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Introduction
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 The z-transform provides a broader characterization of 
discrete-time LTI systems and their interaction with signals 
than is possible with DTFT

 Signal that is not absolutely summable

 Two varieties of z-transform:
 Unilateral or one-sided
 Bilateral or two-sided
 The unilateral z-transform is for solving difference equations with 

initial conditions.
 The bilateral z-transform offers insight into the nature of system 

characteristics such as stability, causality, and frequency response.

z-transform

DTFT



A General Complex Exponential zn
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 Complex exponential z= rej with magnitude r and angle 

 zn is an eigenfunction of the LTI system

exponentially damped cosine exponentially damped sine 

 < 0

Re{zn}: exponential damped cosine

Im{zn}: exponential damped sine
)sin()cos( njrnrz nnn 

exponentially damped cosine 

r: damping factor
: sinusoidal frequency



Eigenfunction Property of zn
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 Transfer function

 H(z) is the eigenvalue of the eigenfunction zn

 Polar form of H(z): H(z) = H(z)e j (z)

LTI system, h[n]
x[n] = zn y[n] = x[n]  h[n]
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H(z)  amplitude of H(z);   (z)  phase of H(z)

Then Let z= rej

The LTI system changes the amplitude of the input by H(rej) and shifts the 
phase of the sinusoidal components by  (rej).
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The z-Transform
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 Definition: The z-transform of x[n]:

 Definition: The inverse z-transform of X(z):

 A representation of arbitrary signals as a weighted superposition of 
eigenfunctions zn with z= rej. We obtain

Hence

)(][    jDTFTn reHrnh

z= rej

dz = jrej d

z-transform is the DTFT of h[n] r n
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Convergence of Laplace Transform
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 z-transform is the DTFT of x[n] rn A necessary condition for 
convergence of the z-transform is the absolute summability of x[n] rn :

 The range of r for which the z-transform converges is termed the region of 
convergence (ROC).

 Convergence example:
1. DTFT of x[n]=a n u[n], a>1, does not exist, since x[n] is not absolutely summable.
2. But x[n]r n is absolutely summable, if r>a, i.e. ROC, so the z-transform of x[n], 

which is the DTFT of x[n]r n, does exist. 
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The z-Plane, Poles, and Zeros
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 To represent z= rej graphically in terms of complex plane

 Horizontal axis of z-plane = real part of z; 

 vertical axis of z-plane = imaginary part of z.

 Relation between DTFT and z-transform:

 z-transform X(z):

the DTFT is given by the z-transform evaluated on the unit circle

  pole;   zero

ck = zeros of X(z); dk = poles of X(z)
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  jez
j ze

The frequency  in the DTFT corresponds to the point on the unit circle at an 
angle  with respect to the positive real axis
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Example 7.2 Right-Sided Signal
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Determine the z-transform of the signal    .nunx n
Depict the ROC and the location of poles and zeros of X(z) in the z-plane. 
<Sol.>

By definition, we have    
0

.
n

n n

n n

z u n z
z


 


 

     
 

 

This is a geometric series of infinite length in the ratio α/z; 
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1 ,
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, .

z z
z

z z
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
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
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  


 


There is a pole at z = α and a zero at z = 0

X(z) converges if |α/z| < 1, or the ROC is |z| > |α|. And,



Right-sided signal  the ROC is |z| > |α|.
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Example 7.3 Left-Sided Signal
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<Sol.>

Determine the z-transform of the signal    .1 nuny n
Depict the ROC and the location of poles and zeros of Y(z) in the z-plane. 

By definition, we have     n
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Y(z) converges if |z/α| < 1, or the ROC is |z| < |α|. And,

There is a pole at z = α and a zero at z = 0
Left-sided signal  the ROC is |z| < |α|.

