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Introduction

» Four classes of signals in Fourier representations
Continuous- and discrete-time signals
Periodic and nonperiodc signals
» In order to use Fourier methods to analyze a general system
involving a mixing of noperiodic (says, impulse response) and
periodic (input) signals, we must build bridges between Fourier
representations of different classes of signals
» FT/DTFT are most commonly used for analysis applications
We must develop FT/DTFT representations of periodic signals
» DTFS is the primary representation used for computational
applications (the only one can be evaluated on a computer)
Use DTFS to represent the FT, FS,and DTFT
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FT Representations of Periodic Signals

» Recall the FS representation of a periodic signal x(t): X(t) = Z X[k]ejka)ot
» Note that 1 «—— 275(w) k=—0

v

Using the frequency-shift property, we have e 2728 (0 —kay,)
Let’s take the FT of x(t):

v

FT{X(t) - 3°X [k]eikwot} = SXKIFT )= 22 3 X (K16 (00— kap)

= (xt)= > XK «T s X(jo)=273 X[KIS(0—Ka,)

k =—00 k =—00

@ The FT of a periodic signal is a series of impulses spaced by the
fundamental frequency .

@ The kth impulse has strength 2tX[k]

@ The shape of X(jw) is identical to that of X[k]



pipr. OF ELECTROMICS 924
ENGINEERING & §

FS and FT Representations of a 5. or ECROCS
Periodic Continuous-Time Signal

X[k]

@, ¥ T‘—[T P ¢ k

x(1) i‘a/f 2 1,11 2 |

_t U0 T 2T 6 L

< [,

Y




Example 4.1 FT of a Cosine

Find the FT representation of x(t) = cos(w,t)
<Sol.>

1
|. FS of x(t): COS(a)Ot) FS;a X [k]:<§’
0

2.FTofx(t): COS(apt) «—— X (jo)=né(0-a,)+r6(w+w,)

cos(w,t) X(Jo)
72' -
1
- I [
 § ~tf— ! 0 T a)
2 NS = -y o,
w, -1 o,




Example 4.2 FT of a Unit Impulse Train
Find the FT of the impulse train p(’[) _ id(t _ nT)

<Sol.> = P
14
|. p(t) = periodic, fundamental period =T ‘ I | ‘ ‘ | ‘ ‘ | ‘ ‘
2. FS of p(t): L 111 1l
=5T -3T -T ¢ T 3T 5T
1 (712 ikt
Plk]==1 ot ™ 'dt=1/T
T /)12
IFT
3. FT of p(¢): P(io)

P(j)= 2 3 50 ke 2
ER ] L




pipr. OF ELECTROMC . N 7
ENGINEERING &
list, Of ELECTROIMCS ;

Relating the DTFT to the DTFS

» Recall the DTFS representation of a periodic DT signal x[n]:
N-1 _
x[n]=> X[k]e™*"
k=0

» Note that the inverse DTFT of a frequency shifted impulse, i.e. 6(€2-k(2), is
a complex sinusoid. With one period of g**"  we have

Ziejkg‘)”(i)é'(ﬁ—kﬂo) —7<Q<r, —7<kQ,<rx
4

» Let’s construct an infinite series of shifted impulses separated by 27, i.e. to
obtain the following 2n-periodic function

ZieijO” T > 5(Q-kQ, —m-27)
T M=—o0

» Let’s take the DTFT of x[n]:
N-1 _ _ N-1 %
x[n]=> X[k]e"*" « 2= X (e**) =27 X[k] D 5(Q-kQ,—m-27)
k=0

k=0 m=—o0

p 8 Since X[k] is N periodic and NC), = 21, we may combine the two sums
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Relating the DTFT to the DTFS

-1 0
X[n]=D X[K]e"*" «E2F X(e¥)=27) X[Kl5(Q-kQ,)

k

=z

Il
o

k=—c0

» The DTFT of a periodic signal is a series of impulses spaced by the
fundamental frequency Q,

DTFT

Art-

P
# The DTFS X[K] and the corresponding ~aZ,_ 27|
DTFT X(e/?) have similar shape.




