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Introduction

» The z-transform provides a broader characterization of

discrete-time LTI systems and their interaction with signals
than is possible with DTFT

» Signal that is not absolutely summable immsdp z-transform

D DTFT

» Two varieties of z-transform:
Unilateral or one-sided
Bilateral or two-sided

The unilateral z-transform is for solving difference equations with
initial conditions.

The bilateral z-transform offers insight into the nature of system
characteristics such as stability, causality, and frequency response.
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A General Complex Exponential z"

» Complex exponential z= re/? with magnitude r and angle Q
2" = r" cos(Qn) + jr" sin(Qn) Re{z"}: exponential damped cosine

Im{z"}: exponential damped sine

r: damping factor

Q: sinusoidal frequency

Im{z"}

thlll”“”""“””IH[l"omzlllﬂt’w""”

exponentially damped cosine exponentially damped sine

» z" is an eigenfunction of the LTI| system



=zn

LTI system, h[n]

» Transfer function |H(z)= > hlk]z™
k=—00

» H(z) is the eigenvalue of the eigenfunction z"

b Polar form of H(z): H(z) = | H(z) | e/*®

| H(z) | = amplitude of H(z); ¢(z) = phase of H(z)
Then y[n] = ‘H (ZXGM(Z)Z”. Let z= rei®
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Eigenfunction Property of z"

y[n] = h[n]*x[n]= ih[k]X[n —K]

= 3 hik]z™*

k=—o0

_ z“( ih[k]z‘k]

=7"H(2)

» y[n]= ‘H (re ’Q)r” cos(Qn + ¢(re s ))+ j‘H (re”’}r” sin(Qn + ¢(re & ))

The LTI system changes the amplitude of the input by | H(rei®?) | and shifts the
phase of the sinusoidal components by ¢(re’?).
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The z-Transform

x[n]«—— X(z) =

X(z)= > x[n]z™,

N=—00

» Definition:The z-transform of x[n]:

» Definition: The inverse z-transform of X(z): x[n] = %&X(z)z“dz.
7

» A representation of arbitrary signals as a weighted superposition of
eigenfunctions z" with z= re2.We obtain

H(re®)= 3 h[n](re)™

®  h[]r" <2 H(re®)
= i(h[n]r—” )e—jﬂn z-transform is the DTFT of h[n]r—"
Hence N=—o0

H(rejQ)EandQ - h[n]:%rﬂH(rejﬂ)(rejg)”dQ

= rei<2
Z=rel B 1

h[nr™ = ir

/3

jﬁH (z)z"'dz
dQ=(llj)z-'dz <
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Convergence of Laplace Transform

» z-transform is the DTFT of x[n]r™ =» A necessary condition for
convergence of the z-transform is the absolute summability of x[n]r™ :

ng x[n]r™

» The range of r for which the z-transform converges is termed the region of
convergence (ROC).

< o0,

» Convergence example:

|. DTFT of x[n]=a" u[n], a>1, does not exist, since x[n] is not absolutely summable.
2. But x[n]r ™ is absolutely summable, if r>g, i.e. ROC, so the z-transform of x[n],
which is the DTFT of x[n]r ™, does exist.

x[n]
Elali[i;] -~ x[n]r™"
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The z-Plane, Poles, and Zeros

Im{z}
» To represent z= re? graphically in terms of complex plane __ _
. . e RN
» Horizontal axis of z-plane = real part of z; y x = pole; 0 = zero
/ — T~ \
» vertical axis of z-plane = imaginary part of z. l 7 NN
f / \
[ | \
| ‘\ Oo 1 /)f g Tl
. \ \ 2 4
» Relation between DTFT and z-transform: \ | s
- /
X(e*)=X(2)| _, AN /
2=e. ~< -7 z-plane

e~ e —

the DTFT is given by the z-transform evaluated on the unit circle

The frequency Q in the DTFT corresponds to the point on the unit circle at an
angle Q) with respect to the positive real axis

» z-transform X(z):

-M b 1-
X(z): b;,1 ++b1az ZlIL.+..+alIJMZzN o X H _1( C, Z1 )
0 T RN H (1 d.z )

¢, = zeros of X(z); d, = poles of X(z)

b=b,/a,=gain factor

Re{z}



Example 7.2 Right-Sided Signal

Determine the z-transform of the signal x[n] = a”u[n].

