 14+sRC UsingRC=02s M H(s)=——ro
S—— < S+5
RC d
2. Next, we use the s-domain differentiation property —tx (t) «— - X (S)
S

Then X(s):—d( 1 j: 1 2
ds\s—-2) (s—-2)

3. We apply the convolution property to obtain the LT of the output y(t):
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Properties of ULT

» Differentiation in the Time-Domain:

d

ax(t) <> _[:(%x(t)je‘“dt - x(t)e™

Integration by part

~ s x(t)edt

I- %x(t) «2 3y X (S) _ X(O_) x(t)est approaches zero as t—o
The general form for the differentiation property
dn o dn—l CIn—2
X(t) «——=—> s"X(s)- t —S t
U (8) — g X( )to 2 X )to
g2 4T X(t)  —s"x(0)
dt™ )




pipr. OF ELECTROMC . N 7
L @)
Properties of ULT

» Integration Property: I t X(r)dr PRI n

where X! (O_) = J-OO; X(T)dT is the area under x(t) fromt=—-otot=0".

» Initial- and Final-Value Theorem:

limsX (s) = x(O*) limsX (s)=x()

S—>00 s—0

Recall J: (% x(t))e“dt =5sX(s)—x(0") Then
(1) limsX (s) - x(07) = lim joof & x(t))e“dt = _f:%x(t)dt = joof dx(t) =x(0) — x(0")

m limsX (s)=x(c0)

s—0

b 19
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» For initial-value theorem:

» =>» This theorem does not apply to rational functions X(s) in which the
order of the numerator polynomial is greater than or equal to that of the
denominator polynomial

» For final-value theorem

» =>» This theorem applies only if all the poles of X(s) are in the left half of the
s-plane, with at most a single pole at s=0

» Example 6.6 75+10
Determine the initial and final values of a signal x(t) whose ULT is X (S) =—
<Sol.> s(s+2)
| Initial value: 2. Final value:

: : : /s+10 . 7s+10
x(O*):Ilms7S—+10:I|m7S+loz7 X(o0) = lims——— =lim =5
o0 §(S+2) v S+2 50 §(S+2) 90 542

Note that X(s) is the Laplace transform of X(t) =5u(t) + 2e *'u(t)
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Inversion of the ULT

» Direct inversion of the LT (ILT) requires a contour integration
» WVe shall determine the ILT using the one-to-one relationship between a
signal and its ULT

D.1 Basic Laplace Transforms

Signal Transform
1 7+ 00 . o
x(t) = --)--—./ X(s)e" ds X(s) = f x(t)e ™ dt
2n) Jomine 00 ROC
1
u(t) = Re{s} = 0
1
tu(t) — Re{s} = 0
o2
8(t—7), =0 e for all s
ar e ] c —_—
e u(t) e Re{s} > —a
1
te " ul(t — = =
e "u(t) s Re{s} a
[cos(w;t)]u(t) - = > Re{s} = 0
57+ wy
[sin(e, ) ]u(t) _w,_1 Re{s} > 0
5+ wy
s+a
[e™ cos t = -
[e™ cos(w;t) u(t) Gtaihe Re{s} > —a
it g
' ) Juu(t St X > —
[e7 sin(ew,t) ]u(t) Gttt Re{s} a
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Inversion by Partial-Fraction Expansion

» The inverse transform can be obtained by expressing X(s) as a sum of
terms for which we already known the time function

M M-1
» Suppose X(S)zﬁzb'\"S By S "+ + DS +h M <N

A(s) s“+a,s"'+---+as+a,

M—N

If M > N, we may use long division to express X(s) as X (s) = Z c. s+ X (s)
, k=0

|. Using the differentiation property and the pairé‘(t) «—2 5y 1

We obtain & _ (k) % T ok
Y s (t) «2> D cs
k=0

k=0
2. Factor the denominator polynomial as a product of pole factors to obtain

X(s)= - P<N
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Inversion by Partial-Fraction Expansion
% (s) = b,s?+b,,s"" +---+bs+D