Example 4.3 DTFT of a Periodic Signal

Determine the inverse DTFT of the frequency-domain representation depicted in the
following figure, where Q, =T /N. 4 ia,

1

2_j —+
27[ _QI ase
1 1 _Ql 1 | 1 ! 1 Q

—=37r oz Ry 0| Q, T 27 l 3z 4
1 2w + €2
<Sol.> 172
|.We express one period of X(e*?) as
- 1 1
X (e‘Q):2—j5(Q—Ql)—2—j5(Q+Ql), —7<Q<x
from which we infer that 2 The inverse DTFT:
(1/(4xj), k=1 N-1 '
— JkQon
=) X [k]=1-1/(4z]), k=-1 x[n]—kz_(;X[k]e
-0 otherwise on —-1<k<N-2 )
111,/ on jomy|_ 1 ..
= ]| ) )
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Outline

» Convolution/Multiplication with (Non-)Periodic Signals
» Fourier Transform of Discrete-Time Signals
» Sampling

» Reconstruction of Continuous-Time Signals

v

Discrete-Time Processing of Continuous-Time Signals

» Fourier Series of Finite-Duration Nonperiodic Signals
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Convolution and Multiplication with mfgﬁg{gggggﬁm

Mixtures of Periodic and Nonperiodic Signals
» Example: a periodic signal fed into a stable, nonperiodic impulse response
Periodic input x(t) y(t) = x(t)* h(?)

Stable filter
Nonperiodic impulse response h(t)

v

FT is applied to continuous-time (CT) case
» DTFT is applied to discrete-time (DT) case

» For CT signals: y(t)=x(t)*h(t) «—— Y (jo)=X(jo)H( (jo)
» If x(t) is CT periodic signal, then
X(t) <7 X(jo)=223 X[K]6(0—ka)

k=—00

o YO=XO*N(1) T Y(jo)=27 Y X[KI6(0-ka,)H (jo)

k=—c0

----------- y()=x()*h(t) « v(ja)):zﬂgH(jkwo)X[k](s(w_kwo)




Convolution with Mixtures of Periodic and
Nonperiodic Signals

y(O) =x(t)*h(t) <Ts Y (jo)=27 H(jka,) X[KIS (0 kay)
k=—c0
X (jo) Magnitude
framx o 21 Yo adjustment
t I t l_.“"’ “’.O] t | t . 27 X [0]H (jO)
oz | [0 |20, o, | 27X [2]H (j20,)
2t — N e KO Y 0
x — ! S o | 2. ’ }
H(jw) -4, -20, l l 20, 4o,

/——\ 27 X[1IH (jo,)
- (4]

— — \ .
v—4wo—2wo—w00'a)0 2w, 4a)ou
|



Example 4.4

A periodic square wave is applied to a system with impulse response h(t)=(1/(nt))sin(rt.
Use the convolution property to find the output of this system. *®

<Sol.> 6 -4 -2 -1 o ! 2 4 6 8

|. The frequency response of the LTI system is by taking the FT of the impulse response h(t):

. 1, |w<x .
h(t) PENLSLIEN H(ja)): | | H(jw)
0, |a)| > T '
2. FT of the periodic square wave: S el O
: X
: = 2sin(kz /2 jo
X(jo)= 3 20k )5@&) <G
K =—00 k 2 24
3.The FT of the system output is Y(jw) = H(jw)X(jw): \ | L@
' t 1 t ﬂ-' P ﬂ'. t 1 } ' -
Y(jow)= 25(a)+%) + 18(w) + 25(0)—%) T2 =T
H(jw) acts as a low-pass filter, passing harmonics 722'
at —n/2, 0, and 7t/2, while suppressing all others. |
TN )
4.Inverse FT of Y(jw): y(t)=(1/2)+(2/ 7 )cos(tz/2) ol x
2 2
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Convolution with i o ECTROMKS S
Mixtures of Periodic and Nonperiodic Signals

Periodic input x[n] Stable filter y[n] = x[n]* h[n]

Nonperiodic impulse response h[n]

» For DT signals:
» If x[n] is DT periodic signal, then

N-1 0
X[n]=D X[K]e"" 2 X(ef)=27) X[K]5(Q-kQ,)
k=0

k=—o0

= |y[n]=x[n]*b[n] «T"— Y(eiW)zzzéH(eikﬂo)X[k](s(Q—kQO).

& The form of Y(e/?) indicates that y[n] is also periodic with the same period as x[n].
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Periodic and Nonperiodic Signals

» Continuous-time case:

» Original multiplication property:
: 1 : :
y(t)=g(t)x(t)«——Y (ja)):gG(ja))*X(ja))
» If x(t) is periodic. The FT of x(t) is

x®) =Y XKe* « T X (jo)=273 X[KIS(w0—Ka,)

™ y(t)=g(t)x(t) «— Y(jo)=G(jw)* ZX[k]&(a) ke,)

m(y(t)=g(t)x(t) <« Y( ZX[k]G j(0—kay,))
N

Multiplication of g(t) with the periodic function x(t) gives an FT consisting of a
weighted sum of shifted versions of G(jw)



y(t)=g(t)x(t) «— Y( ZX[k]G j(w—kayp))

k=—c0

G(jo)
1
w

-Wo w
%
X (jo)
24

. _210)0 | | 201)0 .
! —200 ol @, } y(t) becomes nonperiodic signal !

