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Introduction

3

 Four classes of signals in Fourier representations
 Continuous- and discrete-time signals
 Periodic and nonperiodc signals

 In order to use Fourier methods to analyze a general system 
involving a mixing of noperiodic (says, impulse response) and 
periodic (input) signals, we must build bridges between Fourier 
representations of different classes of signals

 FT/DTFT are most commonly used for analysis applications
 We must develop FT/DTFT representations of periodic signals 

 DTFS is the primary representation used for computational 
applications (the only one can be evaluated on a computer)
 Use DTFS to represent the FT, FS, and DTFT 



FT Representations of Periodic Signals
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 Recall the FS representation of a periodic signal x(t): 
 Note that

 Using the frequency-shift property, we have

 Let’s take the FT of x(t):
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◆The FT of a periodic signal is a series of impulses spaced by the 
fundamental frequency 0.

◆The kth impulse has strength 2X[k]
◆The shape of X(j) is identical to that of X[k]



FS and FT Representations of a 
Periodic Continuous-Time Signal

5

0

0 0 0 0

( )X j

2

2
4

6





Example 4.1 FT of a Cosine
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<Sol.>
Find the FT representation of x(t) = cos(ot)

1. FS of x(t):    0;
0
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2. FT of x(t):        0 0 0cos FTt X j           
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Example 4.2 FT of a Unit Impulse Train
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Find the FT of the impulse train 
<Sol.>

1. p(t) = periodic, fundamental period  = T

2. FS of p(t):
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The FT of an impulse train is also an impulse train.



Relating the DTFT to the DTFS
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 Recall the DTFS representation of a periodic DT signal x[n]: 

 Note that the inverse DTFT of a frequency shifted impulse, i.e. (-k), is 
a complex sinusoid.  With one period of           , we have

 Let’s construct an infinite series of shifted impulses separated by 2, i.e. to 
obtain the following 2-periodic function

 Let’s take the DTFT of x[n]:
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Since X[k] is N periodic and N0 = 2, we may combine the two sums 

 













  
1

0
0

1

0

)2(][2)(][][ 0

N

k m

jDTFT
N

k

njk mkkXeXekXnx 



Relating the DTFT to the DTFS
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 The DTFT of a periodic signal is a series of impulses spaced by the 
fundamental frequency 0

The DTFS X[k] and the corresponding
DTFT X(e j) have similar shape.

DTFS DTFT
Weighting factor = 2



Example 4.3 DTFT of a Periodic Signal
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Determine the inverse DTFT of the frequency-domain representation depicted in the 
following figure, where Ω1 = π /N. 

<Sol.>
1. We express one period of X(e j) as 
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2. The inverse DTFT:
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Convolution and Multiplication with 
Mixtures of Periodic and Nonperiodic Signals
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 Example: a periodic signal fed into a stable, nonperiodic impulse response

 FT is applied to continuous-time (CT) case

 DTFT is applied to discrete-time (DT) case

 For CT signals:  

 If x(t) is CT periodic signal, then

Stable filter
Nonperiodic impulse response h(t)

Periodic input x(t) y(t) = x(t) h(t)
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Convolution with Mixtures of Periodic and 
Nonperiodic Signals
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Example 4.4
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A periodic square wave is applied to a system with impulse response h(t)=(1/(t))sin(t. 
Use the convolution property to find the output of this system.

<Sol.>

1. The frequency response of the LTI system is by taking the FT of the impulse response h(t): 
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2. FT of the periodic square wave: 
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3. The FT of the system output is Y(j) = H(j)X(j): 

    





 






 

2
2

2
2 jY

H(j) acts as a low-pass filter, passing harmonics 
at /2, 0, and /2, while suppressing all others.

4. Inverse FT of Y(j):        2/cos/22/1  tty 
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 For DT signals:  

 If x[n] is DT periodic signal, then

Convolution with 
Mixtures of Periodic and Nonperiodic Signals

Stable filter
Nonperiodic impulse response h[n]

Periodic input x[n] y[n] = x[n] h[n]
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The form ofY(e j) indicates that y[n] is also periodic with the same period as x[n].



