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Reviews of Fourier Representations

3 The four Fourier representations are all based on complex sinusoids



Periodicity Properties of Fourier 
Representations

 Periodic time signals have discrete frequency-domain 
representations, while nonperiodic time signals have 
continuous frequency-domain ones.

 In general, representations that are continuous/discrete in one 
domain are nonperiodic/periodic in the other domain.
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Linearity Property of Fourier 
Representations
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 Uppercase symbols denote the Fourier representation of the 
corresponding lowercase ones 

 In case of FS and DTFS, the (two) signals being summed are 
assumed to have the same fundamental period

           
           
           
           

;

;

o

o
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DTFT j j j
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z t ax t by t Z j aX j bY j

z t ax t by t Z k aX k bY k

z n ax n by n Z e aX e bY e

z n ax n by n Z k aX k bY k



  

  



    

    

    

    



Example 3.30
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z(t) = (3/2)x(t) + (1/2)y(t)

        
        

;2

;2

1 sin 4

1 sin 2

FS

FS

x t X k k k

y t Y k k k





 

 

 

 

             ;2 3 2 sin 2 1 2 sin 2FSz t Z k k k k k      



Symmetry Property for Real-Valued x(t)
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 For a real-valued signal x(t), we have
 Consider the complex-conjugate of X(j):

 For a real-valued x(t), X(j) is complex-conjugate symmetric
 Another representation: 






 dtetxjX tj )()(

)()(                                       

)()(             

)()(

)( 









jXdtetx

dtetxdtetx

dtetxjX

tj

tjtj

tj







































*( ) ( )X j X j  

)}(Im{)}(Re{)(  jXjjXjX 
)}(Im{)}(Re{)(  jXjjXjX 

)}(Im{)}(Re{)(  jXjjXjX 

   )(Re)(Re  jXjX 

   )(Im)(Im  jXjX 

even

odd



Symmetry Property for Imaginary-Valued x(t)
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 For a imaginary-valued signal x(t), we have
 Consider the complex-conjugate of X(j):

 For a pure imaginary x(t), X(j) is conjugate anti-symmetric
 Another representation: 






 dtetxjX tj )()(

)()(                                       

)()(             

)()(

)( 









jXdtetx

dtetxdtetx
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





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








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
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






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   )(Im)(Im  jXjX 

odd

even

)()(  jXjX 



Symmetry Properties of Fourier 
Representations 
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 Note that for the periodic signal with period N, X[k] = X[Nk]

 If x(t) is real and even, then X(j)= X(j). That is, X(j) is real
A real and even signal has a real and even frequency representation

 If x(t) is real and even, then X(j)=  X(j). That is, X(j) is imaginary
A real and odd signal has a imaginary and odd frequency representation   



IO-Relationship in Real-Valued LTI System
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1. The real-valued input signal :    cosx t A t  

2. The real-valued impulse response of LTI system: h(t).

         / 2 / 2j t j tx t A e A e      

3. Applied the linear property of the LTI sytem to obtain the output signal:

       cos argy t H j A t H j     

   ( arg ( ) ) ( arg ( ) )( ) ( ) ( / 2) ( ) ( / 2)j t H j j t H jy t H j A e H j A e            
( ) ( )H j H j      arg ( ) arg ( )H j H j   

Rewrite the input signal : Two eigenfunctions
ejt, ejt

tjjAtjjA ejHeejHety     )()()( 22

Exploiting the symmetry conditions:



Convolution of Nonperiodic Signals
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 The convolution property is a consequence of complex sinusoids being 
eigenfunctions of LTI system

 The convolution in time-domain corresponds to the multiplication in 
frequency-domain

         y t h t x t h x t d  



        ( )1

2
j tx t X j e d   


 
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  

     1
2
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




 
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     

   

1
2

1
2

j t j

j j t

y t h X j e e d d

h e d X j e d

 

 

   


   


  

 

  

 

    

    

 

 

( ) ( )* ( ) ( ) ( ) ( )FTy t h t x t Y j X j H j    

[ ] [ ]* [ ] ( ) ( ) ( )DTFT j j jy n x n h n Y e X e H e    



Example 3.31

12

Let x(t)=(1/(t))sin(t) be the input to a system with impulse response h(t)=(1/(t))sin(2t). 
Find the output y(t) = x(t)  h(t). 
<Sol.>

y(t) = (1/(t))sin(t) 