Examples 7.2 & 7.3 reveal that the same z-transform but different ROC. 
This ambiguity occurs in general with signals that are one sided



Properties of the ROC
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 1. The ROC cannot contain any poles

 2. The ROC for a finite-duration x[n] includes the entire z-plane, except 
possibly z=0 or |z|=

 3. x[n]=c[n] is the only signal whose ROC is the entire z-plane

If d is a pole, then |X(d)| = , and the z-transform does not converge at the pole

For finite-duration x[n],  we might suppose that    

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X(z) will converge, if each term of x[n] is finite. 

1) If a signal has any nonzero causal components, then the expression for X(z) will 
have a term involving z 1 for n2 > 0, and thus the ROC cannot include z = 0.

2) If a signal has any nonzero noncausal components, then the expression for X(z) 
will have a term involving z for n1 < 0, and thus the ROC cannot include |z| = .

If n2  0, then the ROC will include z = 0. 

Consider    
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If a signal has no nonzero noncausal components (n1  0), then the ROC will 
include |z| =  .



Properties of the ROC
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 4. For the infinite-duration signals, then

The condition for convergence is |X(z) | < . We may write

        .nn n

n n n

z x n z x n z x n z
  
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     

That is, we split the infinite sum into negative- and positive-term portions:
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Note that

   ( )X z z z    

If I(z) and I+(z) are finite, then |X(z)| is guaranteed to be finite, too.  

A signal that satisfies these two bounds grows no faster than (r+)n for positive n
and (r)n for negative n.  
That is, 0   ,)(][   nrAnx n

0   ,)(][   nrAnx n

(7.9)

(7.10)
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If the bound given in Eq. (7.9) is satisfied, then

   
1 1
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I(z) converges if and only if |z| < r.

If the bound given in Eq. (7.10) is satisfied, then
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 
  I+(z) converges if and only if |z| > r+.

k =  n

Hence, if r+ < |z|  |< r, then both I+(z) and I(z) converge and |X(z)| also 
converges.

Note that if r+ > r , then the ROC = 

For signals x[n] satisfy the exponential bounds of Eqs. (7.9) and (7.10) , we have

(1).  The ROC of a right-sided signal is of the form |z| > r+.
(2).  The ROC of a left-sided signal is of the form |z| < r.

(3).  The ROC of a two-sided signal is of the form r+ < |z|  |< r.
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A right-sided signal has an ROC of the form |z| > r+.

A left-sided signal has an ROC of the form |z| < r–.

A two-sided signal has an ROC of the form r+ < |z| < r–.



Example 7.5
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Identify the ROC associated with z-transform for each of the following signal: 

<Sol.>
1. 

         1/ 2 2 1/ 4n nx n u n u n    ；        1/ 2 2(1 / 4)n ny n u n u n   ；

       1 / 2 2(1 / 4) .n nw n u n u n    
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0 0 0
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     

   

2. 
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The first series converge for |z|<1/2, while the second converge for |z|>1/4.
So, the ROC is 1/4 < |z| < 1/2. Hence,

Poles at z = 1/2 and z = 1/4

The first series converge for |z| >1/2, while the second converge for |z| > 1/4. 
Hence, the ROC is |z| > 1/2, and
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zzY Poles at z = 1/2 and z = 1/4
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3.      
0 0

0 0

1 12 2 2 4 ,
2 4

n n
k k

n n k k

W z z z
z z

 

   

          
   

   
The first series converge for |z| < 1/2, while the second converge for |z| < ¼.
So, the ROC is |z| < 1/4, and 

  ,
41

2
21

1
zz

zW





 Poles at z = 1/2 and z = 1/4

 This example illustrates that the ROC of a two-side signal (a) is a ring, i.e. in between the 
poles, the ROC of  a right sided signal (b) is the exterior of a circle, and the ROC of a 
left-sided signal (c) is the interior of a circle. In each case the poles define the boundaries 
of the ROC. 
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Properties of the z-Transform
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 Most properties of the z-transform are analogous to those of the DTFT. 

 Assume that

 Linearity:

 Time Reversal: 

 Time Shift:

    , with ROC xx n z RZ

    , with ROC yy n Y z RZ

        , with ROC at least x yax n by n a z bY z R R    Z

The ROC can be larger than the intersection if one or more terms in x[n] or y[n] 
cancel each other in the sum.

