Chapter 3：
Fourier Representation of Signals and LTI Systems

Chih－Wei Liu

## Outline

- Introduction
- Complex Sinusoids and Frequency Response
- Fourier Representations for Four Classes of Signals
- Discrete-time Periodic Signals
- Continuous-time Periodic Signals
- Discrete-time Nonperiodic Signals
- Continuous-time Nonperiodic Signals
- Properties of Fourier representations
- Linearity and Symmetry Properties
- Convolution Property


## Reviews of Fourier Representations

Table 3.2 The Four Fourier Representations

| Time Domain | Periodic ( $t, n$ ) | Non-periodic ( $t, n$ ) |  |
| :---: | :---: | :---: | :---: |
| Continuous <br> ( $t$ ) | Fourier Series $\begin{aligned} x(t) & =\sum_{k=-\infty}^{\infty} X[k] e^{j k \omega_{0} t} \\ X[k] & =\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t \end{aligned}$ <br> $x(t)$ has period $T$, $\omega_{o}=2 \pi / T$ | Fourier Transform $\begin{gathered} x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \\ X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \end{gathered}$ | Nonperiodic $(k, \omega)$ |
| Discrete [ $n$ ] | Discrete-Time <br> Fourier Series $\begin{aligned} x[n] & =\sum_{k=0}^{N-1} X[k] e^{j k \Omega_{0} n} \\ X[k] & =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{j k \Omega_{0} n} \end{aligned}$ <br> $x[n]$ and $X[k]$ have period $N, \Omega_{o}=2 \pi / N$. | Discrete-Time Fourier Transform $\begin{gathered} x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \Omega}\right) e^{j \Omega n} d \Omega \\ X\left(e^{j \Omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n} \\ X\left(e^{j \Omega}\right) \text { has period } 2 \pi . \end{gathered}$ | Periodic $(k, \Omega)$ |
|  | Discrete [k] | Continuous ( $\omega, \Omega$ ) | Frequency Domain |

- 3 The four Fourier representations are all based on complex sinusoids


## Periodicity Properties of Fourier <br> Representations

Table 3.3 Periodicity Properties of Fourier Representations
Time-Domain Property Frequency-Domain Property

| Continuous | Nonperiodic |
| :---: | :---: |
| Discrete | Periodic |
| Periodic | Discrete |
| Nonperiodic | Continuous |

- Periodic time signals have discrete frequency-domain representations, while nonperiodic time signals have continuous frequency-domain ones.
- In general, representations that are continuous/discrete in one domain are nonperiodic/periodic in the other domain.


## Linearity Property of Fourier

## Representations

$$
\begin{array}{lll}
Z(t)=a x(t)+b y(t) & \stackrel{F T}{\longleftrightarrow} & Z(j \omega)=a X(j \omega)+b Y(j \omega) \\
Z(t)=a x(t)+b y(t) & \stackrel{F S ; \omega_{o}}{\longleftrightarrow} & Z[k]=a X[k]+b Y[k] \\
Z[n]=a x[n]+b y[n] & \stackrel{D T F T}{\longleftrightarrow} & Z\left(e^{j \Omega}\right)=a X\left(e^{j \Omega}\right)+b Y\left(e^{j \Omega}\right) \\
z[n]=a x[n]+b y[n] & \stackrel{D T F S ; \Omega_{o}}{\longleftrightarrow} & Z[k]=a X[k]+b Y[k]
\end{array}
$$

- Uppercase symbols denote the Fourier representation of the corresponding lowercase ones
- In case of FS and DTFS, the (two) signals being summed are assumed to have the same fundamental period


## Example 3.30




(c)

$$
z(t)=(3 / 2) x(t)+(1 / 2) y(t)
$$

$$
x(t) \stackrel{F s ; 2 \pi}{\longleftrightarrow} X[k]=(1 /(k \pi)) \sin (k \pi / 4)
$$

$$
y(t) \stackrel{F S ; 2 \pi}{\longleftrightarrow} Y[k]=(1 /(k \pi)) \sin (k \pi / 2)
$$

$$
Z(t) \stackrel{F S ; 2 \pi}{\longleftrightarrow} Z[k]=(3 /(2 k \pi)) \sin (k \pi / 2)+(1 /(2 k \pi)) \sin (k \pi / 2)
$$

## Symmetry Property for Real-Valued $x(t)$

- For a real-valued signal $x(t)$, we have $X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$
- Consider the complex-conjugate of $X(j \omega)$ :

$$
\begin{aligned}
X^{*}(j \omega)= & \left(\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t\right)^{*} \\
=\int_{-\infty}^{\infty} x^{*}(t) e^{j \omega \alpha} d t & =\int_{-\infty}^{\infty} x(t) e^{j \omega t} d t \\
& =\int_{-\infty}^{\infty} x(t) e^{-j(-\omega) t} d t=X(-j \omega)
\end{aligned}
$$

- For a real-valued $x(t), X(j \omega)$ is complex-conjugate symmetric
- Another representation:

$$
\begin{aligned}
X(j \omega) & =\operatorname{Re}\{X(j \omega)\}+j \operatorname{Im}\{X(j \omega)\} \\
X^{*}(j \omega) & =\operatorname{Re}\{X(j \omega)\}-j \operatorname{Im}\{X(j \omega)\} \\
X(-j \omega) & =\operatorname{Re}\{X(-j \omega)\}+j \operatorname{Im}\{X(-j \omega)\}
\end{aligned}
$$

/ even
$\operatorname{Re}\{X(-j \omega)\}=\operatorname{Re}\{X(j \omega)\}$
$\operatorname{Im}\{X(-j \omega)\}_{A}=-\operatorname{Im}\{X(j \omega)\}$
odd

## Symmetry Property for Imaginary-Valued $x(t)$

- For a imaginary-valued signal $x(t)$, we have $X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$
- Consider the complex-conjugate of $X(j \omega)$ :

$$
\begin{aligned}
X^{*}(j \omega)= & \left(\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t\right)^{*} \\
=\int_{-\infty}^{\infty} x^{*}(t) e^{j \omega t} d t & =\int_{-\infty}^{\infty}-x(t) e^{j \omega t} d t \\
& =-\int_{-\infty}^{\infty} x(t) e^{-j(-\infty) t} d t=-X(-j \omega)
\end{aligned}
$$

- For a pure imaginary $x(t), X(j \omega)$ is conjugate anti-symmetric
- Another representation:

$$
\begin{aligned}
X(j \omega) & =\operatorname{Re}\{X(j \omega)\}+j \operatorname{Im}\{X(j \omega)\} \\
X^{*}(j \omega) & =\operatorname{Re}\{X(j \omega)\}-j \operatorname{Im}\{X(j \omega)\}
\end{aligned}
$$

$$
\stackrel{\text { odd }}{\operatorname{Re}\{X(-j \omega)\} \stackrel{ }{=}-\operatorname{Re}\{X(-j \omega)\}}
$$

$$
-X(-j \omega)=-\operatorname{Re}\{X(-j \omega)\}-j \operatorname{Im}\{X(-j \omega)\}
$$

$$
\operatorname{Im}\{X(-j \omega)\}=\operatorname{Im}\{X(j \omega)\}
$$

## Symmetry Properties of Fourier Representations

Table 3.4 Symmetry Properties for Fourier Representation of Real- and Imaginary-Valued Signals

| Representation | Real-Valued Time <br> Signals | Imaginary-Valued Time <br> Signals |
| :---: | :---: | :---: |
| FT | $X^{*}(j \omega)=X(-j \omega)$ | $X^{*}(j \omega)=-X(-j \omega)$ |
| FS | $X^{*}[k]=X[-k]$ | $X^{*}[k]=-X[-k]$ |
| DTFT | $X^{*}\left(e^{\rho \Omega}\right)=X\left(e^{-j \Omega}\right)$ | $X^{*}\left(e^{\beta \Omega}\right)=-X\left(e^{-j \Omega}\right)$ |
| DTFS | $X^{*}[k]=X[-k]$ | $X^{*}[k]=-X[-k]$ |