   
1,
0,

FTx t X j
 


 


   
   

1, 2
0, 2

FTh t H j
 


 


   

           FTy t h t x t Y j X j H j     

 
1,
0,

Y j
 


 


  

From Example 3.26, we have

Since



Example 3.32

13

Use the convolution property to find x(t), where      2
2

4 sinFTx t X j 


 
<Sol.>

1. Write X(j) = Z(j) Z(j), where    2 sinZ j 




2. Apply the convolution property, we have      x t z t z t 









1,0
1,1

)(
t
t

tz

Hence



Filtering
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 The multiplication in frequency domain, i.e. X(j)H(j), gives rise to the 
“filtering”

 “Filtering” implies that some frequency components of the input signal are 
eliminated (stopband) while other are passed by the system (passband)

 Ideal filters: ( )H j

( )H j

( )H j













2

2

2







2

2

2

Figure 3.53  
Frequency response of ideal 
continuous- and discrete-
time filters:
(a) Low-pass filters. 
(b) High-pass filters
(c) Band-pass filters.

The frequency response of discrete-time filters is based on its 
characteristic in the range   <    because it is 2-periodic



The Magnitude Response of Filters
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 The magnitude response of the filter is defined by 

 Being described in units of decibels (or dB)
 The unit gain is corresponding to 0 dB.
 The passband of the filter is normally closed to 0 dB
 The edge of the passband is usually defined by the frequencies for 

which the response is -3 dB (corresponding to a magnitude response 
of 1/2)

 Note that                                    , -3 dB points correspond to 
frequencies at which the filter passes only half of the input power

 -3 dB points are usually termed as the cutoff frequencies of the filter

 20log H j  20log jH e or [dB]

     2 2 2
Y j H j X j  



Example 3.33 RC Circuit Filtering
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For the RC circuit, the impulse response for the case where yC(t) is the output is given by

   1 t RC
Ch t e u t

RC


the impulse response for the case where yR(t) is the output 
is given by  

     1 t RC
Rh t t e u t

RC
  

.    Since yR(t) = x(t)  yC(t), 

Plot the magnitude responses of both systems on a linear scale and in dB, and characterize 
the filtering properties of the systems.

<Sol.>
The frequency response corresponding to hC(t): 

Hence,

RCj
jHC 





1
1)(

RCj
RCjjHjH CR 





1

)(1)(



RC RC

RC RC

Figure 3.55
(a)-(b) Frequency response of the system corresponding to yC(t) and yR(t), linear scale. 
(c)-(d) Frequency response of the system corresponding to yC(t) and yR(t), dB scale. 

17



Frequency Response of LTI Systems
 From ,

 the frequency response of a system can be expressed as the 
ratio of the FT or DTFT of the output to that of the input.

 If the input spectrum is nonzero at all frequencies, the 
frequency response of a system may be determined from the 
input and output spectra

 Continuous-time system, 

 Discrete-time system,

 .

( ) ( )* ( ) ( ) ( ) ( )FTy t h t x t Y j X j H j    

( )( )
( )

Y jH j
X j






( )( )
( )

j
j

j

Y eH e
X e





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  1 1 11
1 1 1

jH j
j j j

  

 
       

  2
1

jH j
j







Example 3.34
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The output of an LTI system in response to an input x(t)=e2tu(t) is y(t)=etu(t). 
Find the frequency response and the impulse response of this system.
<Sol.>

1. First find the FT of x(t) and y(t):   1
2

X j
j







  1
1

Y j
j







2. Then, the frequency response of the system is

   
 

Y j
H j

X j







3. The impulse response of the system is the inverse FT of H(j):

     th t t e u t  



Recovery or Equalizer 
(Inverse Frequency Response)
 Recover the input of the system from the output
 Continuous-Time

 , where 

 Discrete-Time
 , where 

 An inverse system is also known as an equalizer, and the 
process of recovering the input from the output is known as 
equalization.
 Causality restrictions make it difficult to build an exact inverse 

system.

     invX j H j Y j    inv 1/ ( )H j H j 

     invj j jX e H e Y e    inv 1/ ( )j jH e H e 

Usually, equalizer is a noncausal system 
and cannot be implemented in real-time !