Depict the ROC and the location of poles and zeros of X(z) in the z-plane.
<Sol.>

o0 o0 n
By definition, we have X (z)= Z a'ulnlz" = Z(gj .
Z

n=—co n=0
This is a geometric series of infinite length in the ratio a/z;

B X(z) converges if |o/z| < |, or the ROC is |z| > |a|. And,

Im{z}
X(2)= 1. [2]>]d
-2 >l
.-« f
Thereisapoleatz=aandazeroatz=0 \ of

Re{z}



Example 7.3 Left-Sided Signal

Determine the z-transform of the signal y[n] = —a”u[— n —1],
Depict the ROC and the location of poles and zeros of Y(z) in the z-plane.

<Sol.>

By definition, we have Y(Z): i—a”u[— n —1]2_” —_ _Zl (g)

n=—0 N=—c0 Z
k=t \ & k=0 \ &
) Y(z) converges if |z/a| < |, or the ROC is |z| < |a|. And, Im{z}

1 T

Y(Z):l_ 1 |Z|<|05|, .~ o\

1-zZa / \

z | }
- 7)<|of e DL
I—-a ! ! )

\ /

/
Thereisa poleatz=aandazeroatz=0 AN >

Left-sided signal & the ROC is |z| < |a. | z-plane

------------------------ Examples 7.2 & 7.3 reveal that the same z-transform but different ROC.
This ambiguity occurs in general with signals that are one sided
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Properties of the ROC

» [.The ROC cannot contain any poles

If d is a pole, then | X(d)| = o, and the z-transform does not converge at the pole

» 2.The ROC for a finite-duration x[n] includes the entire z-plane, except
possibly z=0 or |z|=0 .
For finite-duration x[n], we might suppose that X(Z) = Z x[n]z
X(z) will converge, if each term of x[n] is finite. =N
I) If a signal has any nonzero causal components, then the expression for X(z) will
have a term involving z=' for n, > 0, and thus the ROC cannot include z = 0.

2) If a signal has any nonzero noncausal components, then the expression for X(z)
will have a term involving z for n; < 0, and thus the ROC cannot include |z| = .

» 3.x[n]=co[n] is the only signal whose ROC is the entire z-plane
Consider X(Z) = Z X[I’]]Z_n.

If n, < 0, then the ROC will include z = 0.
If a signal has no nonzero noncausal components (n, > 0), then the ROC will

____________
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Properties of the ROC

» 4. For the infinite-duration signals, then

< i ‘x[n]z‘”

N=—o0

o0

n;ox[n]z‘n _ ni‘x[n]”z“.

The condition for convergence is | X(z) | < c0.We may write |X (Z)| <I, (Z) +1_ (Z)

That is, we split the infinite sum into negative- and positive-term portions:

x(z) =

()= n_ilx[n]“z\n and I+(z)=n§;\x[n]Hz\_n.

Note that If | (z) and I,(z) are finite, then |X(z)] is guaranteed to be finite, too.

A signal that satisfies these two bounds grows no faster than (r,)" for positive n
and (r_)" for negative n.

Thatis, Ix[n] < A(r)", n<0 (g

Xx[n]<A(r.)", n>0 (.10)




If the bound given in Eq. (7.9) is satisfied, then k=-n

stz<|4—AzGJ AZW@

N=—0 N=—o0 k=1

|_(z) converges if and only if |z| <r..

If the bound given in Eq. (7.10) is satisfied, then

n
c T
Z | | - Z(_Jr] l,(z) converges if and only if |z| > r,.

n=0 n=0 |Z|

Hence,if r, < |z|] £ |<r_then both I, (z) and I_(z) converge and |X(z)| also
converges.
Note that if r, > r_, then the ROC = &

For signals x[n] satisfy the exponential bounds of Eqgs. (7.9) and (7.10) , we have

(1). The ROC of a right-sided signal is of the form |z| > r,.
(2). The ROC of a left-sided signal is of the form |z| <r..