LG4

» Case l:If all poles d, are distinct:

|‘ )Z(S): N Ak I- Akedktu(t) ¢ & N A<

= s—d, s—d,

» Case ll: If a pole d, is repeated r times:

A A A
i (s—sz’ " (s—=d,)

Apply differentiation in the s-domain:




Example 6.7

Find the inverse Laplace transform of X (5) —

3s+4
(s+1)(s+2)2
A LA A

<Sol.>

Use a partial-fraction expansion of X(s) to write X (s)

s+1 s+2 (s+2)
Solving for A, A,, and A, we obtain X(S)z 1 1 N 2 :
s+1 s+2 (s+2)

|) The pole of the first term is at s=— |, so
: 1
eu(t) «———
( ) S+1
2) The second term has pole at s = —2; thus,
, 1
—-e”u(t) «—=> - ——
S+2
3) The double pole in the last term is also at s = —2; hence,
. 7 2
2eu(t) (s+2) m x(t)=e"u(t)-eu(t)+2teu(t)



Example 6.8

25’ -9s% +4s5+10

Find the inverse unilateral Laplace transform of X (S)

oo s —3s—4
25 -3
32—35—4>233—932+4s+10 W X(s)=25-3+ 233—2
253 _ 6s? _8s s*—-3s—-4

-35"+12s+10
—3s° + 95+12

3s— 2

- X(S):25‘3+511+:4 ™ x(t)=25"(t)-35(t)+eu(t)+2e"u(t)
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Conjugate Poles

» If the coefficients in the denominator are real, then all the complex poles
occur in complex-conjugate pairs.

» Combine complex-conjugate poles to obtain real-valued expansion
coefficients

|. Suppose that a + jaw, and o — jay, make up a pair of complex-conjugate poles.Then

A n A A, and A, must be complex conjugates of each other

S—a—Jjo, S—a+ jw, = itshard to solve A| and A, from real-valued coefficients

2. Combine conjugate poles: o + jaw, and o — ja,. Then

B;s+B, B;s+B,
: : = 2 > Where both B, and B, are real valued.
(s—a-jm)(s-a+jm,) (s-a) +a,

in term of the perfect square

Bs+B C(s—«a C,w
- s S = 1( > )2+ T > where C,;=B, and C,=(B, + a)/w,
(s—a) +a, (s—a) +a, (s—a) +a,
C,(s—a) : C,o
W Ce”cos(at)u(t) L »——12° =/ Ce”sin(a,t)u(t) «—— 20
| 1 ( O) () (S—a)2+a)§ 2 ( 0) () (S—Ol)2+0)§



Example 6.9

2
Find the inverse Laplace transform of X (S) — 345 _2"6
S°+s° -2

<Sol.>
$°+8°—2=(s—-1)(s°+25+2) = (s\—l)((s+1)2 +1)

write the quadratic s+ 2s + 2 in terms of the perfect square

Then X(s): A N 513+sz
s-1 (s+1) +1
4s° + 6 —
A=X(S)(s=D) =] =2 X(s)m et
(s+1) +1] s—1 (s+1)°+1
L 2 ., s+l _, 1
2 = _
452+6:2((S+1) +1)—|—(BlS+BZ)(S—1) s—1 (S+1)2 +1 (S+l)2+1

=(2+B,)s°+(4-B,+B,)s+(4—-B
1 1 2 2

------------------------ - x(t)=2e'u(t)+2e " cos(t)u(t)—4e " sin(t)u(t)
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Example 6.6: Solving Differential Equatléﬁf‘f@@”‘CS
with Initial Conditions

d )
» Recall == x(t) <« 3 35X —Xx(0”
dt X( ) > (S) X( ‘“L The initial condition

1 kQ
Use the Laplace transform to find the voltage across the +
capacitor, y(t), for the RC circuit in response to the applied
voltage x(t) = (3/5)e2(t) and initial condition y(0-)=—2.  *(®) 200 wF =< y()
<Sol.>
Using Kirchhoff’s voltage law, we have the differential equation

dth() - Y() R1C (t) RC|;0'25 %y(t)+5y(t):5x(t)