Approximation!

(Time delay in a system need an equalizer to introduce a time advance)

E.g. Compensate for all but 
time delay20



Example 3.35
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Consider the multipath communication channel, where a (distorted) received signal y[n] is 
expressed in terms of a transmitted signal x[n] as

     1 , 1y n x n ax n a   
Use the convolution property to find the impulse response of an inverse system that will 
recover x[n] from y[n].
<Sol.>
1. Take DTFT on both side of      1 , 1y n x n ax n a   



































n

njj

n

nj

n

nj

n

nj

n

nj

enxaeenx

enaxenxeny

)1(]1[][                     

]1[][][

)()()(   jjjj eXaeeXeY 



  j

j

j
j ae

eX
eYeH 1

)(
)()(

2. The frequency response of the inverse system is then obtained as  inv 1/ ( )j jH e H e 

 inv 1
1

j
jH e

ae


 


     inv nh n a u n 



][][][)()()(
2;

kZkTXkYtztxty T
FS

 


Convolution of CT Periodic Signals

22

 Recall that if the impulse response h(t) of the LTI system is periodic, then 
the system is unstable. (since h(t) is not absolutely integrable) 

the convolution of periodic signals does not occur naturally

 Convolution of periodic signals often occurs in the context of signal 
analysis and manipulation

 Definition:

 Take FS on the both sides with 0=2/T, we have

The periodic convolution of two CT signals x(t) and z(t), each with period T, 
is defined as the following integral over a single period T:

 
T

dtzxtztxty
0

)()()()()(  also with period T

 

 









 






 

T jkT tjk

T tjkTT tjk

dexdtetz
T

dtedtzx
T

dtety
T

0 0

)(

0 00

00

00

)()(1                           

)()(1)(1









][][][ kXkTZkY 



][][][][][][
2;

kZkNXkYnznxny N
DTFS

 


Convolution of DT Periodic Signals
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 Definition:

 Take DTFS on the both sides with 0=2/N, we have

The periodic convolution of two DT signals x[n] and z[n], each with period N, 
is defined as the summation of length- N:







1

0

][][][][][
N

k

knzkxnznxny also with period N

][][][ kXkNZkY 

◆ Convolution in Time-Domain  Multiplication in Frequency-Domain



Convolution Property Summary
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Outline
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 Differentiation and Integration Properties

 Time- and Frequency-Shift Properties

 Finding Inverse Fourier Transforms

 Multiplication Property

 Scaling Properties

 Parseval Relationships

 Time-Bandwidth Product

 Duality



Differentiation and Integration Properties
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 Recall that differentiation and integration are operations that apply to 
continuous (time or frequency) functions. 

 We consider CT signals in time-domain, or FT/DTFT in frequency-domain

 1. Differentiation in Time 

 Differentiation accentuates the high-frequency components of the signal

 Differentiation destroys any dc component (i.e. =0) of the differentiated 
signal

Consider a nonperiodic signal x(t) and its FT, X(j), representation, i.e.

   




 


 dejXtx tj

2
1    





 


 dejjXtx
dt
d tj

2
1

( ) ( )FTd x t j X j
dt

 

Differentiating 

both sides w.r.t t

◆ Differentiation of x(t) in time-domain  (j)  X(j) in frequency-domain



Example 3.37
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   FTatd je u t
dt a j




 


Verify this result by differentiating and taking the 
FT of the result.

<Sol.>

1. Since           at at at atd e u t ae u t e t ae u t t
dt

         

2. Taking the FT of each term and using linearity, we have

   1FTatd ae u t
dt a j

 
 





Frequency Response from IO-Relationship
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 Given the following IO-relationship of the LTI system:

 Take FT of both sides, we have

 The frequency response is the system’s steady-state response to a sinusoid.

