Chapter 2：
Time－Domain Representations of Linear Time－Invariant Systems

Chih－Wei Liu

Outline

- Introduction
- The Convolution Sum
- Convolution Sum Evaluation Procedure
- The Convolution Integral
- Convolution Integral Evaluation Procedure
- Interconnections of LTI Systems
- Relations between LTI System Properties and the Impulse Response
- Step Response
- Differential and Difference Equation Representations
- Solving Differential and Difference Equations

Outline

- Characteristics of Systems Described by Differential and Difference Equations
- Block Diagram Representations
- State-Variable Descriptions of LTI Systems
- Exploring Concepts with MATLAB
- Summary

Introduction

- Methods of time-domain characterizing an LTI system
- An IO-relationship that both output signal and input signal are represented as functions of time
- Impulse Response
- The output of an LTI system due to a unit impulse signal input applied at time $t=0$ or $n=0$
- Linear constant-coefficient differential or difference equation
- Block Diagram
- Graphical representation of an LTI system by scalar multiplication, addition, and a time shift (for discrete-time systems) or integration (for continuous-time systems)
- State-Variable Description
- A series of coupled equations representing the behavior of the system's states and relating states to the output of the system

The Convolution Sum and The Impulse Response

- An arbitrary signal can be expressed as a weighted superposition of shifted impulses
- The weights are just the input sample values at the corresponding time shifts
- Impulse response of LTI system $H\{\cdot\}: h[n] \equiv H\{\delta[n]\}$

$$
\begin{aligned}
& \xrightarrow{\text { Input } x[n]} \begin{array}{c|c}
\begin{array}{c}
\text { LTI system } \\
h[n]
\end{array} & \begin{array}{c}
\text { Output } y[n] \\
{[n]=x[n] * h[n]=h[n] * x[n]}
\end{array} \\
\end{array} \\
& y[n]=H\{x[n]\}=H\left\{\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]\right\} \\
& \text { linear }=\sum_{k=-\infty}^{\infty} x[k] H\{\delta[n-k]\} \stackrel{\sum_{k=-\infty}^{\infty}}{=} x[k] h[n-k] \\
& \text { Convolution sum } \equiv x[n] * h[n]
\end{aligned}
$$

Convolution Sum

- Example

Finite Impulse Response (FIR)

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

$$
x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] \quad ? ? ?
$$

Convolution Sum?

Illustration of Convolution Sum/Integral

- Continuous-time signals

*

Illustration of Convolution Sum

1

2-3
(3)

Convolution Sum Evaluation Procedure

- Reflect and shift convolution sum evaluation

1. Graph both $x[k]$ and $h[n-k]$ as a function of the independent variable k.To determine $h[n-k]$, first reflect $h[k]$ about $k=0$ to obtain $h[-k]$. Then shift by $-n$.
2. Begin with n large and negative. That is, shift $h[-k]$ to the far left on the time axis.
3. Write the mathematical representation for the intermediate signal $\omega_{n}[k]=x[k] h[n-k]$.
4. Increase the shift n (i.e., move $h[n-k]$ toward the right) until the mathematical representation for $\omega_{n}[k]$ changes. The value of n at which the change occurs defines the end of the current interval and the beginning of a new interval.
5. Let n be in the new interval. Repeat step 3 and 4 until all intervals of times shifts and the corresponding mathematical representations for $\omega_{n}[k]$ are identified. This usually implies increasing n to a very large positive number.
6. For each interval of time shifts, sum all the values of the corresponding $\omega_{n}[k]$ to obtain $y[n]$ on that interval

$$
\begin{equation*}
y[n]=\sum_{k=-\infty}^{\infty} w_{n}[k] \tag{2.6}
\end{equation*}
$$

Example 2.2

Consider a system with impulse response $h[n]=\left(\frac{3}{4}\right)^{n} u[n]$. Use Eq. (2.6) to determine the output of the system at time $n=-5,5$, and 10 when the input is $x[n]=u[n]$.

Sol:

(a)

(c)

$$
x[n]=u[n]
$$

(b)

(d)

Figure 2.3 (a) The input signal $x[k]$ above the reflected and time-shifted impulse response $h[n-k]$, depicted as a function of k. (b) The product signal $w_{5}[k]$ used to evaluate $y[-5]$. (c) The product signal $w_{5}[k]$ to evaluate $y[5]$. (d) The product signal $w_{10}[k]$ to evaluate $y[10]$.