™ sY(s)-y(0)+5Y(s)=5X(s) ™ v (s)=;15[5><(5)+y(0‘)]

35 __ 3 -2
X(t) «—— X(S)—m y(0-)=—2 I Y(S) (S+2)(S+5)+S+5
()= e e y()=eTu(t) % ()

3 S+2 S+5 s+5 s+2 s+5
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Solving Differential Equations ortLtcmomcs
with Initial Conditions

» From the general differential equation:
N N-1

d d d
C“:—Ny(t)+aN_1Wy(t)+"'+alay(t)+a0y(t):
M dM—l

d d
bM d’[M X(t)-l—bM_lWx(t)-F“'+blaX(t)+bOX(t)

» Assume that the input is zero for t < 0. Taking the unilateral Laplace
transform of both sides, we obtain A(S)Y (S)—C (5) — B(S) X (5) where

Als)=s"tay s o rasta, B(s)X(s)  C(s)
B(S):bMSM +bM_13M‘1+---+b13+b0 Y(S): A(S) i A(S)
K— I _ vy (f) (n)
c(s)=3 S as Ly BARLUAAL
\k=1 1=0 t t=0" Forc%esponse Natural response
Initial conditions due tloci:nput with d:re t-(; I'(i' wieh
zero |.C. Z€ro Inpu

““““““ The Laplace transform offers a clear separation between the natural response
to initial conditions and the forced response with the input



Example 6.11
Use the unilateral Laplace trzansform to determine the output of the system described by
the differential equation — y(t) 15 y(t) n 6y(t) _ Y X(t) n 6X(t)

dt dt dt
in response to the input x(t) = u(t).
Assume that y(O‘) =1 and i y(t) _9

dt ™" o

Identity the forced response of the system, y((t), and the natural response y(t).
<Sol.>
|.Apply ULT on the both sides of the differential equations, we obtain:

—sy(07)-5y(07) =(s+6) X (s)

(57 +55+6)Y ()= y(1)

t=0 d
sy(0)+—y(t)‘ +5y(0)
P ¥ ()= ()= LX), v
() _ S+6 an (n) _ S+7
= ey ™ O G

u(t)—2eu(t)+eu(t) y" (1) =5e*u (t)—4eu(t)

<<
—_
—
~
—
—+
S
Il



pipr. OF ELECTROMICS 924
ENGMEERING ¢ § E
st OF ELECTROIMCS M el

Outline

Introduction

The Laplace Transform

The Unilateral Laplace Transform

Properties of the Unilateral Laplace Transform
Inversion of the Unilateral Laplace Transform
Solving Differential Equations with Initial Conditions
Laplace Transform Methods in Circuit Analysis
Properties of the Bilateral Laplace Transform

Properties of the Region of convergence

vV VvV VvV V9V VvV V9V VvV V9V V9v ©9

Inversion of the bilateral Laplace Transform



Bilateral Laplace Transform (BLT)

» The BLT involves the values of the signal for botht>0andt<0

. 0 ~ BLT is well suited problems involving
& . st
X(t) < > X (S) - .Lo X(t)e dt noncausal signals and systems

» Assume that X(t) <«—— X(s) | with ROC R,
y(t) << Y(s) |with ROC R, | “ROC should be given

» Linearity: ax(t)+by(t) «—— aX(s)+bY(s) with ROC R,NR,

The ROC may be larger than Rx M Ry if a
pole and a zero cancel in aX(s) + bY(s).

» Example 6.14

x(t)=e?u(t) «— X(s):SJri2 with ROC Re(s)>-2
y(t)=eu(t)-eu(t) «—— Y(s)=

Then
X (s)—Y (s) = (s+3)-1 1

and

with ROC Re(s)>-2

(s+2)(s+3)
x(t) = y(t) = e *'u(t) with ROC Re(s) > -3

P If the intersection of ROCs is an empty set, the LT of ax(t)+by(t) does not exist
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Properties of BLT
Since the BLT is evaluated over

» Time Shift: X('[ — T) «— > X (S) both positive and negative t, the
ROC is unchanged by a time shift.