 The frequency response cannot represent initial conditions (it can only 
describes a system that is in a steady-state condition)

   tx
dt
dbty

dt
da k

kM

k
kk

kN

k
k 




00

        jXjbjYja k
M

k
k

k
N

k
k 




00

 
 

 

 





 N

k

k
k

M

k

k
k

ja

jb

jX
jY

0

0








 
 

 





 N

k

k
k

M

k

k
k

ja

jb
jH

0

0








Differentiation and Integration Properties
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 1. Differentiation in Time 

 Differentiation destroys the time-averaged valued (i.e. the dc component) 
of the differentiated signal; hence, the FS coefficient for k=0 is zero

 Example 3.39

Consider a periodic signal x(t) and its FS, X[k], representation, i.e.

Differentiating 

both sides w.r.t t
    0jk t

k

x t X k e 




      tjk

k

ejkkXtx
dt
d

0
0








   0;
0

FSd x t jk X k
dt

 

◆ Differentiation of x(t) in time-domain  (jk0)  X[k] in frequency-domain

( ) ( )dz t y t
dt





Differentiation(in Frequency) Property
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 2. Differentiation in Frequency 
Beginning with the FT of the signal x(t):

Differentiating 

both sides w.r.t 
    dtetxjX tj 

    




 dtetjtxjX
d
d tj


   FT djtx t X j
d




 

◆ Differentiation of X(j) in frequency-domain  (jt)  x(t) in time-domain

Consider the DTFT of the signal x[n]:

( )= [ ] j j n

n
X e x n e


  




Differentiating 

both sides w.r.t  




 
 n

njj enjnxeX
d
d ][)(

)(][ 


  jDTFT eX

d
dnjnx



Example 3.40 FT of a Gaussian Pulse

31

Use the differentiation-in-time and differentiation-in-frequency properties to determine 
the FT of the Gaussian pulse,   2 / 2( ) 1/ 2 tg t e 

1
2

<Sol.>
1. Differentiation-in-time:

2 / 2( ) ( / 2 ) ( )td g t t e tg t
dt

    

2. Differentiation-in-time property:

   FTd g t j G j
dt

  ( ) ( )FTtg t j G j  

3. Differentiation-in-frequency property:

   FT djtg t G j
d




  )()( 


jG
d
dtjtg FT )(1)( 


jG

d
d

j
ttg FT

)()(1 


jGjjG
d
d

j
 0)()(  


jGjG

d
d

  22  cejG
4. The integration constant c is determined by     2 / 20 1/ 2 1tG j e dt

 


 
  2 2/ 2 / 21/ 2 FTte e    The FT of a Gaussian pulse is also a 

Gaussian pulse!



1( ) ( ) ( )Y j X j c
j

   


 

Integration Property
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 3.  Integration 
In both FT and FS, we may integrate with respect to time.
In both FT and DTFT, we may integrate with respect to frequency.

 Case for nonperiodic signal

Since                             implies      dxty
t

 
 ( ) ( )d y t x t

dt
 By differentiation property, we have

1( ) ( )Y j X j
j

 




The value at  =0 can be modified the equation by 

The constant c depends on the average value of x(t) 

This relation is indeterminate at =0
(also implies that X(j0)=0)

This is true only to signals with a zero time-averaged value, i.e. X(j0)=0 .

Or, it is true for all  except  =0.



General Form for Nonperiodic Signal
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We observe that                                    , where

Then, 

)()()()(       

)()(

tutxdtux

dxty
t

















First note that

)}({)()( tuFTjXjY  

)sgn(
2
1

2
1)( ttu 













0,1
0,0
0,1

)sgn(
t
t
t

t

)sgn(
2
1)sgn(

2
1

2
1)( t

dt
dt

dt
dtu

dt
d







 

)sgn()(2 t
dt
dt   )sgn(2 tFTj  

j
tFT 2)sgn( 

)()()()}({)()( 

 jX

j
jXtuFTjXjY 

Thus, 

Hence, 

 



j

tFTFTtuFT 1)()sgn(
2
1

2
1)( 

















1( ) ( ) ( 0) ( )
t FTx d X j X j

j
     


 



 Summary

( ) ( )FTd x t j X j
dt

 
 

   0;
0

FSd x t jk X k
dt

   

   FT djtx t X j
d




   

   DTFT jdjnx n X e
d

 


 

1( ) ( ) ( 0) ( )
t FTx d X j X j

j
     


 

Differentiation and Integration Properties

34



Time- and Frequency-Shift Properties
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 1. Time-shift property
Let z(t) = x(t  t0) be a time-shifted version of x(t).