Example 2.2 (conti.)

1. $h[\mathrm{n}-k]$:

$$
h[n-k]=\left\{\begin{array}{cc}
\left(\frac{3}{4}\right)^{n-k}, & k \leq n \\
0, & \text { otherwise }
\end{array}\right.
$$

2. Intermediate signal $w_{n}[k]:$

$$
\begin{aligned}
& \text { For } n=-5: \quad w_{-5}[k]=0 \\
& \text { Eq. (2.6) } \\
& \text { For } n=5[-5]=0 \\
& w_{5}[k]=\left\{\begin{array}{cc}
\left(\frac{3}{4}\right)^{5-k}, & 0 \leq k \leq 5 \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Eq. (2.6) II

$$
\begin{gathered}
\text { otherwise } \\
y[5]=\sum_{k=0}^{5}\left(\frac{3}{4}\right)^{5-k}
\end{gathered}
$$

$$
y[5]=\left(\frac{3}{4}\right)^{5} \sum_{k=0}^{5}\left(\frac{4}{3}\right)^{k}=\left(\frac{3}{4}\right)^{5} \frac{1-\left(\frac{4}{3}\right)^{6}}{1-\left(\frac{4}{3}\right)}=3.288
$$

For $n=10$:

$$
w_{10}[k]=\left\{\begin{array}{cc}
\left(\frac{3}{4}\right)^{10-k}, & 0 \leq k \leq 10 \\
0, & \text { otherwise }
\end{array}\right.
$$

Eq. (2.6)

$$
\begin{aligned}
y[10] & =\sum_{k=0}^{10}\left(\frac{3}{4}\right)^{10-k}=\left(\frac{3}{4}\right)^{10} \sum_{k=0}^{10}\left(\frac{4}{3}\right)^{k}=\left(\frac{3}{4}\right)^{10} \frac{1-\left(\frac{4}{3}\right)^{11}}{1-\left(\frac{4}{3}\right)} \\
& =3.831
\end{aligned}
$$

Example 2.3 Moving-Average System

The output $y[n]$ of the four-point moving-average system is related to the input $x[n]$ by

$$
y[n]=\frac{1}{4} \sum_{k=0}^{3} x[n-k]
$$

Determine the output of the system when the input is $x[n]=u[n]-u[n-10]$
<Sol.>
I. First find the impulse response $h[n]$ of this system by letting $x[n]=\delta[n]$, which yields

$$
h[n]=\frac{1}{4}(u[n]-u[n-4])
$$

2. Reflect and shift convolution sum evaluation

$$
\begin{equation*}
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=-\infty}^{\infty} w_{n}[k] \tag{2.6}
\end{equation*}
$$

Example 2.3 (conti.)

(a)

(b)

For $n<0$ and $n>12: y[n]=0$.
d) For $0 \leq n \leq 3$:

$$
y[n]=\sum_{k=0}^{n} 1 / 4=\frac{n+1}{4}
$$

e) For $3<n \leq 9$:

$$
y[n]=\sum_{k=n-3}^{n} 1 / 4=\frac{1}{4}(n-(n-3)+1)=1
$$

f) For $9<n \leq 12$:

$$
y[n]=\sum_{k=n-3}^{9} 1 / 4=\frac{1}{4}(9-(n-3)+1)=\frac{13-n}{4}
$$

I'st interval: $n<0$
2'nd interval: $0 \leq n \leq 3$
3'rd interval: $3<n \leq 9$
4th interval: $9<n \leq 12$
5th interval: $n>12$

Example 2.4
 Infinite Impulse Response (IIR) System

The input-output relationship for the first-order recursive system is given by

$$
y[n]-\rho y[n-1]=x[n]
$$

Determine the output of the system when the input is $x[n]=b^{n} u[n+4]$, assuming that $b \neq \rho$ and that the system is causal.
<Sol.>
I. First find the impulse response $h[n]$ of this system by letting $x[n]=\delta[n]$, which yields

$$
h[n]=\rho h[n-1]+\delta[n]
$$

Since the system is causal, we have $h[n]=0$ for $n<0$. For $n=0,1,2, \ldots$, we find that $h[0]=1, h[1]=\rho, h[2]=\rho^{2}, \ldots$, or $h[n]=\rho^{n} u[n]$ Infinite impulse response (IIR)
2. Reflect and shift convolution sum evaluation

$$
\begin{equation*}
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=-\infty}^{\infty} w_{n}[k] \tag{2.6}
\end{equation*}
$$

Example 2.4 (conti.)