The product of periodic and
nonperiodic signals is nonperiodic



Example 4.4

Consider a system with output y(t) = g(t)x(t).
Let x(t) be the square wave and g(t) = cos(t/2), FindY(jw) in terms of G(jw).

<Sol.>
& FS representation of the square wave:
. sin(kz /2
X(t) <225 X[k]= ( )
74

And, we have G(jw)=z(w—1/2)+ 78(w +1/2)

o V(o)=Y Si”(kk”/Z)[a(a)—llz—kz/2)+5(a)+1/2—k7z/2)]

k=—c0



Example 4.6 AM Radio

A simplified AM transmitter and receiver are depicted in Fig. 4.13(a). The effect of propagation
and channel noise are ignored in this system.The signal at the receiver antenna, r(t), is
assumed equal to the transmitted signal. The passband of the low-pass filter in the receiver is
equal to the message bandwidth, — W <@ < W. Analyze this system in the frequency domain.

mit) 40 N ) &) 0
A >\i ‘j & X Lofvivligrass
T i T
Cos w, I Cos w.t
Uan;r;ﬁtter E'CC;;CI'
(a)
G M(jw)
FT
\./(\
<Sol.> b \_—
1. The transmitted signal is expressed as 2

r(t)=m(t)cos(at) «T> R(jo)=(1/2)M(j(o-a,))+(1/2)M (j(o+a,))



FT )
t Y(jo)
R(jo) |
1 - L
1 1l C() 0 ) a)
_COC ‘0 a)c -W 0 W
(a) (c)

g(t)=r(t)cos(at) <« G(jo)=(1/2)R(j(0-a,))+1/12)R(j(0+a,))

G(jo)=1I4M (j(o-20,))+1/12)M (j(@))+ 1M (j(0+2w,))

& The original message is recovered by low-pass filtering to remove the message
replicates centered at twice the carrier frequency.
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Periodic and Nonperiodic Signals

» Discrete-time case:

» Original multiplication property:

y[n] = X[n]z[n] 2" >Y(ejQ):%X(ejQ)®Z(ejQ)

» If x[n] is periodic.The DTFS of x[n] and its DTFT is

:§X[k]eikﬂo" I X () =27 Y] XIKIS(Q-ke,)

k=—00

- Y(e’Q)— X(e’Q)®Z(e’Q) j ZX[k]5(Q kQ,)Z (e )dg

In any 27 interval of 6, there are exactly N multlples of the form &6 — Q),
since Q,= 21/N.
N-1

-y (ejQ) = Z_ X [k].‘: 5(Q2- on)Z(ej(Q_e))de = Nz_lx [k]Z(ej(kQO—e))

N —

s o yInl=x[n]z[n] <o Y (e))= ZX[k]Z( QkQ°) ---------------




Example 4.7 Windowing Effect

Windowing (or truncating): one common data-processing applications, which access only
to a portion of a data record.

Consider the signal x[n]:co 7—7Zn +CO g—ﬂn
16 16

Using only the 2

<Sol.>
N -1

I.Since |X[n] =) X[k]e*™" P X(ejg):27zi X[k]6 (Q-kQ,)

< M, evaluate the effect of computing the DTFT.

k=—00

Then X(e!)= J(Q+i—7g)+n5(9+%j+n5(g—z—g)+m(g—i—’gj

which consists of impulses at £ 77t/16 and * 9n/16.
L f<M

0, |n[>M
y[n] = x[n]z[n]«= >Y(ejQ):2iX(ejQ)®Z(e"Q)

|‘ v (eJQ) %{W (ej(Q+97r/16))+W( (Q+77z/16))+W( j(Q- 7”’16))+W( j(Q- 97z/16))}

2. Define a signal y[n] = x[n]w[n], where W[n] =




. The windowing introduces replicas of W(e/?) centered at the frequencies 7n/16 and
971t/16, instead of the impulses that are present in X(e/*?) .

. We may view this state of affairs as a smearing of broadening of the original impulses

The energy in Y(e/??) is now smeared over a band centered on the frequencies of the

cosines

200 T T T T T T 25 T T T T T T

20 |- .
150 - -

15 -
100 |- .

‘ 'OI\I\ ANAAAL LAA

v

Y(eJ?)
Y(e/$Y)

0 -]3 -Jz i 0 : é 3 e e— 0 1 2 3
(‘:) (f)
Effect of windowing a data record. Y(e /) for 2 i
different values of M, assuming that Q, = 7n/16 °r )
and QQ, = 91t/ 16. g r l
() M =80,(by M= 12,(c) M =8. ik :
NN (VA AV (VD
& If the number of available data points is small sk -
relative to the frequency separation, the DTFT ol
is unable to distinguish the presence of two Q

distinct sinusoids (e.g. M=8)
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Fourier Transform of Discrete-Time Signals

» A mixtures of discrete-time and continuous-time signals

» By incorporating discrete-time impulses into the description of the signal in
the appropriate manner.