(3). The ROC of a two-sided signal is of the form r, <|z| <|<r..



Im{z}

Re{z}

A right-sided signal has an ROC of the form |z| > r,.

x[n) Im{z}

Re{z}

Im{z}

Ly

" A two-sided signal has an ROC of the form r, < |z| <r..

>




Example 7.5

|dentify the ROC associated with z-transform for each of the following signal:

x[n]=(-1/2)"u[-n]+2(1/4)"u[n]; y[n]=(-1/2)"u[n]+2@/4)"u[n];

w[n]= (~1/2)"u[-n]+2(/4)"u[-n].
<Sol.> .
. X(z):zol(;—j +2n§;(4_12j kz(; (-22) +ZZ( j

The first series converge for |z|<|/2, while the second converge for |z|>1/4.
So,the ROC is 1/4 < |z| < |/2. Hence,

1 27
X(Z):l+22+z—}1’ Polesatz=—1/2and z= /4

The first series converge for |z| >1/2, while the second converge for |z| > |/4.
Hence, the ROC is |z| > 1/2,and

_______ Y(z)=—2—+-2%  Polesatz=-lDandz=1/4

1 1
I5 Z+5 L—y




. W(2)=Y (;_j) 2y (ij ~ 3 (-22) +2§;(4z)k,

N=—0o0 N=—00 k=0

The first series converge for |z| < |/2, while the second converge for |z| < '4.
So, the ROC is |z| < 1/4, and

W(Z)z + , Polesatz = —1/2 and z = | /4
1+2z 1-4z
Im{z
Im{z} il
s o e Imjz
//-—‘ -\_\ // 'h-..\ { }
Vs \\ s \\
4 il A )/ 4 N
S
f 1 |
e ¥ Re{z} * Refz} ¥ { ¥ Ref{z}
n YNy 1 o 1 R #
\ by s i1 7
2 \ . | 4 ,,' \2 4 !p‘ 2 \\ - 4
\ / \ Vs e
N s B s
\.\__‘ _,// \“‘x ’-(_/ z-plane
i i z-plane Bl
(c)
(a) z-plane

(b)

&% This example illustrates that the ROC of a two-side signal (a) is a ring, i.e. in between the
poles, the ROC of a right sided signal (b) is the exterior of a circle,and the ROC of a
left-sided signal (c) is the interior of a circle. In each case the poles define the boundaries
of the ROC.

16
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Properties of the z-Transform

» Most properties of the z-transform are analogous to those of the DTFT.
» Assume that x[n]«~=->X(z), with ROC R,
y[n]«=—Y(z), with ROC R,
» Linearity:
ax[n]+by[n]«=—aX(z)+bY(z), with ROC at least R NR,
The ROC can be larger than the intersection if one or more terms in x[n] or y[n]
cancel each other in the sum.
» Time Reversal: X[-n]<«—— X (1/z), withROC 1/R,
Time reversal, or reflection, corresponds to replacing z by z ~'. Hence, if R is of the
form a < |z| < b, the ROC of the reflected signal is a < |/|z]| < b,or |/b < |z| < |/a.
» Time Shift:

x[n—n,]«~=>2z""X(z),with ROCR,except possibly z=0or |z|=00

|. Multiplication by z™" introduces a pole of order n,at z = 0 if n, > 0.
——————— 2.1f n, < 0, then multiplication by z ™ introduces n, poles at . If they are not canceled
b 18 by zeros at infinity in X(z), then the ROC of z"X(z) cannot include |z| < co.
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Properties of the z-Transform

» Multiplication by an Exponential Sequence:

Z :
—j,Wlth ROC |05| R, o lsacomplex number
(04

a”x[n]%X(
|.If X(z) contains a factor (1—dz~') in the denominator, so that d is pole,

then X(z/ ) has a factor (I-adz~") in the denominator and thus has a pole at «ad.
2.If c is a zero of X(z), then X(z/a) has a zero at ac.