(a)

$$
\begin{aligned}
& x[k]=\left\{\begin{array}{cc}
b^{k}, & -4 \leq k \\
0, & \text { otherwise }
\end{array}\right. \\
& h[n-k]=\left\{\begin{array}{cc}
\rho^{n-k}, & k \leq n \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
w_{n}[k]=\left\{\begin{array}{cc}
b^{k} \rho^{n-k}, & -4 \leq k \leq n \\
0, & \text { otherwise }
\end{array}\right.
$$

(b)

1) For $n<-4: y[n]=0$.
2) For $n \geq-4$:

$$
y[n]=\sum_{k=-4}^{n} b^{k} \rho^{n-k}=\rho^{n} \sum_{k=-4}^{n}\left(\frac{b}{\rho}\right)^{k}=\rho^{n} \frac{\left(\frac{b}{\rho}\right)^{-4}\left(1-\left(\frac{b}{\rho}\right)^{n+5}\right)}{1-\frac{b}{\rho}}
$$

Example 2.4 (conti.)

Figure 2.5c (p. 110)
(c) The output $y[n]$ assuming that $p=0.9$ and $b=0.8$.

Example 2.5 Investment Computation

- $y[n]$: the investment at the start of period n
- Suppose an interest at a fixed rate per period $r \%$, then the investment compound growth rate is $\rho=1+r \%$
- If there is no deposits or withdrawals, then $y[n]=\rho y[n-1]$
- If a there is deposits or withdrawals occurred at the start of period n, says $x[n]$, then $y[n]=\rho y[n-1]+x[n]$
- Please find the value of an investment earing 8% per year if $\$ 1000$ is deposited at the start of each year for 10 years and then $\$ 1500$ is withdrawn at the start of each year for 7 years.

(c)

$$
w_{n}[k]=\left\{\begin{array}{cc}
1000(1.08)^{n-k}, & 0 \leq k \leq n \\
0, & \text { otherwise }
\end{array}\right.
$$

(a)

(b)
(d)
$10 \leq \mathbf{n} \leq 16$
$w_{n}[k]=\left\{\begin{array}{cc}1000(1.08)^{n-k}, & 0 \leq k \leq 9 \\ -1500(1.08)^{n-k}, & 10 \leq k \leq n \\ 0, & \text { otherwise }\end{array}\right.$
$17 \leq n$
$w_{n}[k]=\left\{\begin{array}{cc}1000(1.08)^{n-k}, & 0 \leq k \leq 9 \\ -1500(1.08)^{n-k}, & 10 \leq k \leq 16 \\ 0, & \text { otherwise }\end{array}\right.$

Example 2.5 (conti.)

(e)

Figure 2.7
(e) The output $y[n]$ representing the value of the investment immediately after the deposit or withdrawal at the start of year n.

Continuous Integral $x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$

- Reflect-and-shift continuous integral evaluation (analogous to the continuous sum)

1. Graph both $x(\tau)$ and $h(t-\tau)$ as a function of the independent variable τ
2. Begin with the shift t large and negative, i.e. shift $h(-\tau)$ to the far left on the time axis to obtain $h(t-\tau)$
3. Write the mathematical representation for the intermediate signal $w_{t}(\tau)=x(\tau) h(t-\tau)$.
4. Increase the shift t (i.e. move $h(t-\tau)$ toward the right) until the mathematical representation of $w_{t}(\tau)$ changes. The value t at which the change occurs defines the end of the current set and the beginning of a new set.
5. Let t be in the new set. Repeat step 3 and 4 until all sets of shifts t and the corresponding $w_{t}(\tau)$ are identified. This usually implies increasing t to a
very large positive number.
6. For each sets of shifts t, integrate $w_{t}(\tau)$ from $\tau=-\infty$ to $\tau=\infty, \int_{-\infty}^{\infty} w_{t}(\tau) d \tau$ to obtain $x(t) * h(t)$.