Basic concepts:
Consider the following signals: x(t) =e!* and g[n]=e*"

Let’s force g[n] to be equal to the samples of x(t) with sample period T i.e., g[n] = x(nT)).

) M — gl e Q= T,

[e¢]

Now, consider the DTFT of a DT signal x[n]: X (€'*)= 3" x[n}e™™"

N=—o0

Define the continuous time signal x (t) with the Fourier transform X (jw):

X, (jo)=X (ejQ) looar. = 2, X[nJe7 "

N=—o0

Taking the inverse FT of X (jw), using the FT pair 5(t - nTS) e -
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Relating the FT to the DTFT

o0 o0

Xs(t)= > x[n]s(t-nT,) «T> X,(jo)= D x[n]e ",

N=—o0 n=—o0

@ x4t) = a CT signal corresponds to x[n];
X (jw) = Fourier transform corresponds to the CT Fourier transform X (e /%)

The DTFT X (e #?) is periodic in Q2 while the FT X (jw) is 2n/T, periodic in .

x[n] X (e/?)
3_...
20 1
DTFT
11, 1 I 1 - e ANAS
c | T 1 1 n : % n
l-l las ) l 2x 0 o
A
Impulse conversion Q=0T
Y
xq4(r) X, (jw)
3”.
2 1
FT
1 - AN
! t L : Q)
________________ Tl T o, v I 0 o
b 25 : -




Example 4.8

Determine the FT pair associated with the DTFT pair

- 1
—an DTFT X 1) _ _
x[n]=a"u[n] <2 X(e!) e

This pair is derived in Example 3.17 assuming that |a| < | so the DTFT converges.

<Sol.>

|.We first define the continuous-time signal X; ('[) =

a"s(t-nT,)

=)
I MS
o

2.Using Q= o T gives
1
1—ae )"

X;(1) «——— X,(jo)=
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Relating the FT to the DTFS

» Suppose that x[n] is an N-periodic signal, then

N-1 0
x[n]=> X[kle"*" 2 X(ef)=2z) X[K]5(Q-kQ,)
k=0

k=—o0

where X[k] = DTFS coefficients

» Now, define x(t) = a CT signal corresponds to x[n], then the Fourier
transform X (jw) of the continuous time signal x (1) is

X;(jo) =X (") =2 S X K6 (T, - kQ)

~27Y X[KIS(T, (o—k %))

Use the scaling property of the impulse, J{aw) = (1/a)o(w), to rewrite Xjw) as

X5 3 kz_:wx [k]&(a)——sj



o0

=[x, (0) = Y xSt -nT,) <« X, (jo) =2T”ZX[|<]5(CO— kf(’j

N=—o0 S

|. Recall that X[k] is N-periodic, which implies that X (jw) is periodic with periodic
NQy/T, = 2n/T,
2. Recall that x[n] is N-periodic, which implies that x 1) is periodic with periodic NT

x[n] X[k]
1 S 1 T T
N T N Y S A S

1 Impulse conversion I Impulse conversion
Y
x4(f) X4 (jo)
||||“|||‘|||||‘||Hl---1 FT
~NT, OTS NT,

X[k] and x[n] are N-periodic functions

xs(t) and X (jw) are periodic impulse trains with period NT, and 27/T..
28
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Outline

» Sampling

» Reconstruction of Continuous-Time Signals

v

Discrete-Time Processing of Continuous-Time Signals

» Fourier Series of Finite-Duration Nonperiodic Signals
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Sampling
» We use FT representation of discrete-time signals to analyze the effects of
uniformly sampling a signal.

» Sampling the (continuous-time) signal is often performed in order to
manipulate the signal on a computer.

