Signals and Systems
HW#1
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1.57 (a) Periodic
Fundamental period = 15 samples

(b) Periodic
Fundamental period = 30 samples

(c) Periodic
Fundamental period =27

(d) Periodic
Fundamental period =4

(e) Nonperiodic
(®) Nonperiodic

(g) Periodic
Fundamental period =27

(h) Nonperiodic

(1) Periodic
Fundamental period = 15 samples
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1.63

From Fig. P.1.63 we observe the following:
x1(1) = x2(t) = x3(1) = x(1)

x4(t) = y3(1)

Hence, we may write

Y1 = x(@x(t - 1)

y2() =

Y4(t) = cos (¥3(1)) = cos (1 + 2x(1))

The overall system output is

YO =10 + y2(0) - y40)

Substituting Egs. (1) to (3) into (4):
(0 = x(0x(t — 1) +x(D) cos (1 + 2x(t))

(@)
@
(©)

(O]

(©)

Equation (5) describes the operator A that defines the output y(7) in terms of the input x(7).
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Hj is representative of an integrator, and therefore has memory. It is causal because the
output does not appear before the input. It is time-invariant.

H, is noncausal because the output appears at z= 0, one time unit before the delayed input
at ¢ = +1. It has memory because of the integrating action performed on the input. But,
how do we explain the constant level of +1 at the front end of the output, extending from
t=0to t=+1? Since the system is noncausal, and therefore operating in a non real-time
fashion, this constant level of duration 1 time unit may be inserted into the output by
artificial means. On this basis, H, may be viewed as time-varying.

Hj is causal because the output does not appear before the input. It has memory because of

the integrating action performed on the input from # = 1 to r = 2. The constant level
appearing at the back end of the output, from # = 2 to ¢ = 3, may be explained by th¢
presence of a strong device connected in parallel with the integrator. On this basis, Hj it
time-invariant.

Consider next the input x(¢) depicted in Fig. P1.76b. This input may be decomposed into
the sum of two rectangular pulses, as shown here:

x(®) x40 x5(0)
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Response of H; to x(1):
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The rectangular pulse of unit amplitude and unit duration at the front end of y>(?) is
inserted in an off-line manner by artificial means

Response of H to x(7):
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1.78  (a) The energy of the signal x(t) is defined by
E=[ Ywma

Substituting
X(1) = x () +x,(0)
into this formula yields

E=[ [x(n+x,(ldr
= [ 2w+ 22 + 2 x0T dr

= [ dwde+ [ mder2f x (hx (ndr
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With x,(f) even and x,(7) odd, it follows that the product x,(f)x,(7) is odd. as shown by
X (=0)x,(=1) = x,(D)[=x,(0)]
= —x,(H)x, (1)

Hence,

[ Gy = | w13 (1)d1+ [ x (0,0

= [ xnmgonedn + [ o,

=[x (Ox,(0dt + [ x (D3 (1)dt
0 0
-0

Accordingly. Eq. (1) reduces to
E=[ xmdr+| xndr
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(b) For a discrete-time signal x[n], —ee <1 < o, we may similarly write

E=Y ¥n]

n=-e=

= 3 Lelnl+x 1)

Nn=-co

= 2 xi[n] + 2 xi[n]2+2 2 X [nlx,[n]

n=-ce n=-co n=-e>

With
Xpl-nlx,[-n] = —x [n]x,[n]
it follows that

o 0 .

2 X [nlx,[n] = 2 X [nlx,[n]+ 2 x,[nlx,[n]
N=-co N=-co n=-0

0 -
= 2 X [-nlx,[-n]+ 2 X [nlx,[n]
n=-e= n=-0

0 -
= —2 X [nlx,ln] + ZXe[n]xu[n]

n=es n=0

=0




image1.png
152

(@

32 -1





image2.png
152 ()

-2 -1 1 2
W2+ 1)
1.0}
- ) -3 -2 -1 )
3 T
T-1.0

*QOy(1/2¢+ 1)

+1





image3.png
1.55 We may generate x(7) as the superposition of 3 rectangular pulses as follows:
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All three pulses, g1(2), g,(2). and g3(7), are symmetrically positioned around the origin:

1. g1(2)is exactly the same as g(7).
2. g(7) s an expanded version of g(7) by a factor of 3.
3. g3(7)is an expanded version of g(7) by a factor of 4.

Hence, it follows that
gi(r) =80

& =g/3)
&3(1) =g(t/4)

That s,
x(0) = g@)+g(t/3)+gt/4)
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