Time reversal, or reflection, corresponds to replacing z by z 1. Hence, if Rx is of the 
form a < |z| < b, the ROC of the reflected signal is a < 1/|z| < b, or 1/b < |z| < 1/a. 

x
z RzXnx /1   ROC   with),/1(][ 

   0
0 , with ROC ,except possibly 0 orn

xx n n z z R z z     Z

1. Multiplication by zno introduces a pole of order no at z = 0 if no > 0.
2. If no < 0, then multiplication by z no introduces no poles at . If they are not canceled 

by zeros at infinity in X(z), then the ROC of znoX(z) cannot include |z| < .



Properties of the z-Transform
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 Multiplication by an Exponential Sequence: 

  , with ROCzn
x

zx n R 

  
 

 Is a complex number

1.If X(z) contains a factor (1dz 1) in the denominator, so that d is pole, 
then X(z/) has a factor (1dz 1) in the denominator and thus has a pole at d.  

2. If c is a zero of X(z), then X(z/) has a zero at c. 

The poles and zeros of X(z) have their radii changed by || in X(z/), as well as 
their angles are changed by arg{} in X(z/)

X(z) X(z/)



Properties of the z-Transform
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 Convolution:

 Differentiation in the z-Domain:

        , with ROC at least x yx n y n z Y z R R  Z

Convolution of time-domain signals corresponds to multiplication of z-transforms.
The ROC may be larger than the intersection of Rx and Ry if a pole-zero cancellation 
occurs in the product X(z)Y(z).

    , with ROC x
dnx n z z R
dz

 Z

Multiplication by n in the time domain corresponds to differentiation with respect 
to z and multiplication of the result by  z in the z-domain. 
This operation does not change the ROC.



Example 7.6
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Suppose 

           31
2 2

1 3 1 ,
2 2

n n zx n u n u n z
z z

                 
Z

           
1
4

1 1
4 2

1 1 ,
4 2

n n zy n u n u n Y z
z z

              
Z

and

Evaluate the z-transform of ax[n] + by[n]. 
<Sol.>

           
1
4

31 1 1
2 2 4 2

.z zax n by n a b
z z z z

 
  

   
Z

In general, the ROC is the intersection of individual ROCs

However, when a = b: We see that the term (1/2)n u[n] has be canceled in ax[n] + by[n]. 

      .2
3

4
1

4
5





zz
z

azaYza

The pole at z=1/2 is canceled !!  the ROC enlarges 



Example 7.7
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<Sol.>

Find the z-transform of the signal      1 1 ,
2 4

n n

x n n u n u n
               

First, we know that  
1
2

1 1, with ROC
2 2

n
z zu n z

z
      

Apply the z-domain differentiation property, we have

     
1
2

1 1, with ROC
2 2

n
z d zw n n u n W z z z

dz z
            

Next, we know that 1 1[ ] , with ROC
4 1/ 4 4

n zu n z
z

      
Z

Apply the time-reversal property, we have 

   
1

1 1
4

1 1, with ROC
4,

z

z

y n Y z
z

  


Z

Last, we apply the convolution property to obtain X(z), i.e. 

            , with ROC w yx n w n y n z W z Y z R R    Z

   21
2

2 1( ) , with ROC 4
24

zX z z
z z

  
 



Example 7.8
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<Sol.>
Find the z-transform of      ,cos 0 nunanx n  where a is real and positive. 

Let y[n] = αnu[n]. Then we have the z-transform   1

1 , with ROC .
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Then, apply the property of multiplication by a complex exponential, we have
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Inversion of the z-Transform

24

 Direct evaluation of the inversion integral for inversion of the z-transform 
requires the complex variable theory

 We apply the method of partial-fraction expression, based on z-transform 
pairs and z-transform properties, to inverse transform. 