CT signals DT signals
Sampling

X[n] = x(nTy)

» Let x(t) be a CT signal and x[n],a DT signal, is the “samples” of x(t) at
integer multiples of a sampling interval. G
= Z s(t—nT,).
x(1) p(n)

AN~/ |||||1l|1|||||

\j‘o _/ ST, T )T

xq(1)

o0

_______________ _ 1|,,,_,.i,1, 1 = Sl
_ Cal

p 30 _3T,

.1
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Sampling Process

» We note that

x,()= Y xS -nT,) = 3 x(nT,)5(t - nT,)

_Zx(t)a(t nT,) = x(t)Z&(t nT,) = x(t) p(t)
» Then F_T _ 1 : :
X(s(t)=X(t)p(t)<—>X5(Jw)=EX(Jw)*P(Jw)
Example 4.2 1
m X (ja))——X(ja))*T—Z5(a) Koy) o, =2,
—ZX(J(O) Kao,))

s k=—c0
An infinite sum of shifted versions of the original signal, X(jw)
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Sampling Theorem
= : 1 < :
Xs(t) = D X[n]o(t-nT,) ¢ X (jw) = = 2 X(i(w-ka,))
n=—o0 s k=—o0
» The shifted version of X(jw) may overlap with each other if @, is not large
enough, compared with the bandwidth of X(jw), i.e.WV.
xe X,(jo)
1
@ @
-V |0 W _
@

T
k=-2 k=-1 TN k=0 1 k=1 k=2
| | | | a) S | ‘An | ‘An ! DA‘ n“d 1 “n ] ‘An Il \n a)
! I I

—20, -0, W [0 W o, 20 3w, — 20, —, o| w o, 20, 3o,
o, —W

S -W

(b) (d)

--- As T, increases or @, decreases, the shifted replicas of X(jw) moves closer together, finally
overlapping one another when @, < 2W.



Example 4.9
Consider the effect of sampling the sinusoidal signal X (t) = COS(ﬂt)

Determine the FT of the sampled signal for T, = | / 4.

<Sol.> x B - _
Recall that ® (t) = nzzoox[n]g(t nT)«—— X;(Jo) = T, k_zoox (J(o-kw,))
|. First find that X (Jw) = 72'5(@ +7) + 10 (w—7)

2.Then,we have X (ja) - 25(0)4—7[ kw )+5(a) T — ka))

s k=—o0
which consists of pairs of impulses separated by 27, centered on integer multiples of

@, = 271/T, “® X(io)
1 FT - ‘l>
t + + I I +- 4 w
-3/ =2 0 2 3 -8 —47 —1r| T 4w 87
0
(@)
- Xs(jw)
k=-1 k=0 k=1
»7\ 4&_\ AN
x5(1)
1 FT TS = V4
-
-3 -1 1 3
_________________________ t t t + 1 @
-2 0 2 -87 -4 -7| 7w 4 87
0

®)



A T LLIEL L

—2r
(c)
_ for T, = 3/2
Xq(jo)
2713
LENENEN S S S B T S
-3 2 -r _*T|Z T 2
313
(@) 0

34
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Down-Sampling: @
Sampling Discrete-Time Signals

» Reaall y (f) = ix[n]&(t—nn)@xg(jw)— S X (j(0-ka,)

N=—c0 s k=—00

» Let y[n] = x[nqg] be a subsampled version of x[n], g is positive integer.

ys(t) = iy[nlé(t—nT;) w,'= w,/q

= ZX[nqlé(t nqT,) «——> Y, (Jw)—q— Z X(J(w—aw))
» Let E:I+m, 0<m<g-1,then
q q
,(je)=— _Z X(J(w—w))—:qZ{ ZX(J(a)—Iw —w)}
_______ =§§x5(1(w—%ws»
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Down-Sampling: @
Sampling Discrete-Time Signals

» Since y[n]«—— >Y(ejQ)=Y5(ja))‘w:Q=Y5(ja))‘w:§z , therefore
! qT,

13 0 m
Y(E*)==> X (J(w——GJ)) == X;(J(=——,))
Z i & qm:O ° qu q
T,
18 - m?2 13 i . Q m
qu o) ZA’( -27))
S m=0 Ts q
» Use X( ) X (Ja))‘ o ,we have Y(ejQ ZX(eJq(Q Z”m)
0 m=o
» Summary ”
= : 1 & :
ys(t) = Zx[nQ]5(t—ans)<L>Ya(JG))=q? > X(J(w—aws))
N=—o0 s k=—w0
= (Q 27zm)

____________________________ y[n] = x[gqn]«—2= (e‘Q) ZX(e
b 36 0 m=o



Down-Sampling by g

X (e’ X (ej(Q—(Q—l)Zﬂ))
o W I w o7 —27r(q+1) —27r 27(q-1)
@ (d)
Y(e/?)

W<_

X (e’

AN A A AN A\

2 e (W) 2rg
(b)

X (ej(Q—Zﬁ))
N N ANE

—27(q-1) 0N27— Wq 27 +Wg 27r(q +1)

Figure 4.29

Effect of subsampling on the DTFT. (a) Original signal spectrum. (b) m =0 term in Eq. (4.27)
(c)m=1termin Eq. (4.27). (d) m=q-1termin Eq. (4.27). (e) Y(e/?), assuming that W < n/q.
(f) Y(ei?), assuming that W > =/q.