Take FT of z(t): Change variable by  = t  t0:

     




   dexjZ tj 0  




   dexe jtj 0   jXe tj 0

◆Time-shifting by t0 in time-domain  Multiply by e j t0 in frequency-domain

and( ) ( )Z j X j  0arg{ ( )} arg{ ( )}Z j X j t   






 dtettxjZ tj )()( 0

)()( 0
0  jXettx tjFT 

◆ Note that the mag. response and phase response are

◆ unchanged the mag. response but introduces a phase shift

   0
0

j tFTx t t e X j    

   0 0 0;
0

FT jk tx t t e X k    

   0
0

j nDTFT jx n n e X e   

   0 0 0;
0

DTFS jk nx n n e X k   



Example: 
Frequency Response of LTI System
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   



M

k
k

N

k
k knxbknya

00

Taking DTFTof both sides 

of this equation
       







 
M

k

jkj
k

N

k

jkj
k eXebeYea

00

 
 

 

 















 N

k

kj
k

M

k

kj
k

j

j

ea

eb

eX
eY

0

0





Time- and Frequency-Shift Properties
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 2. Frequency-shift property
Suppose that: ( ) ( )FTx t X j
By the definition of the inverse FT, we have

Change variable by  =   , we have

     




 


 dejXtz tj

2
1  




 


 dejXe tjtj

2
1  txe tj

◆ Frequency-shift by  in frequency-domain  Multiply by e  t in time-domain

Consider the frequency shift: ))((  jX





 


 dejXtz tj))((

2
1)(

))(()(   jXtxe FTtj



Example 3.42 and 3.43
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Determine the FT of the complex sinusoidal pulse:

<Sol.>

 











t
te

tz
tj

,0
,10

 











t
t

tx
,0
,1

Recall rectangular pulse                              ,  then      2 sinFTx t X j 


 

    10 10FTj te x t X j       2 sin 10
10

FTz t  


 


By Frequency-shift property

Find the FT of the signal         2*3   tuetue
dt
dtx tt

<Sol.>
Let 3( ) ( )tw t e u t

( ) ( 2)tv t e u t and

      tvtw
dt
dtx *        jVjWjjX 

 



j

jW



3

1

 





j
eejV

j







1

2
2     222   tueetv t

Then, 

    




jj
ejejX

j







31

2
2



Outline
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 Differentiation and Integration Properties

 Time- and Frequency-Shift Properties

 Finding Inverse Fourier Transforms by Using Partial-
Fraction Expansions

 Multiplication Property

 Scaling Properties

 Parseval Relationships

 Time-Bandwidth Product

 Duality



Finding Inverse Fourier Transforms 
by Using Partial-Fraction Expansions

40

 Consider a ratio of polynomial in j : 

     
     

 
 






jA
jB

ajajaj
bjbjb

jX N
N

N

M
M 




 

 01
1

1

01





If M  N, then we may use long division to express X(j) in the form

Assume that M < N

     
 


jA
jBjfjX

NM

k

k
k






0

Partial-fraction expansion is 
applied to this term

Applying the differentiation property and the 
pair                          to these terms( ) 1FTt 

001
1

1  
 avavav N

N
N Replacing j with a generic variable , then we have

for the denominator A(j). Suppose that we have roots dk, k = 1, 2, …, N. 
For M < N, we may the write

 
 

 








 N

k
k

M

k

k
k

dj

jb
jX

1

0






Assuming distinct roots dk, k = 1, 2, …, N, we may write 

  
 


N

k k

k

dj
C

jX
1 





Inverse FT for Partial-Fraction Expansions
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 Recall that

 Similarly,  

 Recall that

  1FTdte u t
j d




Assuming that the real part of each dk, k = 1, 2, …, N, is negative, then

     
1 1

k

N N
d t FT k

k
k k k

Cx t C e u t X j
j d


 

  
 

For the case of repeated roots, please refer Appendix B !!