- Note that for the periodic signal with period $N, X[-k]=X[N-k]$
- If $x(t)$ is real and even, then $\boldsymbol{X}^{*}(\mathbf{j} \omega)=\boldsymbol{X}(\mathbf{j} \omega)$. That is, $\boldsymbol{X}(\mathbf{j} \omega)$ is real
$\rightarrow$ A real and even signal has a real and even frequency representation
- If $x(t)$ is real and even, then $X^{*}(j \omega)=-X(j \omega)$. That is, $X(j \omega)$ is imaginary
$\rightarrow$ A real and odd signal has a imaginary and odd frequency representation


## IO-Relationship in Real-Valued LTI System


I.The real-valued input signal $x(t)=A \cos (\omega t-\phi)$

Rewrite the input signal : $x(t)=(A / 2) e^{j(\omega t-\phi)}+(A / 2) e^{-j(\omega t-\phi)} \quad$ Two eigenfunctions
2. The real-valued impulse response of LTI system: $h(t)$.
3. Applied the linear property of the LTI sytem to obtain the output signal:

$$
\begin{aligned}
& y(t)=\frac{A}{2} e^{-j \phi} H(j \omega) e^{j \omega t}+\frac{A}{2} e^{j \phi} H(-j \omega) e^{-j \omega t} \\
& y(t)=|H(j \omega)|(A / 2) e^{j(\omega t-\phi+\arg \{H(j \omega)\})}+|H(-j \omega)|(A / 2) e^{-j(\omega t-\phi-\arg \{H(j \omega)\})}
\end{aligned}
$$

Exploiting the symmetry conditions: $|H(j \omega)|=|H(-j \omega)| \quad \arg \{H(j \omega)\}=-\arg \{H(-j \omega)\}$

$$
y(t)=|H(j \omega)| A \cos (\omega t-\phi+\arg \{H(j \omega)\})
$$

## Convolution of Nonperiodic Signals

- The convolution property is a consequence of complex sinusoids being eigenfunctions of LTI system

$$
\begin{aligned}
y(t)= & h(t) * x(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau \quad \text { Since } x(t-\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega(t-\tau)} d \omega \\
y(t)= & \int_{-\infty}^{\infty} h(\tau)\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} e^{-j \omega \tau} d \omega\right] d \tau \\
= & \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} h(\tau) e^{-j \omega \tau} d \tau\right] X(j \omega) e^{j \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} H(j \omega) X(j \omega) e^{j \omega t} d \omega \\
& y(t)=h(t) * x(t) \stackrel{F T}{\longleftrightarrow} Y(j \omega)=X(j \omega) H(j \omega) \\
& y[n]=x[n] * h[n] \stackrel{\text { DTFT }}{\longleftrightarrow} Y\left(e^{j \Omega}\right)=X\left(e^{j \Omega}\right) H\left(e^{j \Omega}\right)
\end{aligned}
$$

- The convolution in time-domain corresponds to the multiplication in frequency-domain


## Example 3.31

Let $x(t)=(I /(\pi t)) \sin (\pi t)$ be the input to a system with impulse response $h(t)=(I /(\pi t)) \sin (2 \pi t)$. Find the output $y(t)=x(t) * h(t)$.
<Sol.>
From Example 3.26, we have

$$
x(t) \stackrel{F T}{\longleftrightarrow} X(j \omega)=\left\{\begin{array}{ll}
1, & |\omega|<\pi \\
0, & |\omega|>\pi
\end{array} \quad h(t) \stackrel{F T}{\longleftrightarrow} H(j \omega)= \begin{cases}1, & |\omega|<2 \pi \\
0, & |\omega|>2 \pi\end{cases}\right.
$$

Since $y(t)=h(t) * x(t) \stackrel{F T}{\longleftrightarrow} Y(j \omega)=X(j \omega) H(j \omega)$
$\xrightarrow{\|} Y(j \omega)= \begin{cases}1, & |\omega|<\pi \\ 0, & |\omega|>\pi\end{cases}$
$\| y(t)=(1 /(\pi t)) \sin (\pi t)$

## Example 3.32

Use the convolution property to find $x(t)$, where $x(t) \stackrel{F T}{\longleftrightarrow} X(j \omega)=\frac{4}{\omega^{2}} \sin ^{2}(\omega)$ <Sol.>
I. Write $X(j \omega)=Z(j \omega) Z(j \omega)$, where $Z(j \omega)=\frac{2}{\omega} \sin (\omega)$

$$
z(t)= \begin{cases}1, & |t| \leq 1 \\ 0, & |t|>1\end{cases}
$$


(a)
2. Apply the convolution property, we have $x(t)=z(t) * z(t)$

Hence

(b)

## Filtering

- The multiplication in frequency domain, i.e. $X(j \omega) H(j \omega)$, gives rise to the "filtering"
- "Filtering" implies that some frequency components of the input signal are eliminated (stopband) while other are passed by the system (passband)
- Ideal filters:

Figure 3.53
Frequency response of ideal continuous- and discretetime filters:
(a) Low-pass filters.
(b) High-pass filters
(c) Band-pass filters.


The frequency response of discrete-time filters is based on its characteristic in the range $-\pi<\Omega \leq \pi$ because it is $2 \pi$-periodic

## The Magnitude Response of Filters

- The magnitude response of the filter is defined by

$$
20 \log |H(j \omega)| \quad \text { or } \quad 20 \log \left|H\left(e^{j \Omega}\right)\right|[\mathrm{dB}]
$$

- Being described in units of decibels (or dB)
- The unit gain is corresponding to 0 dB .
* The passband of the filter is normally closed to 0 dB
- The edge of the passband is usually defined by the frequencies for which the response is -3 dB (corresponding to a magnitude response of $I / \sqrt{ } 2$ )
- Note that $|Y(j \omega)|^{2}=|H(j \omega)|^{2}|X(j \omega)|^{2},-3 \mathrm{~dB}$ points correspond to frequencies at which the filter passes only half of the input power
> -3 dB points are usually termed as the cutoff frequencies of the filter


## Example 3.33 RC Circuit Filtering

For the $R C$ circuit, the impulse response for the case where $y_{C}(t)$ is the output is given by $h_{C}(t)=\frac{1}{R C} e^{-t / R C} u(t) . \quad$ Since $y_{R}(t)=x(t)-y_{C}(t)$, the impulse response for the case where $y_{R}(t)$ is the output is given by

$$
h_{R}(t)=\delta(t)-\frac{1}{R C} e^{-t / R C} u(t)
$$



Plot the magnitude responses of both systems on a linear scale and in dB , and characterize the filtering properties of the systems.
<Sol.>
The frequency response corresponding to $h_{C}(t): H_{C}(j \omega)=\frac{1}{1+j \omega R C}$
Hence, $H_{R}(j \omega)=1-H_{C}(j \omega)=\frac{j \omega R C}{1+j \omega R C}$

(a)-(b) Frequency response of the system corresponding to $y_{C}(t)$ and $y_{R}(t)$, linear scale.
(c)-(d) Frequency response of the system corresponding to $y_{C}(t)$ and $y_{R}(t), d B$ scale.