Example 2.6

Given

and

$$
x(t)=u(t-1)-u(t-3) \quad h(t)=u(t)-u(t-2)
$$

Evaluate the convolution integral $y(t)=x(t) * h(t)$.
<Sol.>

(a)

$w_{t}(\tau)=\left\{\begin{array}{cc}1, & t-2<\tau<3 \\ 0, & \text { otherwise }\end{array}\right.$

$y(t)=\left\{\begin{array}{cc}0, & t<1 \\ t-1, & 1 \leq t<3 \\ 5-t, & 3 \leq t<5 \\ 0, & t \geq 5\end{array}\right.$

Impulse Response of
 Continuous-Time LTI System $h(t) \equiv H\{\delta(t)\}$

$\xrightarrow{\text { Input } x(t)}$| LTI system
 $h(t)$ | Output $y(t)$
 $y(t)=x(t) * h(t)$ |
| :---: | :---: |
| y | |

- Recall that $x(t)=\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau$

$$
\begin{aligned}
y(t)=H\{x(t)\} & =H\left\{\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau\right\} \\
\text { Linear } & =\int_{-\infty}^{\infty} x(\tau) H\{\delta(t-\tau)\} d \tau \\
\text { Time-invariant } & =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& \equiv x(t) * h(t)
\end{aligned}
$$

The output is a weighted superposition of impulse responses time shifted by τ

Example 1.21\&2.7 RC Circuit System

According to KVL, we have $R i(t)+y(t)=x(t)$, i.e. $R C \frac{d y(t)}{d t}+y(t)=x(t)$ If $x(t)=u(t)$, i.e. the step response, the solution is

$$
y(t)=\left(1-e^{-(t / R C)}\right) u(t)
$$

Please find the impulse response of the RC circuit <Sol.>

- RC circuit is LTI system.

$$
\begin{aligned}
& \Longrightarrow\left\{\begin{array}{ll}
x_{1}(t)=\frac{1}{\Delta} u\left(t+\frac{\Delta}{2}\right) & y_{1}=\frac{1}{\Delta}\left[1-e^{-\left(t+\frac{\Delta}{2}\right) /(R C)}\right] u\left(t+\frac{\Delta}{2}\right), \\
x_{2}(t)=\frac{1}{\Delta} u\left(t-\frac{\Delta}{2}\right) & y_{2}=\frac{1}{\Delta}\left[1-e^{-\left(t-\frac{\Delta}{2}\right) /(R C)}\right] u\left(t-\frac{\Delta}{2}\right),
\end{array} \quad x(t)=x_{1}(t)\right. \\
& x_{\Delta}(t)=x_{1}(t)-x_{2}(t) \\
& y_{\Delta}(t)=\frac{1}{\Delta}\left(1-e^{-((t+\Delta / 2) /(R C))}\right) u(t+\Delta / 2)-\frac{1}{\Delta}\left(1-e^{-((t-\Delta / 2) /(R C))}\right) u(t-\Delta / 2) \\
& \left.=\frac{1}{\Delta}(u(t+\Delta / 2)-u(t-\Delta / 2))-\frac{1}{\Delta}\left(e^{-((t+\Delta / 2) /(R C)} u(t+\Delta / 2)-e^{-((t-\Delta / 2) /(R C))}\right) u(t-\Delta / 2)\right)
\end{aligned}
$$

$$
\begin{aligned}
\delta(t) & =\lim _{\Delta \rightarrow 0} x_{\Delta}(t) \\
y(t) & =\lim _{\Delta \rightarrow 0} y_{\Delta}(t) \\
& =\delta(t)-\frac{d}{d t}\left(e^{-t /(R C)} u(t)\right) \\
& =\delta(t)-e^{-t /(R C)} \frac{d}{d t} u(t)-u(t) \frac{d}{d t}\left(e^{-t /(R C)}\right) \\
& =\underbrace{\delta(t)-e^{-t /(R C)} \delta(t)}+\frac{1}{R C} e^{-t /(R C)} u(t), \quad x(t)=\delta(t) \\
& y(t)=\frac{1}{R C} e^{-t /(R C)} u(t), \quad x(t)=\delta(t) \quad \text { (I.93) i.e }
\end{aligned}
$$

(1.93) i.e. the impulse response of the RC circuit system

Example 2.7-RC Circuit Output

We now assume the time constant in the RC circuit system is $R C=1 \mathrm{~s}$. Use convolution to determine the voltage across the capacitor, $\mathrm{y}(\mathrm{t})$, resulting from an input voltage $x(t)=u(t)-u(t-2)$.