=>» The poles and zeros of X(z) have their radii changed by || in X(z/ ), as well as
their angles are changed by arg{a} in X(z/ )

il X(2) fmiz) X(z/ a)
arg{c} arg{c} +arg{a}
el |dl lalld]
lal | el arg{d} + arg{a}
- arg{d} Re{z) 0 Re(z]
z-plane z-plane
______________ @® (b)
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Properties of the z-Transform

» Convolution: X[n]*y[n]«*—>X(z)Y(z), with ROC atleastR "R,

Convolution of time-domain signals corresponds to multiplication of z-transforms.
The ROC may be larger than the intersection of R, and R if a pole-zero cancellation
occurs in the product X(z)Y(z).

» Differentiation in the z-Domain:

nx[n]<«= >—z:ZX(z), with ROCR,

Multiplication by n in the time domain corresponds to differentiation with respect
to z and multiplication of the result by — z in the z-domain.
This operation does not change the ROC.



Example 7.6 Sk e b
Suppose ~ ,:_’p/h 2 plae

? 2 (z-3)(z-3)

1Y 1Y B —17

= | — —_ — Y = 4 ,
Yil-=(5) ool (3) wlrlesv (-9
Evaluate the z-transform of ax[n] + by[n].
<Sol.>
2 —Z —+

ax[n]+by[n] «*> a +b

(2-3)(z-%)  (z-9)(z-3)
In general, the ROC is the intersection of individual ROCs

However, when a = b:We see that the term (1/2)" u[n] has be canceled in ax[n] + by[n].

Im(z}

5
57 o _—
aX(z)+aY(z)=a 1)4( ot
(Z 4 Z— 2 :'I f;:?;l \‘%3 Re{z)
> The pole at z=1/2 is canceled ! = the ROC enlarges ‘ B
21 e -—"Z./p.ane



Example 7.7 : G
Find the z-transform of the s.gnalx[n]_[n( le u[n]J (%j u[-n],

<Sol.> i
First, we know that (Llj U [n]< AN Z ‘with ROC |Z| > 1
2 Z+3 2

Apply the z-domain differentiation property, we have
n

w[n]:n(_—1 u[n]<—z—>W(z):—zOI Z_ | with ROC |z|>1
2 dz\ z+3 2

o - . with ROC |z|>l
z—-1/4 4

Apply the time-reversal property, we have
1

n
Next, we know that ij u[n]<«-=

= : 1
y[n]«=>Y (z) = ——, with ROC H>_
z 4
Last, we apply the convolution property to obtain X(z), i.e.

x[n]=w[n]*y[n]«=>X(2)=W(z)Y (z), with ROC R,NR,

X (2) = , with ROC %<|z|<4



Example 7.8

Find the z-transform of x[n] =a" cos(QOn)u[n], where a is real and positive.
<Sol.>

Let y[n] = a"u[n]. Then we have the z-transform Y (z) = . 1 -, with ROC |Z| > a.
—al

Now we rewrite x[n] as the sum
1 . 1 .
x[n]==e"y[n]+=e " y[n]
2 2
Then, apply the property of multiplication by a complex exponential, we have
1 i 1 - :
X(z)==Y (e JQ°z)+—Y (eJQOZ), with ROC |z|>a
2 2
1 1 N 1 1
21-ae!®z? 21-ae z?
1 (1— ae 0zt +1-ae zlj

2 (1— aejQ°z‘1X1— ae‘onz‘l)

2
1—acos(Q.)z* .
_________________________________ :l—ZaCOS(Q() 20_2+a22_2’ with  ROC |Z|>a'
0
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Inversion of the z-Transform

4

M-—N
> T Z fk5[n — k](——)z Z ka_k ““““““““““““““““““““““““““
k=0 k=0

Direct evaluation of the inversion integral for inversion of the z-transform
requires the complex variable theory

We apply the method of partial-fraction expression, based on z-transform
pairs and z-transform properties, to inverse transform.