» Differentiation in the Time Domain:

%X(t) «—> sX (S) with ROC at least R,

The ROC associated with sX(s) may be larger than R, if X(s) has a
single pole at s = 0 on the ROC boundary

» Integration with respect to Time:

[ x(r)dr < X(S) i ROC R, NRe(s)>0
— S

Integration corresponds to division by s. Since this introduces a pole
at s = 0 and we are integrating to the right, the ROC must lie to the
right of s =0



Example 6.15

Find the Laplace transform of x(t) = d—z(e‘3(t‘2)u (t — 2))
<Sol.> t

1. We know from Ex. 6.1 that e'u (1) «—— with ROC Re(s)>-3

2. The time-shift property implies that

e u(t-2) Slsezs with  ROC Re(s)>-3
_|_

3. Apply the time-differentiation property twice, we obtain

X(1)=—(e*Pu(t-2)) «—> X(s)=——e? with ROC Re(s)>-3
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Properties of the ROC

Recall that the BLT is not unique unless the ROC is specified.

v Vv

The ROC is related to he characteristics of a signal x(t) indeed.

v

(1) For rational LTs, the ROC cannot contain any poles
Suppose d is a pole of X(s), then X(d)= too

v

(2) The ROC consists of strips parallel to the jw-axis in the s-plane.
Convergence of the BLT for a signal x(t) implies that

| (O') = I_OO ‘x(t)‘e“’tdt < oo for some values of G.
I‘ The set of ¢ with finite I(c) determines the ROC of BLT.

|- ROC consists of strips parallel to the jw-axis in the s-plane.

v

(3) The ROC for a finite-duration and bounded x(t) is the entire s-plane
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Properties of the ROC

» (4) Convergence of the BLT for a signal x(t) implies that

| (0) = j_oo ‘x(t)‘e“’tdt < oo for some values of G.

Let’s separate /(G) into two one-sided parts, i.e. positive- and negative-time sections:

| (0) =1 (0)— |, (0)
where |- (@) =] [x(®)edt and 1, (0)= | x(t)]edt
|- In order for I(c) to be finite, both | (c) and I, (o) must be finite.
I‘ This implies that | x(t) | must be bounded in some sense.
Suppose we can bound | x(t) | for both I_(c) and I,(c) by finding the smallest o, s.t.
‘X(t)‘ < Ae” t>0 andlargestc, s.t. ‘X(t)‘ <Ae” t<0

A signal x(t) that satisfies these bounds is said to be of exponential order.

I‘ |x(t) | grows no faster than e%* for positive t and e for negative t



Properties of the ROC

Using the exponential order bounds on

(o) <[ Aeedt =—2 e[’

O'p—O'

, WEe may write

|‘ (o) is finite whenever ¢ > G,

I- I_(o) is finite whenever ¢ < 5,

° A
(o) <[ Aemtedt=—— el

c,—O

(4) If x(t) is right-sided, and if the line Re{s} = o is in the ROC,

then all values of s for which Re{s} > o, will also be in the ROC.

(5) If x(t) is left-sided, and if the line Re{s} = G, is in the ROC,
then all values of s for which Re{s} < o, will also be in the ROC.

(6) If x(t) is two-sided, the ROC is of the form 6, < 6 < G,

if o, > G, then there are no values of o for which the BLT converges.



[llustration Examples:

x(r)
f\/-\ k ;
(@)
x(r)

(b)
x(t)
AN /\/{-\ ~
~ 0| NS
(c)



Example 6.16

Consider the two signals X, (t) =e 'y (t) +e'u (—t) and X, (t) =e'u (t) +e'u (—’[)
Identify the ROC associated with the bilateral Laplace transform of each signal.
<Sol.>

|. We check the absolute integrability of | x,(t) | e-ot by writing

(o) =] |x (D dt

0 o0
_ e—(1+a)tdt +I e—(2+0')tdt
J—0 0
-1 —(1+o 0 -1 —(2+o)t|”
_ [e sl [e (2+o)t
1+ o o  24+0 0
The first converges for ¢ < — |, while the second term converges for > — 2. Hence, both
terms converge for — 2 < ¢ < — [.This is the intersection of the ROC for each term.