Example 2.7 (conti.)

<Sol.> RC circuit is LTI system, so $y(t)=x(t) * h(t)$.
I. Graph of $x(\tau)$ and $h(t-\tau)$:
$x(\tau)=\left\{\begin{array}{cc}1, & 0<\tau<2 \\ 0, & \text { otherwise }\end{array}\right.$ and $h(t-\tau)=e^{-(t-\tau)} u(t-\tau)=\left\{\begin{array}{cc}e^{-(t-\tau)}, & \tau<t \\ 0, & \text { otherwise }\end{array}\right.$
2. Intervals of time shifts:
(I). For $t<0, w_{t}(\tau)=0$
(2). For $0 \leq t<2, \quad w_{t}(\tau)=\left\{\begin{array}{cc}e^{-(t-\tau)}, & 0<\tau<t \\ 0, & \text { otherwise }\end{array}\right.$ (3). For $2<t$,
(3). For $2 \leq t$,

3. Convolution integral:
2) For second interval $0 \leq t<2$:

$$
y(t)=\int_{0}^{t} e^{-(t-\tau)} d \tau=e^{-t}\left(\left.e^{\tau}\right|_{0} ^{t}\right)=1-e^{-t}
$$

(a)

(b)
3) For third interval $2 \leq t$:
$27 y(t)=\int_{0}^{2} e^{-(t-\tau)} d \tau=e^{-t}\left(\left.e^{\tau}\right|_{0} ^{2}\right)=\left(e^{2}-1\right) e^{-t}$

(c)

Example 2.8

Suppose that the input $x(t)$ and impulse response $h(t)$ of an LTI system are

$$
x(t)=(t-1)[u(t-1)-u(t-3)] \text { and } h(t)=u(t+1)-2 u(t-2)
$$

Find the output of the system.
<Sol.>
There are five intervals
|'st interval: $t<0$
2'nd interval: $0 \leq t<2$
3'rd interval: $2 \leq t<3$
4th interval: $3 \leq t<5$
5th interval: $t \geq 5$

Figure 2.14
(a) The reflected and time-shifted impulse response $h(t-\tau)$, depicted as a function of τ.
(b) The product signal $w_{t}(\tau)$ for $0 \leq t<2$.
(c) The product signal $w_{t}(\tau)$ for $2 \leq t<3$.
(d) The product signal $w_{t}(\tau)$ for $3 \leq t<5$.
(e) The product signal $w_{t}(\tau)$ for $t \geq 5$.
(f) The system output $y(t)$.

(a)

(d)

(b)

(e)

(c)

(f)

Outline

- Introduction
- The Convolution Sum
- Convolution Sum Evaluation Procedure
- The Convolution Integral
- Convolution Integral Evaluation Procedure
- Interconnections of LTI Systems
- Relations between LTI System Properties and the Impulse Response
- Step Response
- Differential and Difference Equation Representations
- Solving Differential and Difference Equations

Interconnection of LTI systems

- The results for continuous- and discrete-time systems are nearly identical
I. Parallel Connection of LTI Systems

- Distributive property
, Continuous-time case $x(t) *\left\{h_{1}(t)+h_{2}(t)\right\}=x(t) * h_{1}(t)+x(t) * h_{2}(t)$
- Discrete-time case $\quad x[n] *\left\{h_{1}[n]+h_{2}[n]\right\}=x[n] * h_{1}[n]+x[n] * h_{2}[n]$