The inverse transform can be obtained by expressing X(z) as a sum of
terms for which we already known the time function, which relies on the
property of the ROC

A right-/left- sided time signal has an ROC that lies outside/inside the

ole radius , : |
P B (z) bo + blz—l et bM ;=M arational function of z

X(z)= =
Suppose that X (2) A(z) a,+az'+--+a,zV M<N N
<, _« B(2)
If M > N, we may use long division to express X(z) as X (Z) = Z ka_ + m
k=0 Z

. Using the time-shift property and the pair 1<—=—o[n]

We obtain M=N
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Inversion by Partial-Fraction Expansion

2. Factor the denominator polynomial as a product of pole factors to obtain
by +b,z7 +--+b,z7"
X(Z) _ 0 1 M

aOHszl(l—dkz‘l) M<N

» Case |, If all poIes dk are distinct:

» X(2)=

kll_

= » A (d) u[n]«*> A —, with ROC |z|>d,
1-d,z

>

r —Ak(dk)”u[—n—1]< Z with ROC |7|<d,

» Case ll: If a pole d, is repeated r times:
- A A, A
-1’ R Y2 Y
1-d,z (1—diz 1) (1—diz 1)
| If the ROC is of the form |z| > d, then the right-sided inverse z-transform is chosen:

____________ A(n+1)m(n+m_1)(di)”u[n]< :, A with ROC [{>d
b 2 (m-1)! (1-d,z?)

-1
WA

o

/1_

Appendix B !!
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Inversion by Partial-Fraction Expansion

» Case ll: If a pole d; is repeated r times:
2. If the ROC is of the form |z| < d, then the left-sided inverse z-transform is chosen:

(n+1)”'(n+m_1)(di)nu[_n_]_]< CHIEN A with ROC |Z|<di

—A (m—l)! (1—diZ_1)m ,

» Example 7.9 Find the inverse z-transform of

1-z7+27° .
X(z)= , with ROC 1<|z|<2
= )2 o) d
<Sol.> mie)
By partial fraction expansion, we obtain //”" T
/~ BN
1 2 2 / 2 h\\\ \\
X(Z):l—lz‘1 1ot 1ot .’/ 4 v
=, A e
right-sided left-sided \\ N j/ //
9 1B /
AN ) s
v ol 3 ) ol 2ol n-1)- 2] =




Example 7.10

~2°=102° -4z +4

Find the inverse z-transform of X(Z) = > . with ROC |Z| <1
27 —27-4 mie)
<Sol.> _L
First, convert X(z) into a ratio of polynomials in z~! /’ \\\
1 (1-10z" - 422 +47°) 1 S A B
X(z)==12 =—2W|(z N J/
( ) 2 [ 1_ Z_l o 22_2 j 2 ( ) D gl z-plane
Since 3>2, )
B -1 g2 -3 5,1 _ —_5771_92
L 1-10 142 +;4z =221 +3+ 521 2 ) =-271'+3+ iz —.
1-z7-27" 1-z27 -2z (l—z )(1—22 )
] 1 3 .
W W (z)=-22"43+——- —, with ROC [7|]<1
1+z7 1-2727+_
left-sided

) w[n]=-26[n-1]+35[n]- (-1)"u[-n-1]+3(2)"u[-n-1]

Finally, apply the time-shift property to obtain x[n] — lw[n _|_1]
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» Causality, stability, or the existence of the DTFT is sufficient to determine
the inverse transform

» Causality:

» If a signal is known to be causal, then the right-sided inverse transforms are
chosen

» Stability:

» If a signal is stable, then it is absolutely summable and has a DTFT. Hence,
stability and the existence of the DTFT are equivalent conditions. In both

cases, the ROC includes the unit circle in the z-plane, |z| = |.The inverse z-
transform is determined by comparing the locations of the poles with the
unit circle.

» If a pole is inside the unit circle, then the right-sided inverse z-transform is
chosen; if a pole is outside the unit circle, then the left-sided inverse z-
transform is chosen
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Inversion by Power Series Expansion

» Only one-sided signal is applicable!

» Express X(z) as a power series in z~! or in z.

| If the ROC is |z| < g, then we express X(z) as power series in z~!, so that we obtain a
right-sided signal.

2.If the ROC is |z| > g, then we express X(z) as power series in z, so that we obtain a
left-sided signal.