& If the highest frequency component of X (e!®), W, is less than n/q, the
aliasing can be prevented.
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Reconstruction of Sampled Signal

» Reconstruction?
Reconstruction

— x(1)
system

X[1N] m—

» Not so easy !! The samples of a signal do not always uniquely determine the

corresponding continuous-time signal
x,(1)

» Nyquist Sampling Theorem

Let X(t) <—— X(jo) be a band-limited signal, i.e. X(jw)=0 for | ] >,

If o, > 2 w,, where o, = 27T is the sampling frequency, then x(t) is uniquely

;--égeter-mined- by its-samples x(nT);n-=0, £ L+ 2, oo
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Ideal/Perfect Reconstruction

» If the signal is not band-limited, an antialiasing filter is necessary
» Hereafter, we consider a band-limited signal
» Suppose that X(t) s X (J®), then the FT of the sampled signal is

X,(j0) == 3 X(jo- jka)

s k=—0
X, (j
X (jo) | (jo)
" h = 1 ) % / o o
-, |0 ,, “ — W -y, 0 O, 28
(@) (®) _ _ _
Ideal low-pass filter o) X(jo)=X;(jo)H,(jo)
» ldeal reconstruction: T
: T, w<w/2 ®
H. (jo)=1 ° ‘ ‘ S_/ ~w, 12 0 w2
0 otherwise © Non-causal !!
»39 o Nqustfrequency ___________ the perfect-reconstruction cannot be
.

implemented in any practical system



X(Jjo)=Xs(Jo)H, (Jo) mm  x(t) = X,(t)*h (1)

H. (jo)
’ Tssin(a;st) _ ¢
w12 |0 w2 = h ()= " :SInC(T_S)
h(t) «—— H, (jo)
X(t) = X, (t) *h, (t) = ( > XISt - nt)j «h,(t)

L - -
= > x[n]h.(t—nT,)= > x[n]sinc(

n

t—nT,

)

N=—o0 S

X,(t)

\\
-~ - 4 \ l\ x(’)
-~ - N
/ - ~
/ ~
1 [ T ] } == t \ ,I
0 T

T T I
3T, T, T, ; AL
NP V/ l( n If\\ \
* AN \ /o \
— ARV AN AN \/,- 27N\,
. . ho () — - ...a3-T..,. $‘-'7'\-6WT— t
Infinite length of h (t) r ST TR, N7 N

Non-causal filter _
Perfect reconstruction
N

AN
40 N4, T, |o T,\/ Y Dl
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A Practical Reconstruction — ormcmomcs
Zero-Order Hold Filter

» The zero-order hold filter; which holds the input value for T, seconds.

X (1)
x[n] X[1] m—g- Zet::l);dcr - X (1)
-
¥ T ho(D)
? I ! i ? n f —t — t
Sl 3 T -T, | T, 2T,
0 o -

a stair-step approximation to the original signal
» Impulse response (rectangular pulse):

h (t): l, O<t<TS (L) H (ja))zze_ja;rs/z Sln(a)TSIZ)
70, t<0,t>T, : -

|. A linear phase shift corresponding to a time delay of T/2 seconds

2. A distortion of the portion of X (jw) between — @, and @,,. [The distortion is
produced by the curvature of the mainlobe of H (jw).]

3. Distorted and attenuated versions of the images of X(jw), centered at nonzero



slope -T /2
(c)
X, (jo)|
AN
s N~ o
o, o, [ o, o 20,

(d)

& T, seconds holding for x[n] =» Time shift of T/2 in x (t) for distortion-|

& Stair-step approximation =» main reason for distortion-2 & 3
=» |. Using Equalizer for non-flattened mag. in passband
2. Using anti-image filter
=» Compensation filter

Both distortions | and 2 are reduced by increasing @, or, equivalently, decreasing T
e.g. oversampling !!

42



pipr. OF ELECTROMICS 924
ENGMEERING ¢ §
st OF ELECTROIMNCS ™,

Compensation Filter

» The frequency response:

_ Equalizer
H,(jo) /
Don’t care ,/'\1__—/\\</Don’t care
; N Anti-imaging
/ : : A @
0, -0, —0, 0 ®, O,—0,
H. (Jo) =+

"

x[n] xo(‘) xc(‘)

0 0 BEGNAL BRODESSIEE



Example 4.13

In this example, we explore the benefits of oversampling in reconstructing a continuous-time

audio signal using an audio compact disc player. Assume that the maximum signal frequency is

f =20 kHz. Consider two cases:

(a) reconstruction using the standard digital audio rate of I/T, = 44.1 kHz, and

(b) reconstruction using eight-times oversampling, for an effective sampling rate of |/T, =
352.8 kHz.