## Frequency Response of LTI Systems

- From $y(t)=h(t)^{*} x(t) \stackrel{F T}{\longleftrightarrow} Y(j \omega)=X(j \omega) H(j \omega)$,
- the frequency response of a system can be expressed as the ratio of the FT or DTFT of the output to that of the input.
- If the input spectrum is nonzero at all frequencies, the frequency response of a system may be determined from the input and output spectra

Continuous-time system, $H(j \omega)=\frac{Y(j \omega)}{X(j \omega)}$
Discrete-time system, $H\left(e^{j \Omega}\right)=\frac{Y\left(e^{j \Omega}\right)}{X\left(e^{j \Omega}\right)}$

## Example 3.34

The output of an LTI system in response to an input $x(t)=e^{-2 t} u(t)$ is $y(t)=e^{-t} u(t)$. Find the frequency response and the impulse response of this system.
<Sol.>
I. First find the FT of $x(t)$ and $y(t): \quad X(j \omega)=\frac{1}{j \omega+2} \quad Y(j \omega)=\frac{1}{j \omega+1}$
2.Then, the frequency response of the system is

$$
H(j \omega)=\frac{Y(j \omega)}{X(j \omega)}=\frac{j \omega+2}{j \omega+1}=1+\frac{1}{j \omega+1}
$$

3.The impulse response of the system is the inverse FT of $H(j \omega)$ :

$$
h(t)=\delta(t)+e^{-t} u(t)
$$

## Recovery or Equalizer (Inverse Frequency Response)

- Recover the input of the system from the output
- Continuous-Time
- $X(j \omega)=H^{\text {inv }}(j \omega) Y(j \omega)$, where $H^{\text {inv }}(j \omega)=1 / H(j \omega)$
- Discrete-Time
, $X\left(e^{j \Omega}\right)=H^{\text {inv }}\left(e^{j \Omega}\right) Y\left(e^{j \Omega}\right)$, where $H^{\text {inv }}\left(e^{j \Omega}\right)=1 / H\left(e^{j \Omega}\right)$
- An inverse system is also known as an equalizer, and the process of recovering the input from the output is known as equalization.
- Causality restrictions make it difficult to build an exact inverse system. (Time delay in a system need an equalizer to introduce a time advance)

Usually, equalizer is a noncausal system
$\|$ Approximation! and cannot be implemented in real-time ! E.g. Compensate for all but

## Example 3.35

Consider the multipath communication channel, where a (distorted) received signal $y[n]$ is expressed in terms of a transmitted signal $x[n]$ as

$$
y[n]=x[n]+a x[n-1], \quad|a|<1
$$

Use the convolution property to find the impulse response of an inverse system that will recover $x[n]$ from $y[n]$.
<Sol.>
I. Take DTFT on both side of $y[n]=x[n]+a x[n-1], \quad|a|<1$

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} y[n] e^{-j \Omega n}=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}+\sum_{n=-\infty}^{\infty} a x[n-1] e^{-j \Omega n} \\
& \\
& =\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}+a e^{-j \Omega} \sum_{n=-\infty}^{\infty} x[n-1] e^{-j \Omega(n-1)} \\
& Y\left(e^{j \Omega}\right)=X\left(e^{j \Omega}\right)+a e^{-j \Omega} X\left(e^{j \Omega}\right) \quad H\left(e^{j \Omega}\right)=\frac{Y\left(e^{j \Omega}\right)}{X\left(e^{j \Omega}\right)}=1+a e^{-j \Omega}
\end{aligned}
$$

2. The frequency response of the inverse system is then obtained as $H^{\mathrm{inv}}\left(e^{j \Omega}\right)=1 / H\left(e^{j \Omega}\right)$

$$
H^{\mathrm{inv}}\left(e^{j \Omega}\right)=\frac{1}{1+a e^{-j \Omega}} \Rightarrow h^{\mathrm{inv}}[n]=(-a)^{n} u[n]
$$

## Convolution of CT Periodic Signals

- Recall that if the impulse response $h(t)$ of the LTI system is periodic, then the system is unstable. (since $h(t)$ is not absolutely integrable)
$\rightarrow$ the convolution of periodic signals does not occur naturally
- Convolution of periodic signals often occurs in the context of signal analysis and manipulation
- Definition:

The periodic convolution of two CT signals $x(t)$ and $z(t)$, each with period $T$, is defined as the following integral over a single period $T$ :

$$
y(t)=x(t) \otimes z(t)=\int_{0}^{T} x(\tau) z(t-\tau) d \tau \quad \text { also with period } T
$$

- Take FS on the both sides with $\omega_{0}=2 \pi / T$, we have

$$
\begin{aligned}
\frac{1}{T} \int_{0}^{T} y(t) e^{-j k \omega_{0} t} d t & =\frac{1}{T} \int_{0}^{T}\left(\int_{0}^{T} x(\tau) z(t-\tau) d \tau\right) e^{-j k \omega_{0} t} d t \\
& =\frac{1}{T} \int_{0}^{T}\left(\int_{0}^{T} z(t-\tau) e^{-j k \omega_{0}(t-\tau)} d t\right) x(\tau) e^{-j k \omega_{0} \tau} d \tau
\end{aligned}
$$



## Convolution of DT Periodic Signals

- Definition: The periodic convolution of two DT signals $x[n]$ and $z[n]$, each with period $N$, is defined as the summation of length- $N$ :

$$
y[n]=x[n] \otimes z[n]=\sum_{k=0}^{N-1} x[k] z[n-k] \text { also with period } N
$$

- Take DTFS on the both sides with $\Omega_{0}=2 \pi / N$, we have $Y[k]=N Z[k] X[k]$

$$
y[n]=x[n] \otimes z[n] \stackrel{D T F S ; \frac{2 \pi}{N}}{\longleftrightarrow} Y[k]=N X[k] Z[k]
$$

$\diamond$ Convolution in Time-Domain $\leftrightarrow$ Multiplication in Frequency-Domain

## Convolution Property Summary

TABLE 3.5 Convolution Properties.
$x(t) * z(t) \stackrel{F T}{\longleftrightarrow} \mathrm{X}(j \omega) Z(j \omega)$
$x(t) \odot z(t) \stackrel{F S ; \omega_{o}}{\longleftrightarrow} T X[k] Z[k]$
$x[n] * z[n] \stackrel{D T F T}{\longleftrightarrow} \mathrm{X}\left(e^{j \Omega}\right) Z\left(e^{j \Omega}\right)$
$x[n] \circledast z[n] \stackrel{D T F S ; \Omega_{0}}{\longleftrightarrow} N X[k] Z[k]$

## Outline

- Differentiation and Integration Properties
- Time- and Frequency-Shift Properties
- Finding Inverse Fourier Transforms
- Multiplication Property
- Scaling Properties
- Parseval Relationships
- Time-Bandwidth Product
- Duality


## Differentiation and Integration Properties

- Recall that differentiation and integration are operations that apply to continuous (time or frequency) functions.
- We consider CT signals in time-domain, or FT/DTFT in frequency-domain
- I. Differentiation in Time

Consider a nonperiodic signal $x(t)$ and its $\mathrm{FT}, X(j \omega)$, representation, i.e.