This pair is valid only for Re{d} < 0.
(if Re{d}<0, edtu(t) is not absolutely integrable) 

    11
1

1

01




 







jNj
N

Nj
N

jMj
Mj

eee
ee

eX





 Normalized to 1

Replace e j with the generic variable v and solve the roots of the polynomial

01
2

2
1

1  


NN
NNN vvvv  

Assuming that all the dk are 
distinct and | dk |<1,  then







 
 

N

k
j

k

kjDTFT
N

k

n
kk ed

CeXnudCnx
11 1

)(][)(][

    1
1

n DTFT
k j

k

d u n
d e 





Example 3.44
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Frequency response for the MEMS accelerometer is given by  
   2 2

1
n

n

H j
j j

Q

   


 Find the impulse response for the MEMS accelerometer, assuming 
that n = 10,000 rads/s, and (a) Q = 2/5, (b) Q = 1, and (c) Q = 200.
<Sol.>
Case (a): n = 10,000 rads/s and Q = 2/5, then we have

      5000200001000025000
1 21

22 





  j
C

j
C

jj
 

     22 1000025000
1







jj
jH

The roots of the denominator polynomial are d1 =  20,000 and d2 =  5,0000.

0)10000()(25000)( 22   jj

1)5000(
200001 



j

jC
15000

1
1


C

1)20000(
50002 



j

jC
15000

1
2 C

 
5000

15000/1
20000

15000/1











jj
jH

       5000 200001/15000 t th t e e u t  
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Find the inverse DTFT of

<Sol.>

 











2

6
1

6
11

5
6
5

jj

j

j

ee

e
eX

First solve the characteristic polynomial: 0
6
1

6
12  vv

The roots of the polynomial are d1 =  1/2 and d2 = 1/3.

Then















jjjj

j

e

C

e

C

ee

e

3
11

2
11

6
1

6
11

5
6
5

21

2

C1 = 4,  C2 = 1

         nununx nn 3/12/14 
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 Differentiation and Integration Properties

 Time- and Frequency-Shift Properties

 Finding Inverse Fourier Transforms by Using Partial-
Fraction Expansions

 Multiplication Property

 Scaling Properties

 Parseval Relationships

 Time-Bandwidth Product

 Duality



Multiplication Property
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 Case of nonperiodic continuous-time signals

 Consider two nonperiodic signals: x(t) and z(t).  Let’s y(t) = x(t)z(t).

Suppose that the FT representation of x(t) and z(t) are: 

   



 dvejvXtx jvt

2
1    




 


 dejZtz tj

2
1

and

 
 

      








 dvdejZjvXty tvj 



22

1

1. Change the integral order.  2. Change variable by + v = 

1( ) ( ) ( ) ( ) ( )* ( )
2

FTy t x t z t Y j X j Z j  


  

Then,

)()(  jZjX 

      1 1
2 2

j ty t X jv Z j v dv e d 
 

 

 

     

◆ Multiplication in time-domain  Convolution in Frequency-Domain  (1/2)



Multiplication Property
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 Case of nonperiodic discrete-time signals

 Consider two nonperiodic signals: x[n] and z[n].  Let’s y[n] = x[n]z[n].

Suppose that the DTFT representation of x[n] and z[n] are: 

and

2-periodic
Then,

◆ Multiplication in time  Periodic Convolution in Frequency  (1/2)


 




deeXnx njj )(

2
1][ 

 



deeZnz njj )(

2
1][

2-periodic

)()(
2
1)(][][][    jjjDTFT eZeXeYnznxny




Windowing Operation – Truncating a Signal
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 Windowing: a signal passes through a window means only the signal within 
the window is visible. The other part is truncated. 

(j )X 

(j )W 

0 0- /  0 /T T 

(j )Y 






Truncated signal y(t) = x(t)w(t)

       1 *
2

FTy t Y j X j W j  


 



Example 3.46 Windowing Effect 
(aka Gibbs Effect in Example 3.14)

48

/2 /2 

/2

2 2

2

2 /2

( )F 



The frequency response H(e j) of an ideal discrete-time low-pass filter. Describe the 
frequency response of a system whose impulse response is truncated to the interval 
 M  n  M.

<Sol.>
The ideal impulse response is just the inverse FT of H(e j ):   1 sin

2
nh n

n



   
 

Infinite impulse response
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   ,
0, otherwiset

h n n M
h n


 


[ ] [ ] [ ]th n h n w n

  1,
0, otherwise

n M
w n


 




Multiplication Property
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 Case of periodic continuous-time signals

 Case of periodic continuous-time signals

Consider two periodic signals: x(t) and z(t).  Let’s y(t) = x(t)z(t).