 The inverse transform can be obtained by expressing X(z) as a sum of 
terms for which we already known the time function, which relies on the 
property of the ROC

 A right-/left- sided time signal has an ROC that lies outside/inside the 
pole radius

 Suppose that    
 
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If M  N, we may use long division to express X(z) as

a rational function of z1
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Inversion by Partial-Fraction Expansion
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 Case I, If all poles dk are distinct:

 Case II: If a pole di is repeated r times:

2. Factor the denominator polynomial as a product of pole factors to obtain

M < N
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1. If the ROC is of the form |z| > di, then the right-sided inverse z-transform is chosen: 
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Appendix B !!



Inversion by Partial-Fraction Expansion
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 Case II: If a pole di is repeated r times:

 Example 7.9

2. If the ROC is of the form |z| < di, then the left-sided inverse z-transform is chosen: 

   
     
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<Sol.>

Find the inverse z-transform of 
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By partial fraction expansion, we obtain
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Example 7.10 
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Find the inverse z-transform of  
3 2

2

10 4 4 , with ROC 1
2 2 4
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<Sol.>

Since 3>2,  
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First, convert X(z) into a ratio of polynomials in z 1
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Remarks
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 Causality, stability, or the existence of the DTFT is sufficient to determine 
the inverse transform

 Causality:
 If a signal is known to be causal, then the right-sided inverse transforms are 

chosen
 Stability:
 If a signal is stable, then it is absolutely summable and has a DTFT. Hence, 

stability and the existence of the DTFT are equivalent conditions. In both 
cases, the ROC includes the unit circle in the z-plane, |z| = 1. The inverse z-
transform is determined by comparing the locations of the poles with the 
unit circle. 

 If a pole is inside the unit circle, then the right-sided inverse z-transform is 
chosen; if a pole is outside the unit circle, then the left-sided inverse z-
transform is chosen



Inversion by Power Series Expansion
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 Only one-sided signal is applicable!
 Express X(z) as a power series in z1 or in z.

 Ex 7.11 Find the inverse z-transform of 

1. If the ROC is |z| < a, then we express X(z) as power series in z 1, so that we obtain a 
right-sided signal.

2. If the ROC is |z| > a, then we express X(z) as power series in z, so that we obtain a 
left-sided signal.

 
1

11
2

2 1, with ROC
1 2

zz z
z






  


...22

2
2

2
21

3
2
121

3
2
1

3
2
12

2

21

1

1

11
2
1



























zzz

z
zz

z
zz

z
z
zz

  ...
2
122 321   zzzzX

          ...32122 2
1  nnnnnx 

This may not lead to a closed-form expression !!



Example 7.12
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An advantage of the power series approach is the ability to find inverse z-transforms for 
signals that are not a ratio of polynomials in z.

Find the inverse z-transform of 
2

( ) , with ROC all z exceptzX z e z  

<Sol.>

Using the power series representation for ea: 
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The Transfer Function
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 Recall that the transfer function H(z) of an LTI system is

 If we take the z-transform of both sides of y[n], then

 From difference equation: 

This definition applies only at 
values of z for which X[z]  0

After Substituting zn for x[n] and znH(z) for y[n], we obtain rational transfer function

Knowledge of the poles dk, zeros ck, and factor                  completely determine the system 

LTI system, h[n]
x[n] = zn y[n] = x[n]  h[n]

z = re j
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Example 7.13
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Find the transfer function and impulse response of a causal LTI system if the input to the 
system is    nunx n)3/1( and the output is      nununy nn )3/1()1(3 
<Sol.>
The z-transforms of the input and output are respectively given by 

and

Hence, the transfer function is 

The impulse response of the system is obtain by finding the inverse z-transform of H(z). 
Applying a partial fraction expansion to H(z) yields 
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Examples 7.14 & 7.15
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<Sol.>

Determine the transfer function and the impulse response for the causal LTI system 
described by          121)8/3(1)4/1(  nxnxnynyny