In each case, determine the constraints on the magnitude response of an anti-imaging filter so

that the overall magnitude response of the zero-order hold reconstruction system is between

0.99 and 1.01 in the signal passband and the images of the original signal’s spectrum centered

at multiples of the sampling frequency are attenuated by a factor of 10 3 or more.

<Sol.> Lol

< O )
H, (if)]

099 _
H',(if))

H".(jf)] _20kHz < f < 20KkHz
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0 200 400 600
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(o] —_ o
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=
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e
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X
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-600
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0 20
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(a)

20

0 5 10 15
f (kHz)

-5

e e ———— ——

=20 -15 -10

1.3

1.5
lHGO 5|

1.4

T,

1.1
1

0.9

(c)

45
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Outline

>
>
» Discrete-Time Processing of Continuous-Time Signals

» Fourier Series of Finite-Duration Nonperiodic Signals
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Discrete-Time Signal Processing

» Several advantages for DSP algorithm

Signal manipulations are more easily performed by using arithmetic
operations of a computer than through the use of analog components

DSP systems are easily modified in real-time

Direct dependence of the dynamic range and signal-to-noise ratio on the
number of bits used to represent the discrete-time signal

Easily implement the decimation and the interpolation

Anti-aliasing  x (1)  Sample at x[n] : = , Sampleand v () Anti-imaging
intervals Discrete-time 1] :

X(1) m— filter —_— —_— —_— filter — ¥(1)
H,(jo) of T, A Ho (i) H, (jo)
(a)
Equivalent
x(1) ,. continuous-time > (1)
system
G(jw)

(b)
p 47
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System Response Analysis

» Assume that the discrete-time processing operation is represented by a
DT system with frequency response H(e ?) Q= oT,, T, = sampling interval

Anti-aliasing x (1)  Sample at x[n] - a3 v[n Sampleand  y (;) Anti-imaging
X(1) — ﬁlte_r — intervals —— D;scretelt:::e —[L holc_l —Ob-— ﬁlte!' e V(1)
H.(jo) of T, TOCESS Ho(j) H.(jo)

X.(Jo) = H, (Jo) X (jo)

Xd(ja))— Zx( w—ka,))

:_SKZ;OH( j(o—ko))X (j(@—ka,))
Y(Jm)_—sH(emT)k;OH( o—ka,))X (j(o—ka,))

o0

__________ Y (jo) =TiHo(jw)Hc(jw)H (€)X H, (i(0—ko))X (j(0—ke,))|

} 48 S k=—o0




The anti-imaging filter H_(jw) eliminates frequency components above @w,/2, hence
eliminating all the terms in the infinite sum except for the k = 0 term.
Therefore, we have

Y (j0) == Hy (i), ()M (&7 )H, (o)X (jo)

S

The overall system is equivalent to a continuous-time LTI system having the response:

G(je) == H,(jo)H.(jo)H (" )H, (jo)

S

% If we choose the anti-aliasing and anti-imaging filters such that
LTHH(jo)H (jo)H, (jo) =1 nwwsp  G(jo)~H(e'™)

That is, we may implement a CT system in DT by choosing sampling parameters
appropriately and designing a corresponding DT system.

49
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Oversamphng A high sampling rate leads to high computation cost

» Oversampling can relax the requirements of the anti-aliasing filter as well as
the anti-image filter (a wide transition band)

» Anti-aliasing filter is used to prevent aliasing by limiting the bandwidth of

the signal prior to sampling.
W, = stopband of filter,
X(v) eHve W, = W, —W = width of transition band.

W ol w -W, W o W W,

(a) (b)
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Decimation

» Two sampled signals x,[n] and x,[n] with different sampling intervals T, and
T 2 X(jo)

N
1

@
-W 0 w

(a)

/\/\’I(E\‘/am\mmg "

27 -WT, |o WT,

X (e’

SVANVAN A /\ /\ ] —= {4 — gn]

4 -2 -wr WT
0




ool OF ELECIROMICS s
EiGIngERING «  § :
Iist. Of ELICROMCS My

Decimation Filter

» Decimation filter h [n] : a low-pass filter prevents from aliasing problem
when downsampling by qg.

T

: 1, QT |<—

H, (eJQ) = ‘ ‘ q
0, otherwise

p 52 VLS|

SENAL BRODESSIEE
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Interpolation

» Interpolation increases the sampling rate and requires that we somehow
produce values between two samples of the signal

X,[n]

x[n] ) — x;[n]
x[n] x,[n] x;[n]
0 n n
X b)
T,
=2 -z ~WIT 0 WT, V4 27

(a)

z“”“’ g-fold squeeze

ADABANN.