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \xrightarrow[\text { both sides w.r.t } t]{\text { Differentiating }} \frac{d}{d t} x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) j \omega e^{j \omega t} d \omega
$$

$\| \frac{d}{d t} x(t) \stackrel{F T}{\longleftrightarrow} j \omega X(j \omega)$

- Differentiation of $x(t)$ in time-domain $\leftrightarrow(\mathrm{j} \omega) \times X(\mathrm{j} \omega)$ in frequency-domain
- Differentiation accentuates the high-frequency components of the signal
- Differentiation destroys any dc component (i.e. $\omega=0$ ) of the differentiated signal


## Example 3.37

$\frac{d}{d t}\left(e^{-a t} u(t)\right) \stackrel{F T}{\longleftrightarrow} \frac{j \omega}{a+j \omega} \quad \begin{aligned} & \text { Verify this result by differentiating and taking the } \\ & \text { FT of the result. }\end{aligned}$
<Sol.>
I. Since $\frac{d}{d t}\left(e^{-a t} u(t)\right)=-a e^{-a t} u(t)+e^{-a t} \delta(t)=-a e^{-a t} u(t)+\delta(t)$
2. Taking the FT of each term and using linearity, we have

$$
\frac{d}{d t}\left(e^{-a t} u(t)\right) \stackrel{F T}{\longleftrightarrow} \frac{-a}{a+j \omega}+1
$$

## Frequency Response from IO-Relationship

- Given the following IO-relationship of the LTI system:

$$
\sum_{k=0}^{N} a_{k} \frac{d^{k}}{d t^{k}} y(t)=\sum_{k=0}^{M} b_{k} \frac{d^{k}}{d t^{k}} x(t)
$$

$$
\begin{aligned}
& \text { Take FT of both sides, we have } \\
& \qquad \begin{array}{l}
\sum_{k=0}^{N} a_{k}(j \omega)^{k} Y(j \omega)=\sum_{k=0}^{M} b_{k}(j \omega)^{k} X(j \omega) \| \frac{Y(j \omega)}{X(j \omega)}=\frac{\sum_{k=0}^{M} b_{k}(j \omega)^{k}}{\sum_{k=0}^{N} a_{k}(j \omega)^{k}} \\
\\
H(j \omega)=\frac{\sum_{k=0}^{M} b_{k}(j \omega)^{k}}{\sum_{k=0}^{N} a_{k}(j \omega)^{k}}
\end{array}
\end{aligned}
$$

- The frequency response is the system's steady-state response to a sinusoid.
- The frequency response cannot represent initial conditions (it can only describes a system that is in a steady-state condition)


## Differentiation and Integration Properties

- I. Differentiation in Time

Consider a periodic signal $x(t)$ and its $\mathrm{FS}, \mathrm{X}[k]$, representation, i.e.

$$
x(t)=\sum_{k=-\infty}^{\infty} X[k] e^{j k \omega_{0} t} \xrightarrow[\text { both sides w.r.t } t]{\text { Differentiating }} \frac{d}{d t} x(t)=\sum_{k=-\infty}^{\infty} X[k] j k \omega_{0} e^{j k \omega_{0} t}
$$

$$
\stackrel{\frac{d}{d t} x(t) \stackrel{F s ; \omega_{0}}{\longleftrightarrow} j k \omega_{0} X[k]}{ }
$$

$\checkmark$ Differentiation of $x(t)$ in time-domain $\leftrightarrow\left(\mathrm{jk} \omega_{0}\right) \times X[\mathrm{k}]$ in frequency-domain

- Differentiation destroys the time-averaged valued (i.e. the dc component) of the differentiated signal; hence, the FS coefficient for $k=0$ is zero
- Example $3.39 \quad z(t)=\frac{d}{d t} y(t)$

(a)

(b)

LSI ESNAL UROEESSINES

## Differentiation(in Frequency) Property

- 2. Differentiation in Frequency

Beginning with the FT of the signal $x(t)$ :

$$
\begin{aligned}
& X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \xrightarrow[\text { both sides w.r.t } \omega]{\text { Differentiating }} \frac{d}{d \omega} X(j \omega)=\int_{-\infty}^{\infty}-j t x(t) e^{-j \omega t} d t \\
& \longleftrightarrow \frac{d}{d \omega} X(j \omega)
\end{aligned}
$$

Differentiation of $X(\mathrm{j} \omega)$ in frequency-domain $\leftrightarrow(-j t) \times x(t)$ in time-domain
Consider the DTFT of the signal $x[n]$ :

$$
\begin{aligned}
& X\left(e^{j \Omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n} \xrightarrow[\text { both sides w.r.t } \Omega]{\text { Differentiating }} \frac{d}{d \Omega} X\left(e^{j \Omega}\right)=\sum_{n=-\infty}^{\infty}-j n x[n] e^{-j \Omega n} \\
& \\
& \| n x[n] \stackrel{\text { DTFT }}{\longleftrightarrow} \frac{d}{d \Omega} X\left(e^{j \Omega}\right)
\end{aligned}
$$

## Example 3.40 FT of a Gaussian Pulse

Use the differentiation-in-time and differentiation-in-frequency properties to determine the FT of the Gaussian pulse, $g(t)=(1 / \sqrt{2 \pi}) e^{-t^{2} / 2}$
<Sol.>

3. Differentiation-in-frequency property:

$$
-j \operatorname{tg}(t) \stackrel{F T}{\longleftrightarrow} \frac{d}{d \omega} G(j \omega)\left\|-j \operatorname{tg}(t) \stackrel{F T}{\longleftrightarrow} \frac{d}{d \omega} G(j \omega)\right\|-\operatorname{tg}(t) \stackrel{F T}{\longleftrightarrow} \frac{1}{j} \frac{d}{d \omega} G(j \omega)
$$

$\left\|\frac{1}{j} \frac{d}{d \omega} G(j \omega)=j \omega G(j \omega)\right\| \frac{d}{d \omega} G(j \omega)+\omega G(j \omega)=0$

$$
\| G(j \omega)=c e^{-\omega^{2} / 2}
$$

4. The integration constant $c$ is determined by $G(j 0)=\int_{-\infty}^{\infty}(1 / \sqrt{2 \pi}) e^{-t^{2} / 2} d t=1$
$\quad(1 / \sqrt{2 \pi}) e^{-t^{2} / 2} \stackrel{F T}{\longleftrightarrow} e^{-\omega^{2} / 2} \quad \begin{aligned} & \text { The FT of a Gaussian pulse is also a } \\ & \text { Gaussian pulse! }\end{aligned}$

## Integration Property

3. Integration

In both FT and FS, we may integrate with respect to time.
In both FT and DTFT, we may integrate with respect to frequency.

* Case for nonperiodic signal

Since $y(t)=\int_{-\infty}^{t} x(\tau) d \tau$ implies $\frac{d}{d t} y(t)=x(t)$ By differentiation property, we have
$Y(j \omega)=\frac{1}{j \omega} X(j \omega) \quad \begin{aligned} & \text { This relation is indeterminate at } \omega=0 \\ & \text { (also implies that } X(j 0)=0)\end{aligned}$
This is true only to signals with a zero time-averaged value, i.e. $X(j 0)=0$.
Or, it is true for all $\omega$ except $\omega=0$.
The value at $\omega=0$ can be modified the equation by $Y(j \omega)=\frac{1}{j \omega} X(j \omega)+c \delta(\omega)$
The constant $c$ depends on the average value of $x(t)$

## General Form for Nonperiodic Signal

$$
\int_{-\infty}^{t} x(\tau) d \tau \quad \stackrel{F T}{\longleftrightarrow} \frac{1}{j \omega} X(j \omega)+\pi X(j 0) \delta(\omega)
$$