We first obtain the transfer function by taking the z-transform: 
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The system is causal, so we choose the right-side inverse z-transform for each term to 
obtain the following impulse response:      nununh nn )4/3()2/1(2 

<Sol.>

Find the difference-equation description of an LTI system with transfer function 

We rewrite H(z) as a ratio of polynomials in z 1:
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Causality and Stability
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 The impulse response h(t) is the inverse LT of the transfer function H(z)

 Causality

 Stability 

right-sided 
inverse z-transform

the ROC includes 
unit circle in z-plane

Pole dk inside the unit 
circle, i.e., |dk| < 1 

Pole dk outside the unit 
circle, i.e., |dk| > 1 

Exponentially decaying term

Exponentially increasing term

Pole dk inside the unit 
circle, i.e., |dk| < 1 

Causal system

Non-caucal system



Causal and Stable LTI System
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 To obtain a unique inverse transform of H(z), we must know the ROC or 
have other knowledge(s) of the impulse response

 The relationships between the poles, zeros, and system characteristics can 
provide some additional knowledges

 Systems that are stable and causal must have all their poles inside 
the unit circle of the z-plane:



Example 7.16
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An LTI system has the transfer function 
1
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Find the impulse response, assuming that the system is (a) stable, or (b) causal. (c) Can this 
system both stable and causal? 

<Sol.>
a.  If the system is stable, then the ROC includes 

the unit circle. The two conjugate poles inside 
the unit circle contribute the right-sided term 
to the impulse response, while the pole outside 
the unit circle contributes a left-sided term. 
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b. If the system is causal, then all poles contribute right-sided terms to the impulse response. 

c. the LTI system cannot be both stable and causal, since there is a pole outside the unit 
circle. 
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Example 7.17
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<Sol.>

The first-order recursive equation ][]1[][ nxnyny  
may be used to describe the value y[n] of an investment by setting ρ=1+r/100, where r is the 
interest rate per period, expressed in percent. Find the transfer function of this system and 
determine whether it can be both stable and causal. 

The transfer function is determined by using z-transform:   11
1)( 


z

zH


This LTI system cannot be both stable and causal, because the pole at z= ρ >1 



Inverse System
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 Given an LTI system with impulse response h[n], the impulse response of 
the inverse system, h inv[n], satisfies the condition

or

a stable and causal inverse system exists only if all of the zeros of H(z) are 
inside the unit circle in the z-plane.

the poles of the inverse system Hinv(z) are the zeros of H(z), and vice versa 

A (stable and causal) H(z) has all of its poles and zeros inside the unit circle

H(z) is minimum phase.

A nonminimum-phase system cannot have a stable and causal inverse system.

     nnhnhinv *

1)()( zHzH inv
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1)(
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zH inv 



Example 7.18
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An LTI system is described by the difference equation 

Find the transfer function of the inverse system. Does a stable and causal LTI inverse system 
exist? 
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<Sol.>
The transfer function of the given system is
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Hence, the inverse system then has the transfer function 

Both of the poles of the inverse system, i.e. z=1/4 and 
z=1/2, are inside the unit circle. The inverse system 
can be both stable and causal. Note that this system is 
also minimum phase, since all zeros and poles of the 
system are inside the unit circle. 
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Example 7.19
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<Sol.>

Recall a two-path communication channel is described by   ]1[][  naxnxny
Find the transfer function and difference-equation description of the inverse system. What 
must the parameter a satisfy for the inverse system to be stable and causal? 

First find the transfer function of the two-path multiple channel system: 
11)(  azzH

Then, the transfer function of the inverse system is  11
1

)(
1)( 


azzH

zH inv

     nxnayny  1The corresponding difference-equation representation is

The inverse system is both stable and causal when |a| < 1. 



Outline
 Introduction
 The z-Transform
 Properties of the Region of Convergence 
 Properties of the z-Transform
 Inversion of the z-Transform
 The Transfer Function
 Causality and Stability
 Determining Frequency Response from Poles & Zeros
 Computational Structures for DT-LTI Systems
 The Unilateral z-Transform

42