Multiplication of 
Periodic and Nonperiodic Signals
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 Continuous-time case:

 Original multiplication property:

 If x(t) is periodic. The FT of x(t) is 
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Multiplication of g(t) with the periodic function x(t) gives an FT consisting of a 
weighted sum of shifted versions of G(j) 



17

( )G j ( )G j





02

00

02

( )X j 02

0 0

02


( )G j

( )Y j

         0[ ] ( )FT

k

y t g t x t Y j X k G j k  




   

y(t) becomes nonperiodic signal !

The product of periodic and 
nonperiodic signals is nonperiodic



Example 4.4
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Consider a system with output y(t) = g(t)x(t). 
Let x(t) be the square wave and g(t) = cos(t /2),  Find Y(j) in terms of G(j). 

<Sol.>
 FS representation of the square wave:

     ; / 2 sin / 2FS k
x t X k
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Example 4.6 AM Radio
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A simplified AM transmitter and receiver are depicted in Fig. 4.13(a). The effect of propagation 
and channel noise are ignored in this system. The signal at the receiver antenna, r(t), is 
assumed equal to the transmitted signal. The passband of the low-pass filter in the receiver is 
equal to the message bandwidth,  W < < W. Analyze this system in the frequency domain. 

<Sol.>

1. The transmitted signal is expressed as 

                 cos 1/ 2 1/ 2FT
c c cr t m t t R j M j M j          
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                 cos 1/ 2 1/ 2FT
c c cg t r t t G j R j R j          

                1/ 4 2 1/ 2 1/ 4 2c cG j M j M j M j         

The original message is recovered by low-pass filtering to remove the message 
replicates centered at twice the carrier frequency. 



Multiplication of 
Periodic and Nonperiodic Signals
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 Discrete-time case:

 Original multiplication property:

 If x[n] is periodic. The DTFS of x[n] and its DTFT is
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Example 4.7 Windowing Effect
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Windowing (or truncating): one common data-processing applications, which access only 
to a portion of a data record. 
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Using only the 2M+1 values of x[n], n≦ M, evaluate the effect of computing the DTFT. 

<Sol.>

1. Since 
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which consists of impulses at ± 7/16 and ± 9/16. 

2. Define a signal y[n] = x[n]w[n], where  
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3. The windowing introduces replicas of W(e j) centered at the frequencies 7/16 and 
9/16, instead of the impulses that are present in X(e j) .

4. We may view this state of affairs as a smearing of broadening of the original impulses
5. The energy in Y(e j) is now smeared over a band centered on the frequencies of the 

cosines

Effect of windowing a data record. Y(e j) for 
different values of M, assuming that 1 = 7/16 
and 2 = 9/16. 
(a) M = 80, (b) M = 12, (c) M = 8.

 If the number of available data points is small 
relative to the frequency separation, the DTFT 
is unable to distinguish the presence of two 
distinct sinusoids (e.g. M=8)



Fourier Transform of Discrete-Time Signals
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 A mixtures of discrete-time and continuous-time signals

 By incorporating discrete-time impulses into the description of the signal in 
the appropriate manner.

Basic concepts:
Consider the following signals: ( ) and [ ]j t j nx t e g n e  
Let’s force g[n] to be equal to the samples of x(t) with sample period Ts; i.e., g[n] = x(nTs).

sj T nj ne e  

Now, consider the DTFT of a DT signal x[n]:    j j n
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Define the continuous time signal x(t) with the Fourier transform X(j): 

Taking the inverse FT of X(j), using the FT pair   sj T nFT
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Relating the FT to the DTFT
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◆ x(t)  a CT signal corresponds to x[n]; 

X(j)  Fourier transform corresponds to the CT Fourier transform X(e j) 

The DTFT X(e j) is periodic in  while the FT X(j) is 2/Ts periodic in .
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Example 4.8
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Determine the FT pair associated with the DTFT pair 
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This pair is derived in Example 3.17 assuming that |a| < 1 so the DTFT converges. 