First note that

$$
y(t)=\int_{-\infty}^{t} x(\tau) d \tau \quad \quad \Longrightarrow Y(j \omega)=X(j \omega) F T\{u(t)\}
$$

$$
=\int_{-\infty}^{\infty} x(\tau) u(t-\tau) d \tau=x(t) * u(t)
$$

$$
\begin{aligned}
& \quad=\int_{-\infty} x(\tau) u(t-\tau) d \tau=x(t) * u(t) \\
& \text { We observe that } u(t)=\frac{1}{2}+\frac{1}{2} \operatorname{sgn}(t) \text {, where } \operatorname{sgn}(t)=\left\{\begin{array}{cc}
-1, & t<0 \\
0, & t=0 \\
1, & t>0
\end{array} \text { Then, } \frac{d}{d t} u(t)=\frac{d}{d t}\left(\frac{1}{2}+\frac{1}{2} \operatorname{sgn}(t)\right)=\frac{1}{2} \frac{d}{d t} \operatorname{sgn}(t)\right.
\end{aligned}
$$

$$
2 \delta(t)=\frac{d}{d t} \operatorname{sgn}(t) \| 2=j \omega F T\{\operatorname{sgn}(t)\} \Longrightarrow F T\{\operatorname{sgn}(t)\}=\frac{2}{j \omega}
$$

Thus, $F T\{u(t)\}=F T\left\{\frac{1}{2}\right\}+F T\left\{\frac{1}{2} \operatorname{sgn}(t)\right\}=\pi \delta(\omega)+\frac{1}{j \omega}$
Hence, $Y(j \omega)=X(j \omega) F T\{u(t)\}=\frac{X(j \omega)}{j \omega}+\pi \delta(\omega) X(j \omega)$

## Differentiation and Integration Properties

- Summary

$$
\begin{aligned}
& \hline \frac{d}{d t} x(t) \stackrel{F T}{\longleftrightarrow} j \omega X(j \omega) \\
& \frac{d}{d t} x(t) \stackrel{F S ;}{\longleftrightarrow} \omega_{0} j k \omega_{0} X[k] \\
& -j t x(t) \stackrel{F T}{\longleftrightarrow} \frac{d}{d \omega} X(j \omega) \\
& -j n x[n] \stackrel{D T F T}{\longleftrightarrow} \frac{d}{d \Omega} X\left(e^{j \Omega}\right) \\
& \int_{-\infty}^{t} x(\tau) d \tau \quad \stackrel{F T}{\longleftrightarrow} \frac{1}{j \omega} X(j \omega)+\pi X(j 0) \delta(\omega) \\
& \hline
\end{aligned}
$$

## Time- and Frequency-Shift Properties

- I.Time-shift property Let $z(t)=x\left(t-t_{0}\right)$ be a time-shifted version of $x(t)$. Take FT of $z(t): Z(j \omega)=\int_{-\infty}^{\infty} x\left(t-t_{0}\right) e^{-j \omega t} d t \quad$ Change variable by $\tau=t-t_{0}$ :

$$
\begin{aligned}
& Z(j \omega)=\int_{-\infty}^{\infty} x(\tau) e^{-j \omega\left(\tau+t_{0}\right)} d \tau=e^{-j \omega t_{0}} \int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau=e^{-j \omega t_{0}} X(j \omega) \\
& \| x\left(t-t_{0}\right) \stackrel{F T}{\longleftrightarrow} e^{-j \omega t_{0}} X(j \omega)
\end{aligned}
$$

Time-shifting by $t_{0}$ in time-domain $\leftrightarrow$ Multiply by $\mathrm{e}^{-\mathrm{j} \omega t_{0}}$ in frequency-domain

- Note that the mag. response and phase response are $|Z(j \omega)|=|X(j \omega)|$ and $\arg \{Z(j \omega)\}=\arg \{X(j \omega)\}-\omega_{0} t$
$\bullet$ unchanged the mag. response but introduces a phase shift

$$
\begin{aligned}
& \hline x\left(t-t_{0}\right) \stackrel{F T}{\longleftrightarrow} e^{-j \omega t_{0}} X(j \omega) \\
& x\left(t-t_{0}\right) \stackrel{F T ; \omega_{0}}{\longleftrightarrow} e^{-j k \omega_{0} t_{0}} X(k) \\
& x\left[n-n_{0}\right] \xrightarrow{\longleftrightarrow T F T} \\
& x\left[n-n_{0}\right] \xrightarrow{\longleftrightarrow-j \Omega n_{0}} X\left(e^{j \Omega}\right) \\
& \hline
\end{aligned}
$$

## Example:

## Frequency Response of LTI System

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

Taking DTFTof both sides
of this equation

$$
\begin{aligned}
& \sum_{k=0}^{N} a_{k}\left(e^{-j \Omega}\right)^{k} Y\left(e^{j \Omega}\right)=\sum_{k=0}^{M} b_{k}\left(e^{-j \Omega}\right)^{k} X\left(e^{j \Omega}\right) \\
& \Longrightarrow \frac{Y\left(e^{j \Omega}\right)}{X\left(e^{j \Omega}\right)}=\frac{\sum_{k=0}^{M} b_{k}\left(e^{-j \Omega}\right)^{k}}{\sum_{k=0}^{N} a_{k}\left(e^{-j \omega}\right)^{k}}
\end{aligned}
$$

## Time- and Frequency-Shift Properties

- 2. Frequency-shift property Suppose that: $x(t) \stackrel{F T}{\longleftrightarrow} X(j \omega)$ Consider the frequency shift: $X(j(\omega-\gamma))$ By the definition of the inverse FT, we have
$z(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j(\omega-\gamma)) e^{j \omega t} d \omega \quad$ Change variable by $\eta=\omega-\gamma$, we have $z(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \eta) e^{j(\eta+\gamma) t} d \eta=e^{j \not \tau} \frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \eta) e^{j \eta t} d \eta=e^{j \not \lambda x} x(t)$
$\xrightarrow{\|} e^{j \gamma t} x(t) \stackrel{F T}{\longleftrightarrow} X(j(\omega-\gamma))$
- Frequency-shift by $\gamma$ in frequency-domain $\leftrightarrow$ Multiply by $\mathrm{e}^{-\gamma t}$ in time-domain

$$
\begin{gathered}
e^{i{ }^{\prime t}} x(t) \stackrel{F T}{\longleftrightarrow} \mathrm{~F}(j(\omega-\gamma)) \\
e^{j k_{0} \omega_{0} t} x(t) \stackrel{F S ; \omega_{0}}{\longleftrightarrow} X\left[k-k_{0}\right] \\
e^{i \Gamma n} x[n] \stackrel{D T F T}{\longleftrightarrow} X\left(e^{j(\Omega-\Gamma)}\right)
\end{gathered}
$$

$$
e^{i k_{0} \Omega_{o} n x[n] \stackrel{D T F S ; \Omega_{0}}{\longleftrightarrow}} X\left[k-k_{0}\right]
$$

## Example 3.42 and 3.43

Determine the FT of the complex sinusoidal pulse: $z(t)=\left\{\begin{array}{cc}e^{j 10 t}, & |t|<\pi \\ 0, & |t|>\pi\end{array}\right.$
<Sol.>
Recall rectangular pulse $x(t)=\left\{\begin{array}{ll}1, & |t|<\pi \\ 0, & |t|>\pi\end{array}\right.$ By Frequency-shift property , then $x(t) \stackrel{\text { FT }}{\longleftrightarrow} X(j \omega)=\frac{2}{\omega} \sin (\omega \pi)$ By Frequency-shift property
$e^{j 10 t} x(t) \stackrel{F T}{\longleftrightarrow} X(j(\omega-10)) \| Z(t) \stackrel{F T}{\longleftrightarrow} \frac{2}{\omega-10} \sin ((\omega-10) \pi)$
Find the FT of the signal $x(t)=\frac{d}{d t}\left\{\left(e^{-3 t} u(t)\right) *\left(e^{-t} u(t-2)\right)\right\}$

$$
\begin{aligned}
& \text { <Sol.> } \\
& \text { Let } w(t)=e^{-3 t} u(t) \longleftrightarrow W(j \omega)=\frac{1}{3+j \omega} \\
& \text { and } v(t)=e^{-t} u(t-2) 山 v(t)=e^{-2} e^{-(t-2)} u(t-2) \longleftrightarrow V(j \omega)=e^{-2} \frac{e^{-j 2 \omega}}{1+j \omega}
\end{aligned}
$$

$$
\text { Then, } x(t)=\frac{d}{d t}\{w(t) * v(t)\} \longleftrightarrow X(j \omega)=j \omega\{W(j \omega) v(j \omega)\}
$$

$$
X(j \omega)=e^{-2} \frac{j \omega e^{-j 2 \omega}}{(1+j \omega)(3+j \omega)}
$$