Interconnection of LTI systems

2. Cascade Connection of LTI Systems

$$
z(t)=x(t) * h_{1}(t)
$$

$$
y(t)=z(t) * h_{2}=\int_{-\infty}^{\infty} z(\tau) h_{2}(t-\tau) d \tau
$$

$$
=\int_{-\infty}^{\infty}\left(x(\tau) * h_{1}(\tau)\right) h_{2}(t-\tau) d \tau=\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} x(v) h_{1}(\tau-v) d v\right) h_{2}(t-\tau) d \tau
$$

$$
=\int_{-\infty}^{\infty} x(v)\left(\int_{-\infty}^{\infty} h_{1}(\tau-v) h_{2}(t-\tau) d \tau\right) d v
$$

$$
\text { Change variable by } \eta=\tau-v=\int_{-\infty}^{\infty} x(v)\left(\int_{-\infty}^{\infty} h_{1}(\eta) h_{2}(t-v-\eta) d \eta\right) d v
$$

$$
=\int_{-\infty}^{\infty} x(v) h(t-v) d v=x(t) * h(t)
$$

- Associative property $\left\{x(t) * h_{1}(t)\right\} * h_{2}(t)=x(t) *\left\{h_{1}(t) * h_{2}(t)\right\}$ $\left\{x[n] * h_{1}[n]\right\} * h_{2}[n]=x[n] *\left\{h_{1}[n] * h_{2}[n]\right\}$

Interconnection of LTI systems

2. Cascade Connection of LTI Systems

$$
\begin{aligned}
x(t) \longrightarrow & h_{1}(t) \xrightarrow{z(t)} h_{2}(t) \longrightarrow y(t) \quad x(t) \longrightarrow h_{2}(t) \longrightarrow h_{1}(t) \longrightarrow y(t) \\
& h(t)=h_{1}(t) * h_{2}(t)=\int_{-\infty}^{\infty} h_{1}(\tau) h_{2}(t-\tau) d \tau
\end{aligned}
$$

Change variable by $v=\mathrm{t}-\tau \quad=\int_{-\infty}^{\infty} h_{1}(t-v) h_{2}(v) d v=h_{2}(t) * h_{1}(t)$

- Commutative property

$$
\begin{aligned}
& h_{1}(t) * h_{2}(t)=h_{2}(t) * h_{1}(t) \\
& h_{1}[n] * h_{2}[n]=h_{2}[n] * h_{1}[n]
\end{aligned}
$$

Table 2.1 Interconnection Properties for LTI Systems

Property	Continuous-time system	Discrete-time system
Distributive	$x(t) * h_{1}(t)+x(t) * h_{2}(t)=$	$x[n] * h_{1}[n]+x[n] * h_{2}[n]=$
	$x(t) *\left\{h_{1}(t)+h_{2}(t)\right\}$	$x[n] *\left\{h_{1}[n]+h_{2}[n]\right\}$
Associative	$\left\{x(t) * h_{1}(t)\right\} * h_{2}(t)=x(t) *\left\{h_{1}(t) * h_{2}(t)\right\}$	$\left\{x[n] * h_{1}[n]\right\} * h_{2}[n]=x[n] *\left\{h_{1}[n] * h_{2}[n]\right\}$
Commutative	$h_{1}(t) * h_{2}(t)=h_{2}(t) * h_{1}(t)$	$h_{1}[n] * h_{2}[n]=h_{2}[n] * h_{1}[n]$
32	Lec 2 - cwliu@twins.ee.nctu.edu.tw	VLSI

Example 2.11

Consider the interconnection of four $L T I$ systems. The impulse responses of the systems are

$$
h_{1}[n]=u[n], \quad h_{2}[n]=u[n+2]-u[n], \quad h_{3}[n]=\delta[n-2], \quad \text { and } \quad h_{4}[n]=\alpha^{n} u[n] .
$$

Find the impulse response $h[n]$ of the overall system.