This relationship is provided that x(t) and z(t) have a common period T
◆ Multiplication in time-domain  Convolution in Frequency-Domain 

If their fundamental periods are not identical, T should be the LCM of each 
signal’s fundamental period.

Consider two periodic signals: x[n] and z[n].  Let’s y[n] = x[n]z[n].

◆ Multiplication in time  Periodic Convolution in Frequency

][][][][][][ /2; kZkXkYnznxny NDTFS   

][][][)()()( /2; kZkXkYtztxty TFS   

This relationship is provided that x[n], z[n], and Y[k] have a common period N



Summary for Multiplication Property
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Scaling Property
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 Case of scaling the continuous-time signal 
Let z(t) = x(at). Consider the FT of z(t): ( ) ( ) ( )j t j tZ j z t e dt x at e dt 

  

 
  

( / )

( / )

(1/ ) ( ) , 0
( )

(1/ ) ( ) , 0

j a

j a

a x e d a
Z j

a x e d a

 

 

 


 

 



 



  
 




( / )( ) (1/ ) ( ) ,j aZ j a x e d   
 


 

( ) ( ) (1/ ) ( / ).FTz t x at a X j a 

◆ Scaling in time-domain  Inverse scaling in frequency-domain

Changing variable by letting  = at

( )X j





1 ( )X j a
a





Example 3.49
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Find x(t) if 
2

( )
1 ( / 3)

jd eX j j
d j




 
 

   
<Sol.>
Differentiation in frequency, time shifting, and scaling property are used to solve the problem.
First note the FT-pair: 1( ) ( ) ( )

1
FTts t e u t S j

j



  


 2( ) ( / 3)jdX j j e S j

d
 




Then,

We apply the innermost property first: we scale, then time shift, and lastly differentiate.

( ) 3 (3 )y t s t 33 (3 )te u t 33 ( )te u tDefine Y(j) = S(j/3).

Define W(j) = e j2Y(j/3). ( ) ( 2)w t y t  3( 2)3 ( 2)te u t  

( ) ( )dX j j W j
d

 


 ( ) ( )x t tw t 3( 2)3 ( 2)tte u t  Finally



Scaling Property
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 Case of scaling the periodic continuous-time signal 

 Case of scaling the discrete-time signal 

◆ Scaling in time-domain for periodic signal  Same response in frequency

If x(t) is a periodic signal, then z(t) = x(at) is also periodic. 
If x(t) has  fundamental period T, then z(t) has fundamental period T/a. Suppose that a>0 

If the fundamental frequency of x(t) is 0, then the fundamental frequency of z(t) is a0.
/

0
[ ] ( ) o

T a jka taZ k z t e dt
T

 FS coefficients of z(t):

0;( ) ( ) [ ] [ ],      0FS az t x at Z k X k a   

Scaling operation for periodic signal simply changes the harmonic spacing from 0 to a0 !!

First of all, z[n] = x[pn] is defined only for integer values of p. 
If p> 1, then scaling operation discards information.



Parseval Relationships
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 Case of continuous-time non-periodic signal
Recall the energy of x(t) is defined by 2( )xW x t dt




 

Note that 

Express x*(t) in terms of its FT: 

1 ( ) ( )
2xW X j X j d  


 


 

 1 ( ) ( )
2

j t
xW X j x t e dt d 


  

 
  

)()()( 2 txtxtx 





 


 dejXtx tj)(

2
1)(













 






 





 dejXdejXtx tjtj )(

2
1)(

2
1)(

1( ) ( )
2

j t
xW x t X j e d dt 


   

 

     
Then, 

2 21( ) ( )
2

x t dt X j d 


 

 
 

The energy or power in the time-domain representation of a signal is equal to the 
energy or power in the frequency-domain representation normalized by 2



Summary for Parseval Relationships
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Table 3.10 Parseval Relationships for the Four Fourier Representations 

Representations Parseval Relationships 

FT 2 21( ) ( )
2

x t dt X j d 


 

 
   