## Outline

- Differentiation and Integration Properties
, Time- and Frequency-Shift Properties
- Finding Inverse Fourier Transforms by Using PartialFraction Expansions
- Multiplication Property
- Scaling Properties
- Parseval Relationships
- Time-Bandwidth Product
- Duality


## Finding Inverse Fourier Transforms <br> by Using Partial-Fraction Expansions

- Consider a ratio of polynomial in $j \omega$ :

$$
X(j \omega)=\frac{b_{M}(j \omega)^{M}+\cdots+b_{1}(j \omega)+b_{0}}{(j \omega)^{N}+a_{N-1}(j \omega)^{N-1}+\cdots a_{1}(j \omega)+a_{0}}=\frac{B(j \omega)}{A(j \omega)} \quad \text { Assume that } M<N
$$

If $M \geq N$, then we may use long division to express $X(j \omega)$ in the form

$$
\begin{aligned}
& X(j \omega)=\sum_{k=0}^{M-N} f_{k}\left(j \omega^{k}\right)+\frac{\bar{B}(j \omega)}{A(j \omega)}
\end{aligned} \begin{aligned}
& \begin{array}{l}
\text { Partial-fraction expansion is } \\
\text { applied to this term }
\end{array} \\
& \begin{array}{l}
\text { Applying the differentiation property and the } \\
\text { pair } \delta(t) \stackrel{F T}{\longleftrightarrow} 1 \text { to these terms }
\end{array}
\end{aligned}
$$

Replacing $j \omega$ with a generic variable $v$, then we have $v^{N}+a_{N-1} v^{N-1}+\cdots+a_{1} v+a_{0}=0$ for the denominator $A(j \omega)$. Suppose that we have roots $d_{k}, k=1,2, \ldots, N$.
For $M<N$, we may the write

$$
X(j \omega)=\frac{\sum_{k=0}^{M} b_{k}(j \omega)^{k}}{\prod_{k=1}^{N}\left(j \omega-d_{k}\right)} \quad \text { Assuming distinct roots } d_{k}, k=I, 2, \ldots, N \text {, we may write }
$$

## Inverse FT for Partial-Fraction Expansions

Recall that $e^{d t} u(t) \stackrel{F T}{\longleftrightarrow} \frac{1}{j \omega-d} \quad$ This pair is valid only for $\operatorname{Re}\{d\}<0$.
Assuming that the real part of each $d_{k}, k=1,2, \ldots, N$, is negative, then

$$
x(t)=\sum_{k=1}^{N} C_{k} e^{d_{k} t} u(t) \quad \stackrel{F T}{\longleftrightarrow} X(j \omega)=\sum_{k=1}^{N} \frac{C_{k}}{j \omega-d_{k}}
$$

For the case of repeated roots, please refer Appendix B !!

- Similarly,

$$
X\left(e^{j \Omega}\right)=\frac{\beta_{M} e^{-j \Omega M}+\cdots+\beta_{1} e^{-j \Omega}+\beta_{0}}{\alpha_{N} e^{-j \Omega N}+\alpha_{N-1} e^{-j \Omega(N-1)}+\cdots+\alpha_{1} e^{-j \Omega}+1} \quad \text { Normalized to I }
$$

Replace $\mathrm{e}^{j \Omega}$ with the generic variable $v$ and solve the roots of the polynomial

$$
v^{N}+\alpha_{1} v^{N-1}+\alpha_{2} v^{N-2}+\cdots+\alpha_{N-1} v+\alpha_{N}=0
$$

Recall that $\left(d_{k}\right)^{n} u[n] \stackrel{\text { DTFT }}{\longleftrightarrow} \frac{1}{1-d_{k} e^{-j \Omega}} \quad \begin{aligned} & \text { Assuming that all the } d_{k} \text { are } \\ & \text { distinct and }\left|d_{k}\right|<1, \text { then }\end{aligned}$

$$
x[n]=\sum_{k=1}^{N} C_{k}\left(d_{k}\right)^{n} u[n] \stackrel{\text { DTFT }}{\longleftrightarrow} X\left(e^{j \Omega}\right)=\sum_{k=1}^{N} \frac{C_{k}}{1-d_{k} e^{-j \Omega}}
$$

## Example 3.44

Frequency response for the MEMS accelerometer is given by $H(j \omega)=\frac{1}{(j \omega)^{2}+\frac{\omega_{n}}{Q}(j \omega)+\omega_{n}^{2}}$ that $\omega_{\mathrm{n}}=10,000 \mathrm{rads} / \mathrm{s}$, and (a) $Q=2 / 5$, (b) $Q=1$, and (c) $Q=200$.
<Sol.>
Case (a): $\omega_{n}=10,000 \mathrm{rads} / \mathrm{s}$ and $Q=2 / 5$, then we have $(j \omega)^{2}+25000(j \omega)+(10000)^{2}=0$
The roots of the denominator polynomial are $d_{1}=-20,000$ and $d_{2}=-5,0000$.

$$
\begin{aligned}
& H(j \omega)=\frac{1}{(j \omega)^{2}+25000(j \omega)+(10000)^{2}}=\frac{C_{1}}{j \omega+20000}+\frac{C_{2}}{j \omega+5000} \\
& \left.C_{2}(j \omega+20000)\right|_{j \omega=-5000}=1 \quad C_{1}=\frac{1}{15000} \\
& \left.H(j \omega+5000)\right|_{j \omega=-20000}=1 \quad C_{1}=\frac{-1}{15000} \\
& H(j \omega)=\frac{-1 / 15000}{j \omega+20000}+\frac{1 / 15000}{j \omega+5000} \\
& \Rightarrow \quad h(t)=(1 / 15000)\left(e^{-5000 t}-e^{-20000 t}\right) u(t)
\end{aligned}
$$

## Example 3.45

Find the inverse DTFT of $X\left(e^{j \Omega}\right)=\frac{-\frac{5}{6} e^{-j \Omega}+5}{1+\frac{1}{6} e^{-j \Omega}-\frac{1}{6} e^{-j 2 \Omega}}$
<Sol.>
First solve the characteristic polynomial: $v^{2}+\frac{1}{6} v-\frac{1}{6}=0$
The roots of the polynomial are $d_{1}=-I / 2$ and $d_{2}=I / 3$.
Then

$$
\begin{aligned}
& \frac{-\frac{5}{6} e^{-j \Omega}+5}{1+\frac{1}{6} e^{-j \Omega}-\frac{1}{6} e^{-j 2 \Omega}}=\frac{C_{1}}{1+\frac{1}{2} e^{-j \Omega}}+\frac{C_{2}}{1-\frac{1}{3} e^{-j \Omega}} \\
& x[n]=4(-1 / 2)^{n} u[n]+(1 / 3)^{n} u[n]
\end{aligned}
$$

## Outline

- Differentiation and Integration Properties
- Time- and Frequency-Shift Properties
- Finding Inverse Four
Fraction Expansions
- Multiplication Property
- Scaling Properties
- Parseval Relationships
- Time-Bandwidth Product
- Duality


## Multiplication Property

- Case of nonperiodic continuous-time signals
- Consider two nonperiodic signals: $x(t)$ and $z(t)$. Let's $y(t)=x(t) z(t)$.