<Sol.>
1. We first define the continuous-time signal    
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Relating the FT to the DTFS
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 Suppose that x[n] is an N-periodic signal, then

 Now, define x(t)  a CT signal corresponds to x[n], then the Fourier 
transform X(j) of the continuous time signal x(t) is
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Use the scaling property of the impulse, (a) = (1/a)(), to rewrite  X(j) as
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1. Recall that X[k] is N-periodic, which implies that X(j) is periodic with periodic 
N0/Ts = 2/Ts

2. Recall that x[n] is N-periodic, which implies that x(t) is periodic with periodic NTs

 






 




 ss

FT

n
s T

kkX
T

jXnTtnxtx 0][2)()(][)(  

0

2

sT



2

sT


2

sNT


( )dX j



X[k] and x[n] are N-periodic functions

x(t) and X(j) are periodic impulse trains with period NTs and 2/Ts.
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Sampling

30

 We use FT representation of discrete-time signals to analyze the effects of 
uniformly sampling a signal.

 Sampling the (continuous-time) signal is often performed in order to 
manipulate the signal on a computer.

 Let x(t) be a CT signal and x[n], a DT signal, is the “samples” of x(t) at 
integer multiples of a sampling interval.

Sampling 
CT signals DT signals
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Sampling Process
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 We note that
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Example 4.2

An infinite sum of shifted versions of the original signal, X(j)



Sampling Theorem
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 The shifted version of X(j) may overlap with each other if s is not large 
enough, compared with the bandwidth of X(j), i.e. W.
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As Ts increases or s decreases, the shifted replicas of X(j) moves closer together, finally 
overlapping one another when s < 2W.

aliasingsW > W
sW < W
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Example 4.9
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Determine the FT of the sampled signal for Ts = 1 / 4.

Consider the effect of sampling the sinusoidal signal    cosx t t

<Sol.>
Recall that

2. Then, we have      
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which consists of pairs of impulses separated by 2, centered on integer multiples of 
s = 2/Ts

Ts = ¼. 
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Down-Sampling: 
Sampling Discrete-Time Signals
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 Recall 

 Let y[n] = x[nq] be a subsampled version of x[n], q is positive integer.

 Let                                          , then











k

s
s

FT

n
s kjX

T
jXnTtnxtx ))((1)()(][)(  

)(][         

)'(][)(

s
n

s
n

nqTtnqx

nTtnyty


























k

s
s

FT

q
kjX

qT
jY ))((1)( 

qss  '

10   ,  qm
q
ml

q
k



 




























1

0

1

0

))((1                                                     

)((11 ))((1)(

q

m
s

q

m l
ss

sk
s

s

q
mjX

q

q
mljX

Tqq
kjX

qT
jY











Down-Sampling: 
Sampling Discrete-Time Signals

36

 
ss qTT

jDTFT jYjYeYny 





  
  )()(][

'





































1

0

1

0

1

0

1

0

))2((1))2((1           

))((1))((1)(

q

m s

q

m ss

q

m
s

s
qT

q

m
s

j

q
m

qT
jX

qTq
m

qT
jX

q

q
m

qT
jX

qq
mjX

q
eY

s












 
sT

j jXeX 


 
 )( 






 

1

0

)2(1

)(1)(
q

m

m
q

j
j eX

q
eY













k

s
s

FT
s

n q
kjX

qT
jYnqTtnqxty ))((1)()(][ )(  

  





  

1

0

)2(1

)(1][][
q

m

m
q

j
jDTFT eX

q
eYqnxny



 Since                                                                             ,  therefore

 Use                                   , we have 

 Summary



Down-Sampling by q
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Figure 4.29 
Effect of subsampling on the DTFT. (a) Original signal spectrum. (b) m = 0 term in Eq. (4.27) 
(c) m = 1 term in Eq. (4.27). (d) m = q – 1 term in Eq. (4.27). (e) Y(ej), assuming that W < /q. 
(f) Y(ej), assuming that W > /q.

 If the highest frequency component of X (e j ), W, is less than /q, the 
aliasing can be prevented.



Reconstruction of Sampled Signal
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 Reconstruction?