FS 2 2

0

1 ( ) [ ]
T

k
x t dt X k

T



  

DTFT 
22 1[ ] ( )

2
j

n
x n X e d




 
 

  
DTFS 1 12 2

0 0

1 [ ] [ ]N N

n k
x n X k

N
 

 
   

The power is defined as the integral or sum of the magnitude squared 
over one period, normalized by the length of the period



Example 3.50
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Let sin( )[ ] Wnx n
n



Use Parseval’s theorem to evaluate

21 ( )
2

jX e d









 

2
2

2 2

sin ( )[ ]
n n

Wnx n
n




 

 

  
<Sol.>

1. Using the DTFT Parseval relationship, we have

2. Since 1,
[ ] ( )

0,
DTFT j W

x n X e
W 

  
     

1 1 /
2

W

W
d W 

 
  

Direct calculation in time-domain 
is very difficult!



Time-Bandwidth Product
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 Preview the fact:

 As signal’s time extent decreases (T0 decreases ),  the signal’s frequency 
extent increases.

 The product of the time extent T0 and main-lobe width (i.e. the bandwidth) 
2/T0 is a constant.  

 The bandwidth of a signal is the extent of the signal’s significant frequency 
content.

 Compressing a signal in time leads expansion in frequency and vice versa

0T


0T


( )X j

1,
( ) ( ) 2sin( ) /

0,
o FT

o
o

t T
x t X j T

t T
  


   

finite duration in time infinite duration in freq.



Time-Bandwidth Product
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 Effective duration of a signal x(t) is defined by

 Effective bandwidth of a signal x(t) is defined by

 The uncertainty principle:

1/ 2
22

2

( )

( )
d

t x t dt
T

x t dt








 
 
 
  




1/ 2
22

2

( )

( )
w

X j d
B

X j d

  

 








 
 
 
  




The time-bandwidth product for any signal x(t) is lower bounded by 1/ 2d wT B 

We cannot simultaneously decrease the duration and bandwidth of a signal.



X(jω)

X(jω)

ω

ω
(ωT0)

t

ω

ω

Duality
 Preview

 A rectangular pulse in either time or frequency corresponds to a sinc
function in either frequency or time domain.

 A impulse in either time or frequency transforms to a constant in either 
frequency or time domain.

 Convolution, Differentiation, ...



Duality Property of the FT
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 Recall that                                          and 

 Duality property

 Example 3.52 

1( ) ( )
2

j tx t X j e d 





  ( ) ( ) j tX j x t e dt

 


 

Difference in the factor 2 and the sign change in the complex sinusoid

( ) ( )FTf t F j ( ) 2 ( )FTF jt f  

Find the FT of
1( )

1
x t

jt



<Sol.>

Note that:
1( ) ( ) ( )

1
FTtf t e u t F j

j



  


Replacing  by t, we obtain

1( )
1

F jt
jt




Apply duality property:

( ) 2 ( ) 2 ( )X j f e u       



Duality Property of the DTFS
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 FT-pair: mapping a CT nonperiodic function into a CT nonperiodic function.

 DTFS-pair: mapping a DT periodic function into a DT periodic function.

 Recall that                                 and 

 Duality property

Difference in the factor N and the sign change in the complex sinusoid

1

0

[ ] [ ] O

N
jk n

k

x n X k e







1

0

1[ ] [ ] O

N
jk n

n

X k x n e
N


 



 

2;
[ ] [ ]

DTFS
Nx n X k



2; 1[ ] [ ]

DTFS
NX n x k

N



 



Duality Property of the DTFT and FS
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 FS-pair: mapping a CT periodic function into a DT nonperiodic function.

 DTFT-pair: mapping a DT nonperiodic function into a CT periodic function.

 Recall that                                 

 and 

 Duality property

FS of a periodic continuous time signal z(t):

DTFT of a nonperiodic discrete-time signal x[n]: ( ) [ ]j j n

k
X e x n e


  



 

[ ] ( )DTFS jx n X e  ;1( ) [ ]FSjtX e x k 

2. Duality relationship between z(t) and X(e j) requires z(t) to have the same 
period as X(e j), that is, T = 2

( ) [ ] ojk t

k

z t Z k e 




 

1. Difference in the sign change in the complex sinusoid