53 a a9 q q q q
g ®) Image occurs !! VLSI

swHaL eroceEssIBE




pipr. OF ELECTROMC . N 7
L @)
Interpolation Filter

» Decimation filter h[n] : a low-pass filter prevents from image problem when
upsampling by q.

Discrete-time

x[n] — Ups;mpllng >  lowpass — x[n]
Y4 Hy(e®)
T
: 1, QT | <—
Q y
Hi(eJ )= ‘ S‘ q
0, otherwise
Hi(e’)
; \ - N\ / L
-2 T 0 T 2r
q q
(c)
x.‘(ejg)
A
JA /\
___________________________ 1 \ - Q.
- -WT,| WT,, 5
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Outline

» Introduction

» Fourier Transform of Periodic Signals

» Convolution/Multiplication with (Non-)Periodic Signals
» Fourier Transform of Discrete-Time Signals

» Sampling

» Reconstruction of Continuous-Time Signals

» Discrete-Time Processing of Continuous-Time Signals

» Fourier Series of Finite-Duration Nonperiodic Signals
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Why DTFS for Finite Nonperiodic Signals?

» The primary motivation is for the numerical computation of Fourier

transform

» DTFS is only Fourier representation that can be evaluated numerically !!

» Let x[n] be a finite-duration signal of length M
» Introduce a periodic DT signal X[n] with period N>M

x[n]

N penodlc
n
0 M-1 extensmn

DTFT

U Q Sample at .

X[n]

zero padding

DTFS; Q,

Q, 27 Q=kQ,
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Relating the DTFS to the DTFT

> Consider a periodic DT signal X[n] with period N>M, then

- N-1 ~ V1 |
X[k]= Z X[n]e JK2n Apply x[n], we have X [K]= i Z X[n]e_JkQO”
n=0 " 9 =2n/N N
» Recall that X (') = Z 12" 'we conclude that
n=0
X[k = X (")
- N Q=kQ,

The DTFS coefficients of X[N] are samples of the DTFT of x[n], divided by N and
evaluated at intervals of 21t/N.

» The effect of sampling the DTFT of a finite-duration nonperiodic
signal is to periodically extend the signal in the time domain

» Dual to sampling in time domain

In order to prevent overlap in time domain, we requires N>M, or the sampling

p 57



Example 4.14,

3
— <n<
Consider the signal X[n] _ COS( 3 nj, 0<n<3l

0, otherwise

Derive both the DTFT, X(e/¢?), and the DTFS, X[k], of x[n] , assuming a period N > 3.

Evaluate and plot | X(e/*?)| and N|X[k]| for N = 32, 60, and 120.
<Sol.>

|.We rewrite the signal x[n] as g[n]w[n], where g[n] = cos(3ntn/8) and a rectangular window

win] = {1, 0<n 3_31 DTFT (ejg) _ i si_n (162)
0, otherwise sin(Q/2)

2.Th : . .
" X(eJQ)zziG(eJQ)®W(eJQ)
T
- X (ejQ) _ o~ i3UQ+37/8)/2 sin(16(Q+37z/8)) o~ i31Q-37/8)/2 Siﬂ(lG(Q—Sﬂ/B))

2 sin((Q+37/8)/2) " 2 sin((Q—-37/8)/2)
3. Sample at (2=kQ), and divide by N, we have




(kQ, +37/8)16

(kQ,+37/8)16 (kQ, +37/8)16

_e_j
_e_j

p!

—j%(kQO+37r/8) !

e_j

X [k] = (KO, +3718)2 (KO, +3718)2

2Ne
e—j(kQO—37r/8)16 ej(on—37z/8)16 _ e—j(on—37r/8)16
ej(on—3zz/8)2 . e—j(on—3zz/8)2

N (K% -37/8)/2

) 131k, +37/8)/2 sin(16(kQO +37T/8))
—[ ON jsin((kﬂo+3”/8)/2)

o~ 131(kQ,-37/8)/2 sin(16(on—3”/8))
’{ 2N jsin((on ~37/8)/2)
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Relating the FS to the FT

» The relationship between the FS and the FT of a finite-duration non-
periodic continuous-time signal is analogous to that of discrete-time case

» Let x(t) have duration T, so that X(t20= 0, t<0 or t=T,
» Construct a periodic signal X(t) = Z X(t+mT) with T> T,
» Consider the FS of X(t) m=

coor LT o kot L (T ket
X[Kl== [ %) dt = " (et

» Recall that . _ T _
X() <2 X (jo)= j x(t)e 1dt = jo x(t)e 1 dt

- | XIKI=ZX(j0)

=Ko,

The FS coefficients are samples of the FT, normalized by T