The ROC for each term and the intersection of the ROCs, which is shown as the
doubly shaded region, are depicted in Fig. 6.15 (a).



2. For the second signal, X, (’[) =e’'u (t) +e’'u (—t), we have

() =] | (t)e"dt

_ <0 e_(2+a)tdt+j: e—1+(a)tdt

N -1 |:e—(1+a)t
- l+o

o0

1 pal®
_ [e (2+o)t
2+0

0

The first converges for 6 < — 2 and the second term converges for ¢ > — |.
Here, there is no value of & for which both terms converge, so the intersection is empty.
As illustrated in Fig. 6.15(b), the bilateral Laplace transform of x,(t) does not exist.

jo jo

=) -1 |0 = 1|0

s-plane

| I

| |

| |

| |

| [

| |

| [

| |

o T T_ o3

| |

| |

s-plane : :
| |

| |

(a) ®

41
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Inversion of the BLT

» Similar to the inversion of the ULT but the ROC is necessary to determine
a unique inverse transform.

M M-1
» Suppose X(S)zis):b'\"s By S "+ + DS +h M <N

A(s) sM+a, s"t+-+as+a,

M-N _
If M > N, then we use long division to express X ()= z c S+ X ()
M-N / M-N 0
> cs() 2 Des
k=0 k=0

the LT of the impulse and its derivatives converge everywhere in the s-plane

» By partial-fraction expansion in terms of non-repeated poles:

~ N —_—~
X(s) = Z A Note that the ROC of X(s) is the same as the ROC of X(s)



pipr. OF ELECTROMICS 924
ENGINEERING &
list, Of ELECTROIMCS

Inversion of BLT

» Two possibilities for the inverse BLT of )?(s)

1. Right-sided [ ¢ty (1) « Akd with ROC Re(s) > d,
S—0y

» 2.Left-sided

—Ae%u(-t) <« sAkd with ROC Re(s)<d,
Yk

The ROC of a right-side exponential signal lies to the right of the pole,
while the ROC of a left-sided exponential signal lies to the left of the pole.

2 Example 6.17 —55 _7
" (s+1)(s-1)(s+2)

Find the inverse bilateral Laplace transform of X (5) =

with ROC -1<Re(s)<1
<Sol.> jo

Use the partial-fraction expansion X (s)= 1 . 2 ; 4 1 >
S+ S — S+

right-sided left-sided o

______x______
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Inversion of BLT

» By partial-fraction expansion in terms oirepeated poles (S —Adk )n
» Two possibilities for the inverse BLT of X(s)
» |.Right-sided At"* sy (t) | |
(n _1)! If the ROC lies to the right of the pole d,
>

2. Left-sided _ AT

(n—-1)!

For pairs of complex-conjugate poles

ey (—t) If the ROC lies to the left of the pole d,

C.(s—a)

(s—a) +a,

v Vv

Two possibilities for the inverse BLT
|. Right-sided Ce* COS(a)ot)u (t) If the ROC lies to the right of s = o £ ja,,

v

v

2. Left-sided —C,e” coS(@,t)u(—t) If the ROC lies to the left of s = o + ja,
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Some Remarks

» Causality

If the signal is known to be causal, then we choose the right-sided
inverse transform of each term. (i.e. the unilateral Laplace transform)

» Stability

A stable signal is absolutely integrable and thus has a Fourier transform;
stability and the existence of Fourier transform (i.e. Re(s)=0) are
equivalent conditions

In both cases, the ROC includes the jw-axis in the s-plane, or Re(s) = 0.

The inverse LT of a stable signal is obtained by comparing the poles’
locations with jw-axis.