Suppose that the FT representation of $x(t)$ and $z(t)$ are:

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j v) e^{j v t} d v \text { and } z(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} Z(j \eta) e^{j \eta t} d \eta
$$

Then,

$$
y(t)=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(j v) Z(j \eta) e^{j(\eta+v) t} d \eta d v
$$

I. Change the integral order. 2. Change variable by $\eta+v=\omega$

$$
\begin{array}{r}
y(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j v) Z(j(\omega-v)) d v\right] e^{j \omega t} d \omega \\
X(j \omega) * Z(j \omega)
\end{array}
$$

$$
y(t)=x(t) z(t) \quad \stackrel{F T}{\longleftrightarrow} Y(j \omega)=\frac{1}{2 \pi} X(j \omega)^{*} Z(j \omega)
$$

Multiplication in time-domain $\leftrightarrow$ Convolution in Frequency-Domain $\times(\mathrm{I} / 2 \pi)$

## Multiplication Property

- Case of nonperiodic discrete-time signals
- Consider two nonperiodic signals: $x[n]$ and $z[n]$. Let's $y[n]=x[n] z[n]$.

Suppose that the DTFT representation of $x[n]$ and $z[n]$ are:

$$
\begin{gathered}
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \Omega}\right) e^{j \Omega n} d \Omega \text { and } z[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} Z\left(e^{j \Omega}\right) e^{j \Omega n} d \Omega \\
2 \pi \text {-periodic } \quad 2 \pi \text {-periodic }
\end{gathered}
$$

Then,

$$
y[n]=x[n] Z[n] \stackrel{\text { DTFT }}{\longleftrightarrow} Y\left(e^{j \Omega}\right)=\frac{1}{2 \pi} X\left(e^{j \Omega}\right) \otimes Z\left(e^{j \Omega}\right)
$$

$\bullet$ Multiplication in time $\leftrightarrow$ Periodic Convolution in Frequency $\times(1 / 2 \pi)$

## Windowing Operation - Truncating a Signal

- Windowing: a signal passes through a window means only the signal within the window is visible. The other part is truncated.



Truncated signal $y(t)=x(t) w(t)$



(b)


## Example 3.46 Windowing Effect (aka Gibbs Effect in Example 3.14)

The frequency response $H\left(e^{j \text { J. }}\right.$ ) of an ideal discrete-time low-pass filter. Describe the frequency response of a system whose impulse response is truncated to the interval $-M \leq n \leq M$.


<Sol.>
(b)

The ideal impulse response is just the inverse FT of $H\left(e^{j \Omega}\right): h[n]=\frac{1}{\pi n} \sin \left(\frac{\pi n}{2}\right)$
Infinite impulse response

$$
h_{t}[n]=\left\{\begin{array}{cc}
h[n], & |n| \leq M \\
0, & \text { otherwise }
\end{array}\right.
$$$h_{t}[n]=h[n] w[n]$

$$
w[n]=\left\{\begin{array}{lc}
1, & |n| \leq M \\
0, & \text { otherwise }
\end{array}\right.
$$


(b)

(c)

(d)


## Multiplication Property

- Case of periodic continuous-time signals

Consider two periodic signals: $x(t)$ and $z(t)$. Let's $y(t)=x(t) z(t)$.

$$
y(t)=x(t) z(t) \stackrel{F s ; 2 \pi / T}{\longleftrightarrow} Y[k]=X[k] * Z[k]
$$

- Multiplication in time-domain $\leftrightarrow$ Convolution in Frequency-Domain This relationship is provided that $x(t)$ and $z(t)$ have a common period $T$ If their fundamental periods are not identical, $T$ should be the LCM of each signal's fundamental period.
- Case of periodic continuous-time signals

Consider two periodic signals: $x[n]$ and $z[n]$. Let's $y[n]=x[n] z[n]$.

$$
y[n]=x[n] z[n] \stackrel{D T F S ; 2 \pi / N}{\longleftrightarrow} Y[k]=X[k] \otimes Z[k]
$$

$\bullet$ Multiplication in time $\leftrightarrow$ Periodic Convolution in Frequency
This relationship is provided that $x[n], z[n]$, and $Y[k]$ have a common period $N$

## Summary for Multiplication Property

$$
\begin{aligned}
& x(t) z(t) \stackrel{F T}{\longleftrightarrow} \frac{1}{2 \pi} X(j \omega) * Z(j \omega) \\
& x(t) z(t) \stackrel{F S ; \omega_{0}}{\longleftrightarrow} X[k] * Z[k]
\end{aligned}
$$

$$
x[n] z[n] \stackrel{D T F T}{\longleftrightarrow} \frac{1}{2 \pi} X\left(e^{j \Omega}\right) \odot Z\left(e^{j \Omega}\right)
$$

$$
x[n] z[n] \stackrel{D T F S ; \Omega_{o}}{\longleftrightarrow} X[k] \circledast Z[k]
$$

## Scaling Property

- Case of scaling the continuous-time signal

Let $z(t)=x(a t)$. Consider the FT of $z(t): \quad Z(j \omega)=\int_{-\infty}^{\infty} z(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} x(a t) e^{-j \omega t} d t$
Changing variable by letting $\tau=a t$


- Scaling in time-domain $\leftrightarrow$ Inverse scaling in frequency-domain

$\uparrow$ scale by $a$


scale by $1 / a$
$\frac{1}{|a|} x(j \omega / a)$


## Example 3.49

Find $x(t)$ if $X(j \omega)=j \frac{d}{d \omega}\left\{\frac{e^{j 2 \omega}}{1+j(\omega / 3)}\right\}$
<Sol.>
Differentiation in frequency, time shifting, and scaling property are used to solve the problem.
First note the FT-pair: $s(t)=e^{-t} u(t) \stackrel{F T}{\longleftrightarrow} S(j \omega)=\frac{1}{1+j \omega}$
Then,

$$
X(j \omega)=j \frac{d}{d \omega}\left\{e^{j 2 \omega} S(j \omega / 3)\right\}
$$

We apply the innermost property first: we scale, then time shift, and lastly differentiate.
Define $Y(j \omega)=S(j \omega / 3) . \quad y(t)=3 s(3 t)=3 e^{-3 t} u(3 t)=3 e^{-3 t} u(t)$
Define $W(j \omega)=\mathrm{e}^{\mathrm{j} 2 \omega} Y(\mathrm{j} \omega / 3)$. $\quad w(t)=y(t+2)=3 e^{-3(t+2)} u(t+2)$
Finally $X(j \omega)=j \frac{d}{d \omega} W(j \omega) \Perp x(t)=t w(t)=3 t e^{-3(t+2)} u(t+2)$

## Scaling Property

- Case of scaling the periodic continuous-time signal

If $x(t)$ is a periodic signal, then $z(t)=x(a t)$ is also periodic.
If $x(t)$ has fundamental period $T$, then $z(t)$ has fundamental period $T / a$. Suppose that $a>0$
If the fundamental frequency of $x(t)$ is $\omega_{0}$, then the fundamental frequency of $z(t)$ is $a \omega_{0}$.
FS coefficients of $z(t): \quad Z[k]=\frac{a}{T} \int_{0}^{T / a} Z(t) e^{-j k a \omega_{0} t} d t$
$\| \square(t)=x(a t) \quad \stackrel{F S ; a \omega_{0}}{\longleftrightarrow} Z[k]=X[k], \quad a>0$
$\checkmark$ Scaling in time-domain for periodic signal $\leftrightarrow$ Same response in frequency
Scaling operation for periodic signal simply changes the harmonic spacing from $\omega_{0}$ to $a \omega_{0}!!$

- Case of scaling the discrete-time signal

First of all, $z[n]=x[p n]$ is defined only for integer values of $p$.
If $|p|>I$, then scaling operation discards information.