 Not so easy !! The samples of a signal do not always uniquely determine the 
corresponding continuous-time signal

 Nyquist Sampling Theorem

Let ( ) ( )FTx t X j be a band-limited signal, i.e. X(j)=0 for >m.

If s > 2 m, where s = 2/Ts is the sampling frequency, then x(t) is uniquely 
determined by its samples x(nTs), n = 0,  1,  2, … .



Ideal/Perfect Reconstruction
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 If the signal is not band-limited, an antialiasing filter is necessary 

 Hereafter, we consider a band-limited signal

 Suppose that                                  , then the FT of the sampled signal is

 Ideal reconstruction:
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Non-causal !!

the perfect-reconstruction cannot be 
implemented in any practical system
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A Practical Reconstruction –
Zero-Order Hold Filter

41

 The zero-order hold filter, which holds the input value for Ts seconds.

 Impulse response (rectangular pulse):
a stair-step approximation to the original signal
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1. A linear phase shift corresponding to a time delay of Ts/2 seconds
2. A distortion of the portion of X(j) between  m and m. [The distortion is 

produced by the curvature of the mainlobe of Ho(j).]
3. Distorted and attenuated versions of the images of X(j), centered at nonzero 

multiples of s.
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 Ts seconds holding for x[n] Time shift of Ts/2 in xo(t) for distortion-1

 Stair-step approximation  main reason for distortion-2 & 3 
 1.  Using Equalizer for non-flattened mag. in passband

2.  Using anti-image filter
 Compensation filter 

Both distortions 1 and 2 are reduced by increasing s or, equivalently, decreasing Ts, 
e.g. oversampling !! 



Compensation Filter 
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 The frequency response:
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Example 4.13
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In this example, we explore the benefits of oversampling in reconstructing a continuous-time 
audio signal using an audio compact disc player.  Assume that the maximum signal frequency is
fm = 20 kHz. Consider two cases: 
(a) reconstruction using the standard digital audio rate of 1/Ts1 = 44.1 kHz, and 
(b) reconstruction using eight-times oversampling, for an effective sampling rate of 1/Ts2 = 

352.8 kHz. 
In each case, determine the constraints on the magnitude response of an anti-imaging filter so 
that the overall magnitude response of the zero-order hold reconstruction system is between 
0.99 and 1.01 in the signal passband and the images of the original signal’s spectrum centered 
at multiples of the sampling frequency are attenuated by a factor of 10 3 or more. 

<Sol.> 0.99 1.01' ( ) , 20 kHz 20kHz
' ( ) ' ( )c
o o

H jf f
H jf H jf
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Discrete-Time Signal Processing

47

 Several advantages for DSP algorithm
 Signal manipulations are more easily performed by using arithmetic 

operations of a computer than through the use of analog components
 DSP systems are easily modified in real-time
 Direct dependence of the dynamic range and signal-to-noise ratio on the 

number of bits used to represent the discrete-time signal
 Easily implement the decimation and the interpolation 
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System Response Analysis
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 Assume that the discrete-time processing operation is represented by a 
DT system with frequency response H(e j)
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The anti-imaging filter Hc(j) eliminates frequency components above s/2, hence 
eliminating all the terms in the infinite sum except for the k = 0 term. 
Therefore, we have

 1( ) ( ) ( ) ( ) ( )sj T
o c a

s

Y j H j H j H e H j X j
T

    

 1( ) ( ) ( ) ( )sj T
o c a

s

G j H j H j H e H j
T

   

The overall system is equivalent to a continuous-time LTI system having the response:

 If we choose the anti-aliasing and anti-imaging filters such that

(1/ ) ( ) ( ) ( ) 1s o c aT H j H j H j    ( ) ( )sj TG j H e  

That is, we may implement a CT system in DT by choosing sampling parameters 
appropriately and designing a corresponding DT system.



Oversampling
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 Oversampling can relax the requirements of the anti-aliasing filter as well as 
the anti-image filter (a wide transition band)

 Anti-aliasing filter is used to prevent aliasing by limiting the bandwidth of 
the signal prior to sampling.