If a pole lies to the left/right of the jw-axis, then the right/left-sided
inverse transform is chosen (the ROC should include the jw-axis)
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Outline

» The Transfer Function
» Causality and Stability
» Determining Frequency Response from Poles & Zeros
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The Transfer Function

X(t) y(t) = x(t) * h(t)
LTI system, h(t)
X(t) = est y(t) = H(s)est

o0

» Recall that the transfer function H(s) of an LTI system is [H (s) :I h(z)e ™~ dr

» If we take the bilateral Laplace transform of y(t), then

Y (S) =H (S) X (S) » (H (S) — v (S) This definition applies only at
X (S) values of s for which X(s) # 0

» From differential equation: Za " Zb —X

After Substituting et for x(t) and eStH(s) for y(t), we obtain rational transfer function

N dk ) - M dk ; B Z:z/l:obksk BH:I:l(S_Ck)
(kz(;akﬁ{e }]H(S)—Zbk—k{e }_ H(S)_Zs_oakSk N Hszl(S‘dk)

|‘ Knowledge of the poles d,, zeros c,, and factor b= b,, /&, completely determine the system




Causality and Stability
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» The impulse response h(t) is the jnverse LT of the transfer function H(s)

» Causality

right-sided inverse LT

» Stability

the ROC includes the jaw-axis
in the s-plane

jo

jw

0
s-plane
jo
0
s-plane

o =D OIK__ ¢
(a)

h(r)

o :> > t
PN h(l)
:> OIK t
(a)
) h(t)
:> -—J'O t

(b)
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Causal and Stable LTI System

» To obtain a unique inverse transform of H(s), we must know the ROC or
have other knowledge(s) of the impulse response

» The relationships between the poles, zeros, and system characteristics can
provide some additional knowledges

» Systems that are stable and causal must have all their poles in the
left half of the s-plane:

jo h(t)

s-plane




Example 6.21 .

A system has the transfer function H (S) = +
S+3 s—-2

Find the impulse response, (a) assuming that the system is stable; (b) assuming that the
system is causal; (c) can this system be both stable and causal?

<Sol.>
(@) This system has poles at s = — 3 and s = 2.

Stable =» the ROC contains jo-axis.
the pole at s=—3 contributes a right-sided term; |- h (t) — 2e7%Yy (t) —e?y (_t)
the pole at s=2 contributes a left-sided term.

(b) This system has polesats = -3 and s = 2.
Causal = right-sided ®  h(t) =2eu(t) +e*u(t)

this system cannot be both stable and causal

(c) This system has poles at s = — 3 and
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Inverse System

» Given an LTI system with impulse response h(t), the impulse response of

the inverse system, h™(t), satisfies the condition h™ (t)* h (t) — 5('[)
|- Hinv S)H S):]_ or Hinv _ 1
(s)H (5)= 5

|‘ the poles of the inverse system H™(s) are the zeros of H(s), and vice versa

|‘ a stable and causal inverse system exists only if all of the zeros of H(s) are in
the left half of the s-plane.

|- A (stable and causal) H(s) has all of its poles and zeros in the left half of the s-plane
|- H(s) is minimum phase.

A nonminimum-phase system cannot have a stable and causal inverse system.



Example 6.22

Consider an LTI system described by differential equation
2

SLY(0)+3y() = x(0) - x(0)-2x(1)

Find the transfer function of the inverse system. Is it a stable and causal inverse system!?

<Sol.>
Y(s) s*+s-2
X(s)  s+3

First find the system’s transfer function H(s): H (S) =

= H"(5)-

1 s+3 S+3
H(s) s*+s-2 (s-1)(s+2)

The inverse system has pole at s =1 and s =—2. =»H™(s) cannot be both stable and causal.
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Determining Frequency Response lmfl??f%?{&%ﬁm |
from Poles & Zeros

» Control system
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Summary

» The Laplace transform represents continuous-time signals
as weighted superpositions of complex exponentials

The transfer function is the Laplace transform of the impulse
response

The unilatreal Laplace transform applies to causal signals (or one-
sided signals)

The bilateral Laplace transform applies to two-sided signals;
it is not unique unless the ROC is specified.

» The Laplace transform
is most often used in the transient and stability analysis of system

» The Fourier transform

is usually employed as a signal representation tool and in solving
system problems in which steady-state characteristics are of interest.