## Parseval Relationships

- Case of continuous-time non-periodic signal

Recall the energy of $x(t)$ is defined by $W_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t$
Note that $|x(t)|^{2}=x(t) x^{*}(t)$
Express $x^{*}(t)$ in terms of its FT: $x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega$
$\xrightarrow{\square} x^{*}(t)=\left\{\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega\right\}^{*}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X^{*}(j \omega) e^{-j \omega t} d \omega$
Then,

$$
\begin{aligned}
& \text { Then, } \\
& \qquad \begin{array}{l}
x \\
x
\end{array} \int_{-\infty}^{\infty} x(t)\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} X^{*}(j \omega) e^{-j \omega t} d \omega\right] d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X^{*}(j \omega)\left\{\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t\right\} d \omega \\
& \\
& W_{x}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X^{*}(j \omega) X(j \omega) d \omega \\
& \int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(j \omega)|^{2} d \omega
\end{aligned}
$$

The energy or power in the time-domain representation of a signal is equal to the energy or power in the frequency-domain representation normalized by $2 \pi$

## Summary for Parseval Relationships

Table 3.10 Parseval Relationships for the Four Fourier Representations

| Representations | Parseval Relationships |
| :--- | :---: |
| FT | $\int_{-\infty}^{\infty}\|x(t)\|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\|X(j \omega)\|^{2} d \omega$ |
| FS | $\frac{1}{T} \int_{0}^{T}\|x(t)\|^{2} d t=\sum_{k=-\infty}^{\infty}\|X[k]\|^{2}$ |
| DTFT | $\sum_{n=-\infty}^{\infty}\|x[n]\|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left\|X\left(e^{j \Omega}\right)\right\|^{2} d \Omega$ |
| DTFS | $\frac{1}{N} \sum_{n=0}^{N-1}\|x[n]\|^{2}=\sum_{k=0}^{N-1}\|X[k]\|^{2}$ |

The power is defined as the integral or sum of the magnitude squared over one period, normalized by the length of the period

## Example 3.50

Let $x[n]=\frac{\sin (W n)}{\pi n}$
Use Parseval's theorem to evaluate

$$
\chi=\sum_{n=-\infty}^{\infty}|x[n]|^{2}=\sum_{n=-\infty}^{\infty} \frac{\sin ^{2}(W n)}{\pi^{2} n^{2}}
$$

Direct calculation in time-domain is very difficult!
<Sol.>
I. Using the DTFT Parseval relationship, we have $\chi=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|X\left(e^{j \Omega}\right)\right|^{2} d \Omega$
2. Since

$$
\begin{aligned}
x[n] & \stackrel{\text { DTFT }}{\longleftrightarrow}
\end{aligned} X\left(e^{j \Omega}\right)=\left\{\begin{array}{lc}
1, & |\Omega| \leq W \\
0, & W<|\Omega|<\pi
\end{array}\right\}
$$

## Time-Bandwidth Product

Preview the fact: $x(t)=\left\{\begin{array}{ll}1, & |t| \leq T_{o} \\ 0, & |t|>T_{o}\end{array} \quad \longleftrightarrow \quad F T \quad X(j \omega)=2 \sin \left(\omega T_{o}\right) / \omega\right.$

infinite duration in freq.

- As signal's time extent decreases ( $T_{0}$ decreases ), the signal's frequency extent increases.
- The product of the time extent $T_{0}$ and main-lobe width (i.e. the bandwidth) $2 \pi / T_{0}$ is a constant.
- The bandwidth of a signal is the extent of the signal's significant frequency content.
- Compressing a signal in time leads expansion in frequency and vice versa


## Time-Bandwidth Product

, Effective duration of a signal $x(t)$ is defined by $T_{d}=\left[\frac{\int_{-\infty}^{\infty} t^{2}|x(t)|^{2} d t}{\int_{-\infty}^{\infty}|x(t)|^{2} d t}\right]^{1 / 2}$

- Effective bandwidth of a signal $x(t)$ is defined by $B_{w}=\left[\frac{\int_{-\infty}^{\infty} \omega^{2}|X(j \omega)|^{2} d \omega}{\int_{-\infty}^{\infty}|X(j \omega)|^{2} d \omega}\right]^{1 / 2}$
- The uncertainty principle:

The time-bandwidth product for any signal $x(t)$ is lower bounded by $T_{d} B_{w} \geq 1 / 2$
We cannot simultaneously decrease the duration and bandwidth of a signal.

## Duality

- Preview



- A rectangular pulse in either time or frequency corresponds to a sinc function in either frequency or time domain.
- A impulse in either time or frequency transforms to a constant in either frequency or time domain.
- Convolution, Differentiation, ...


## Duality Property of the FT

- Recall that $x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j o t} d \omega$ and $X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$

Difference in the factor $2 \pi$ and the sign change in the complex sinusoid

- Duality property

$$
f(t) \stackrel{F T}{\longleftrightarrow} F(j \omega) \Leftrightarrow F(j t) \stackrel{F T}{\longleftrightarrow} 2 \pi f(-\omega)
$$

- Example 3.52

Find the FT of $x(t)=\frac{1}{1+j t}$
<Sol.>
Note that: $f(t)=e^{-t} u(t) \quad \stackrel{F T}{\longleftrightarrow} \quad F(j \omega)=\frac{1}{1+j \omega}$
Replacing $\omega$ by $t$, we obtain $F(j t)=\frac{1}{1+j t}$
Apply duality property:

$$
X(j \omega)=2 \pi f(-\omega)=2 \pi e^{\omega} u(-\omega)
$$

## Duality Property of the DTFS

- FT-pair: mapping a CT nonperiodic function into a CT nonperiodic function.
- DTFS-pair: mapping a DT periodic function into a DT periodic function.
- Recall that $x[n]=\sum_{k=0}^{N-1} X[k] e^{j k \Omega_{0} n}$ and $X[k]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \Omega_{0} n}$

Difference in the factor $N$ and the sign change in the complex sinusoid

- Duality property

$$
x[n] \stackrel{D T F S ; \frac{2 \pi}{N}}{\longleftrightarrow} X[k] \Longleftrightarrow X[n] \stackrel{D T F S ; \frac{2 \pi}{N}}{\longleftrightarrow} \frac{1}{N} x[-k]
$$

## Duality Property of the DTFT and FS

- FS-pair: mapping a CT periodic function into a DT nonperiodic function.
- DTFT-pair: mapping a DT nonperiodic function into a CT periodic function.
- Recall that FS of a periodic continuous time signal $z(t): \quad Z(t)=\sum_{k=-\infty}^{\infty} Z[k] e^{j k \omega_{0} t}$
- and DTFT of a nonperiodic discrete-time signal $x[n]: \quad X\left(e^{j \Omega}\right)=\sum_{k=-\infty}^{\infty} x[n] e^{-j \Omega n}$
I. Difference in the sign change in the complex sinusoid

2. Duality relationship between $z(t)$ and $X\left(e^{j \Omega}\right)$ requires $z(t)$ to have the same period as $X\left(e^{j \Omega}\right)$, that is, $T=2 \pi$

- Duality property

$$
x[n] \stackrel{\text { DTFS }}{\longleftrightarrow} X\left(e^{j \Omega}\right) \stackrel{\leftrightarrow}{\longleftrightarrow} X\left(e^{j t}\right) \stackrel{F S ; 1}{\longleftrightarrow} x[-k]
$$