-1
» Ex 7.11 Find the inverse z-transform of X(Z) = 12 +1Z —, Wwith ROC |Z| >%
-1z
24277 +270 +127° +.. i
1—%2‘1>2+ A 1
2-7" - X(Z)=2+22‘1+z‘2+§z‘3+...
277 m X[n|=26|n]+25[n-1]+5[n-2]+16[n-3]+..
-1 -2
22 —1 . This may not lead to a closed-form expression !!
=
Z—2 _lZ—S




Example 7.12

An advantage of the power series approach is the ability to find inverse z-transforms for
signals that are not a ratio of polynomials in z.

Find the inverse z-transform of X (z) = ezz, with ROC all z except |z| — 0

<Sol.>

o Ak
Using the power series representation for e e = %
k=0 K-
o0 2\ k 2 2\2
L X(z)=z(Z ) 1.2 @)
~ Kl no2
Thus x[n] = &[n]+ o[n+2] N o[n+4] L
L 2!
= ( i) n>0 or nodd
X[n]=- ., otherwise
()]
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The Transfer Function

- LTI system, h[n]
Z=rel

> Recall that the transfer function H(z) of an LTI system is|H(z) = Zh[k]z ;
k=—00

» If we take the z-transform of both sides of y[n], then

Y [Z] =H [Z]X [Z] |‘ H [z] — M This definition applies only at
X [Z] values of z for which X[z] # 0

0 M
» From difference equation: Z a, Y[n — k] = Zbk X[ﬂ — k]
K=0

K=0
After Substituting z" for X[n] and z"H(z) for y[n], we obtain rational transfer function

N M “bz k|l R 1
2" > az " H(z)=z") bz mM|H(z)= Zﬁ_o kz_k :bHNk:l(l—CkZ_l)
K=0 K=0 Zkzoakz [, @-d,z7)

|‘ Knowledge of the poles d,, zeros c,, and factor b = by/8, completely determine the system



Example 7.13

Find the transfer function and impulse response of a causal LTI system if the input to the
system is x[n] = (~1/3)"u[n] and the output is y[n] = 3(~1)"u[n]+ (1/3)"u[n]
<Sol.>

The z-transforms of the input and output are respectively given by

1 3 1
= e 1+2 1- W3z

Hence, the transfer function is

ROC|z|>1

ROC‘Z‘ >+ and Y (2)=

H(z) = 2@ pocys1
A+z7)A+(-1/3)z7)

The impulse response of the system is obtain by finding the inverse z-transform of H(z).
Applying a partial fraction expansion to H(z) yields

2 2
_|_
+z7t 1-(1/3)z"

H(z) = , with ROC |z][>1
1



Examples 7.14 & 7.15

Determine the transfer function and the impulse response for the causal LTI system

described by y[n]|— (1/4)y[n-1]- (3/8)y[n —1]= —x[n]+ 2x[n - 1]

<Sol.>
WVe first obtain the transfer function by taking the z-transform:

B ~1+2z7" =2 1
HO=Twa@ez ™ " L war taas

The system is causal, so we choose the right-side inverse z-transform for each term to
obtain the following impulse response: n n
h[n]—2(=1/2)"u[n]+ (3/4)"u|n]

Find the difference-equation description of an LTI system with transfer function

52+ 2
H(z)=
(2) 2°+32+2

<Sol.>

1 2
2 +22
We rewrite H(z) as a ratio of polynomials in z=': H(z) = >

(1+327"+227%)

™ y[n]+3y[n-1]+2y[n-2]=5x[n-1]+ 2x[n - 2]
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Causality and Stability

» The impulse response h(t) is the inverse LT of the transfer function H(z)

» Causality TN i T
u i =2 -

RN Pole d, inside the unit

0
right-sided k el =1 , _ circle,i.e,, |d | < |
. e-plane Exponentially decaying term
inverse z-transform

(a)

hn]

A e JHTH”"'"
jm:] W= e

z-plane

I

Exponentially increasing term

(b)
Im{z} hin]

» Stability

/\ ) = I o o Pole d, inside the unit
!/ | R circle,i.e, |d | < |
the ROC includes el , 1.e., [d,
unit circle in z-plane ,  Causal system
h[n]
Im{z}
Pole d, outside the unit
AV --.mmi]I{ "

lzl=1

p 35 <-plane Non-caucal system
(b)