(a). Parallel combination of $h_{1}[n]$ and $h_{2}[n]$:
(b). $h_{12}[n]$ is in series with $h_{3}[n]$:
(c). $h_{123}[n]$ is in parallel with $h_{4}[n]$:
$h_{4}[n]=u[n]-\alpha^{n} u[n]$

Relation Between

LTI System Properties and the Impulse Response

- The impulse response completely characterizes the IO behavior of an LTI system.
- Using impulse response to check whether the LTI system is memory, causal, or stable.
I. Memoryless LTI Systems
- The output depends only on the current input
- Condition for memoryless LTI systems $h(\tau)=c \delta(\tau)$

$$
h[k]=c \delta[k] \quad \begin{aligned}
& \text { simply perform } \\
& \text { scalar multiplication }
\end{aligned}
$$

2. Causal LTI System

- The output depends only on past or present inputs

$$
y[n]=\underset{+h[1] x[n-1]+h[2] x[n-2]+\cdots .}{\underset{\sim}{n}[-2] x[n+2]+h[-1] x[n+1]}+h[0] x[n]
$$

- Condition for causal LTI systems $h[k]=0$ for $k<0$

$$
h(\tau)=0 \quad \text { for } \quad \tau<0
$$

cannot generate an output before the input is applied

Relation Between

LTI System Properties and the Impulse Response

3. BIBO stable LTI Systems

- The output is guaranteed to be bounded for every bounded input.

$$
\begin{aligned}
& |y[n]|=|x[n] * h[n]| \\
& =|h[n] * x[n]|=\left|\sum_{k=\infty}^{\infty} h[k] x[n-k]\right| \\
& \leq \sum_{k=\infty}^{\infty}|h[k]||x[n-k]| \\
& |x[n]| \leq M_{x} \leq \infty \longrightarrow \leq \sum_{k=\infty}^{\infty}|h[k]| M_{x}=M_{x} \sum_{k=\infty}^{\infty}|h[k]|
\end{aligned}
$$

- Condition for memoryless LTI systems $\sum_{k=\infty}^{\infty}|h[k]|<\infty$

$$
\int_{-\infty}^{\infty}|h(\tau)| d \tau<\infty
$$

The impulse response is absolutely summable/integrable

Example 2.12 First-Order Recursive System

The first-order system is described by the difference equation $y[n]=\rho y[n-1]+x[n]$ and has the impulse response $h[n]=\rho^{n} u[n]$
Is this system causal, memoryless, and BIBO stable?
<Sol.>
I.The system is causal, since $h[n]=0$ for $n<0$.
2. The system is not memoryless, since $h[n] \neq 0$ for $n>0$.
3. Stability: Checking whether the impulse response is absolutely summable?

$$
\sum_{k=-\infty}^{\infty}|h[k]|=\sum_{k=0}^{\infty}\left|\rho^{k}\right|=\sum_{k=0}^{\infty}|\rho|^{k}<\infty \quad \text { iff }|\rho|<1
$$

A system can be unstable even though the impulse response has a finite value for all t. Eg: Ideal integrator:
$y(t)=\int_{-\infty}^{t} x(\tau) d \tau \quad$ with the impulse response: $h(t)=u(t)$.
Ideal accumulator:
$y[n]=\sum_{k=-\infty}^{n} x[k] \quad$ with the impulse response: $h[n]=u[n]$

Relation Between

LTI System Properties and the Impulse Response

4. Invertible Systems

- A system is invertible if the input to the system can be recovered from the output

$$
\begin{aligned}
& \qquad \begin{aligned}
x(t) \longrightarrow
\end{aligned} \xrightarrow{y(t)} h^{\mathrm{inv}}(t) \longrightarrow x(t) \\
& \qquad \begin{aligned}
x(t) & =y(t) * h^{i n v}(t) \\
& =\{x(t) * h(t)\} * h^{i n v}(t) \\
\text { Associative law } \mathrm{ul} \longrightarrow & =x(t) *\left\{h(t) * h^{\text {inv }}(t)\right\}
\end{aligned}
\end{aligned}
$$

-Condition for memoryless LTI systems $h(t) * h^{\text {inv }}(t)=\delta(t)$

Easy condition, but difficult to find or implement

Summary

Table 2.2 Properties of the Impulse Response Representation for LTI Systems

Property	Continuous-time system	Discrete-time system
Memoryless	$h(t)=c \delta(t)$	$h[n]=c \delta[n]$
Causal	$h(t)=0$ for $t<0$	$h[n]=0$ for $n<0$
Stability	$\int_{-\infty}^{\infty}\|h(t)\| d t<\infty$	$\sum_{n=-\infty}^{\infty}\|h[n]\|<\infty$
Invertibility	$h(t) * h^{i n v}=\delta(t)$	$h[n] * h^{h n v}[n]=\delta[n]$