Ws  stopband of filter, 
Wt = Ws W  width of transition band.


s

s-Ws

s-W s-W > Ws Wt = Ws W
< s- 2W  

A high sampling rate leads to high computation cost



Decimation
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x2[n] g[n]

( )X j



2 44 2

2 44 2

4224

Sampling !!

q-fold spread out

 Two sampled signals x1[n] and x2[n] with different sampling intervals Ts1 and 
Ts2

The maximum frequency component of X2(e j) satisfies WTs2 < /q



Decimation Filter
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 Decimation filter hd[n] : a low-pass filter prevents from aliasing problem 
when downsampling by q.





 



otherwise,0

,1)( q
TeH sj

d





Interpolation
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 Interpolation increases the sampling rate and requires that we somehow 
produce values between two samples of the signal

22 

22 4
q
4

q



2
q
2

q


 1s
WT

q
1s

WT
q



q-fold squeeze

Image occurs !!



Interpolation Filter
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 Decimation filter hi[n] : a low-pass filter prevents from image problem when 
upsampling by q.





 



otherwise,0

,1)( q
TeH sj

i



Upsampling
by q

Discrete-time 
low pass 
Hi(ej)

x[n] xi[n]

22
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q
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Outline
 Introduction

 Fourier Transform of Periodic Signals

 Convolution/Multiplication with (Non-)Periodic Signals

 Fourier Transform of Discrete-Time Signals

 Sampling

 Reconstruction of Continuous-Time Signals

 Discrete-Time Processing of Continuous-Time Signals

 Fourier Series of Finite-Duration Nonperiodic Signals
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Why DTFS for Finite Nonperiodic Signals? 

56

 The primary motivation is for the numerical computation of Fourier 
transform

 DTFS is only Fourier representation that can be evaluated numerically !!

 Let x[n] be a finite-duration signal of length M

 Introduce a periodic DT signal          with period NM[ ]x n

22
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( )
M

j j n
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X e x n e


  



 

zero padding



Relating the DTFS to the DTFT

57

 Consider a periodic DT signal          with period NM, then

 Recall that                                   , we conclude that 

 The effect of sampling the DTFT of a finite-duration nonperiodic
signal is to periodically extend the signal in the time domain

 Dual to sampling in time domain

[ ]x n







1

0

0][~1][~ N

n

njkenx
N

kX 
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0

0][1][~ M

n

njkenx
N

kXApply x[n], we have

 
1

0

( )
M

j j n

n

X e x n e


  



 
o = 2/N

0
)(1][~




k

jeX
N

kX

The DTFS coefficients of          are samples of the DTFT of x[n], divided by N and 
evaluated at intervals of 2/N.

[ ]x n

In order to prevent overlap in time domain, we requires NM, or the sampling 
frequency 02/M



Example 4.14
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Derive both the DTFT, X(e j), and the DTFS, X[k], of x[n] , assuming a period N > 31.
Evaluate and plot |X(e j)| and N|X[k]| for N = 32, 60, and 120.

Consider the signal  
3cos , 0 31
8

0, otherwise

n n
x n

        


<Sol.>
1. We rewrite the signal x[n] as g[n]w[n], where g[n] = cos(3n/8) and a rectangular window 

  1, 0 31
0, otherwise

n
w n

 
 


   31 / 2 sin 16
sin( 2)

j jW e e   



DTFT

2. Then
)()(

2
1)(   jjj eWeGeX


    
  

  
  

31( 3 /8) / 2 31( 3 /8) / 2sin 16 3 8 sin 16 3 8
2 sin 3 8 2 2 sin 3 8 2

j j
j e eX e

  
 

   
    

 
   

3. Sample at =k0 and divide by N, we have
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Relating the FS to the FT
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 The relationship between the FS and the FT of a finite-duration non-
periodic continuous-time signal is analogous to that of discrete-time case

 Let x(t) have duration T0, so that

 Construct a periodic signal                                  with T  To 

 Consider the FS of

 Recall that  

0( ) 0, 0 orx t t t T  

( ) ( )
m

x t x t mT




 

( )x t

0 0
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The FS coefficients are samples of the FT, normalized by T