C 42 o circle,i.e., |d,| >_1
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Causal and Stable LTI System

» To obtain a unique inverse transform of H(z), we must know the ROC or
have other knowledge(s) of the impulse response

» The relationships between the poles, zeros, and system characteristics can
provide some additional knowledges

» Systems that are stable and causal must have all their poles inside
the unit circle of the z-plane:

Im{z} h[n]
Q
12 ¢
x X Re{z} o—0 ; . n
] T
. 2| =
z-plane




Example 7.16
2 2 3

An LTI system has the transfer functionH (z) = +
i7 -i5 1+ 277
1-0.9e 4z 1-0.9e 4z7

Find the impulse response, assuming that the system is (a) stable, or (b) causal. (c) Can this
system both stable and causal? Im{z}

<Sol.>

a. If the system is stable, then the ROC includes f\

the unit circle contribute the right-sided term 2 0 Re{z}
to the impulse response, while the pole outside 2R
zl=1

the unit circle. The two conjugate poles inside
the unit circle contributes a left-sided term.
T

h(n) = 2(0.9¢' ) u[n] + 2(0.9¢ ' 4)"u[n] - 3(-2)" u[-n —1]

z-plane

—~ 4(0.9)" cos(£ nun] - 3(=2)"u[-n 1]
b. If the system |s causal then all poIes contribute right-sided terms to the impulse response.

h(n) =2(0.9¢ 4) u[n] +2(0.9e 4) u[n]+3(-2)"u[n]

=4(0.9)" cos[— nJuln]+3(-2)"u[n]
c. the LTI system cann%t be both stable and causal, since there is a pole outside the unit
circle.



Example 7.17

The first-order recursive equation y[n]— py[n—1] = X[n]

may be used to describe the value y[n] of an investment by setting p=1+r/100, where r is the

interest rate per period, expressed in percent. Find the transfer function of this system and
determine whether it can be both stable and causal.
<Sol.>

The transfer function is determined by using z-transform: H(z) =

1
1- pz

This LTI system cannot be both stable and causal, because the pole at z= p >1

-1
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Inverse System

» Given an LTI system with impulse response h[n], the impulse response of
the inverse system, h'™[n], satisfies the condition h™ [n|*h[n]= &[n]

|- HinV(Z)H(Z):l or HinV(Z):H](-)
Z

|‘ the poles of the inverse system H™(z) are the zeros of H(z), and vice versa

|‘ a stable and causal inverse system exists only if all of the zeros of H(z) are
inside the unit circle in the z-plane.

|- A (stable and causal) H(z) has all of its poles and zeros inside the unit circle

Im{z}

o
X
X o
% * o Re{z
5 {z}
x o
X
o lz]=1

z-plane

I- H(z) is minimum phase.

A nonminimum-phase system cannot have a stable and causal inverse system.



Example 7.18

An LTI system is described by the difference equation
y[n]-y[n —1]+%y[n —2]= x[n]+%x[n—1]+%x[n ~2]

Find the transfer function of the inverse system. Does a stable and causal LTI inverse system
exist?

<Sol.> -1 -2
1+12z27 -3z
The transfer function of the given systemis H(z) = —2 - 8 -
1-z27+52°
C@A-izh@A+3z)
o 112
a-527)

Hence, the inverse system then has the transfer function

12 Both of the poles of the inverse system, i.e. z=1/4 and
H™(z) = (1__2 Z) _ z=—1/2, are inside the unit circle.The inverse system
1-1zHA+5z7) can be both stable and causal. Note that this system is
also minimum phase, since all zeros and poles of the
system are inside the unit circle.




Example 7.19

Recall a two-path communication channel is described by y[n] = X[n] + ax[n —1]

Find the transfer function and difference-equation description of the inverse system.VVhat
must the parameter a satisfy for the inverse system to be stable and causal?

<Sol.>

First find the transfer function of the two-path multiple channel system:
H(z)=1+az™"

Then, the transfer function of the inverse system is H™ (z) =

|
H(z) 1+az™

=>» The corresponding difference-equation representation is y[n] + ay[n —1] = x[n]

The inverse system is both stable and causal when |a| < I.
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