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Chapter 3:
Fourier Representation of Signals
and LTI Systems

Chih-Wei Liu
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Reviews of Fourier Representations

Table 3.2 The Four Fourier Representations

Time L. L
D ) Periodic (t, n) Non-periodic (t, n)
omain
Fourier Series
> : Fourier Transform
x(£)= Y X[kle”™
. ":2_‘” I o . jaj[ . .
Continuous | x(t)=Ej X(jw)e’dw | Nonperiodic
T . -
(t) X[K]=— jﬂ x(t)e " dy (k, o)
PO —joot
x(t) has period T, X0 a))—Lox(t)e dt
w,=2r/T.
Discrete-Time . . .
. . Discrete-Time Fourier
Fourier Series
Ve Transform
x[n]=Y X[kle™™" 1 n i
. ; x[n]l=—| X(’*)e’dQ | Periodic
Discrete [n] | N - 2 J-n k. Q)
X[k]1=— x[nle™*" °° ’
[k]= " 23n] X@®)='3 il
x[n] and X[k] have =
perEoL N § lsz X(e”*)has period 2r.
. Frequenc
Discrete [K] Continuous (@, Q) 9 . 4
Domain

The four Fourier representations are all based on complex sinusoids



Periodicity Properties of Fourier
Representations

Table 3.3 Periodicity Properties of Fourier Representations

Time-Domain Property Frequency-Domain Property
Continuous Nonperiodic
Discrete Periodic

' Periodic Discrete |
E Nonperiodic Continuous :

» Periodic time signals have discrete frequency-domain
representations, while nonperiodic time signals have
continuous frequency-domain ones.

» In general, representations that are continuous/discrete in one
domain are nonperiodic/periodic in the other domain.
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Linearity Property of Fourier s, @I
Representations

z(t)=ax(t)+by(t) <« Z(jow)=aX(jo)+bY (jo)

) Z[k]=ax [k]+bY [K]
+by[n] <2 Z(e?)=aX (e?)+hY (e))
~=i 5y Z[k]=aX [k]+bY [K]
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» Uppercase symbols denote the Fourier representation of the
corresponding lowercase ones

» In case of FS and DTFS, the (two) signals being summed are
assumed to have the same fundamental period



Example 3.30

JJ_L J: s J_I_L | z(t) = (3/2)x(t) + (1/2)y(t)
(1) <2 X[k]=(Y(ke))sin(kz/4)
]K:) y(t) ¢ FS_);Z” Y [k]:(]/(kﬂ))3|n(k7f/2)

2(t) « =2 Z[k]=(3/(2kr))sin(kz/2)+(1/(2kr))sin(kr/2)



Symmetry Property for Real-Valued x({)
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» For a real-valued signal x(t), we have X(]w) = j_o:o x(t)e 1 dt

» Consider the complex-conjugate of X(jw):

X*(jo) = jix(t)e"“"dt)*

= [ x*(t)ei“dt = f x(t)e!“dt

) | X (jo)=X(-jo)

= [ x(®e "t = X (- jo)

» For a real-valued x(t), X(jw) is complex-conjugate symmetric

» Another representation:
X(Jo)=Re{X(Jo)}+ JIm{X()®)}
X (jo)=Re{X(jo)}— jIm{X(jo)}  nmmmp
X(=Jo) =Re{X (= Jo)}+ | IM{X (-] )}

even

Re{X (- jo)}= Re{X (jo)}

Im{X (- jw){=-Im{X (jo)}

""""""""" odd
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Symmetry Property for Imaginary-Valued x(t)

» For a imaginary-valued signal x(t), we have X (]w) = f; x(t)e™dt

» Consider the complex-conjugate of X(jw):

X*(jow) = f:o x(t)ej“’tdtj*

= [ x(edt= [ —x(t)e’dt

I—

X (jo)=-X(-]jo)

= x(®)e "t = -X (- jo)

» For a pure imaginary x(t), X(jw) is conjugate anti-symmetric

» Another representation:
X(Jo)=Re{X(Jo)}+ JIm{X()®)}
X" (jo) =Re{X (jo)}- jIm{X(jw)}

-

/ odd

Re{X (—jw)}= —Re{X (- jo)}

Im{X (- jo)}= Im{X (jo)}

—X(CJo)=—Re{X(-Jo)i— JIM{X (o)} even

b 8
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Symmetry Properties of Fourier S, ()
Representations

Table 3.4 Symmetry Properties for Fourier Representation of Real- and
Imaginary-Valued Signals

] Real-Valued Time Imaginary-Valued Time
Representation . .
Signals Signals
FT X (jo)= X (- jo) X (jo)=-X(-jo)
FS X'[k]= X[-k] X [k]=—-X[-k]
DTFT X' (e®)=X(e") X'()=-X(e")
DTFS X'[k]= X[-k] X' [k]l=-X[-k]

» Note that for the periodic signal with period N, X[-k] = X[N—k]

» If x(t) is real and even, then X*(jo)= X(jw). That is, X(jo) is real

=> A real and even signal has a real and even frequency representation

» If x(t) is real and even, then X*(jo)= — X(jo). That is, X(jo) is imaginary

=> A real and odd signal has a imaginary and odd frequency representation



[O-Relationship in Real-Valued LTI System

x(f) = A cos (wt - $) (1) = AlH(jw)| cos (@t - ¢ + arg{ H(jw)})

Al
AlH(jw)|

JIEN\/ PSRN

¢ - arg{ Hjw)}

w

| . The real-valued input signal X(t) = ACOS(a)t — ¢)

ewrite the input signal : X(t)= el 4 e 1% Two eigenfunctions
R he input signal t)=(A/2)e ) L (A/2)e 1 Two eigenf

giot gjor
2.The real-valued impulse response of LTI system: h(t).

3.Applied the linear property of the LTI sytem to obtain the output signal:
y(t) =5e PH(jo)e +5eH (- jo)e
_ y(t) _ |H (JCO)|(A/ 2)ej(a)t—¢+arg{H(jw)}) +|H (_ ja))| (A/ Z)e—j(wt—¢—arg{H (jo)})
Exploiting the symmetry conditions:|H (ja))| = |H (— ja))| arg{H (JCO)} = —arg{H (— Ja))}

- (oot o)
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Convolution of Nonperiodic Signals

» The convolution property is a consequence of complex sinusoids being
eigenfunctions of LTI system

Y(t)zh(t)*x(t)zjih(r)x(t—r)dr Since X(t—T)Z%IO;X(ja))ejw(t—r)da)
= y(O)=["n()| [ x( ja))e"“’tejmda)}dr

| 271

] 1 b e x (jo)e*de =L [ H (jo)X (jo)e do
o 7Z' —00

[ B

i y(t) =h(t)*x(t) «——— Y(jo)=X(jo)H(jo)
y[n] = x[n]*h[n]«==—=Y (e/?) = X (e’*)H (')

» The convolution in time-domain corresponds to the multiplication in
frequency-domain



Example 3.31

Let x(t)=(1/(mt))sin(mt) be the input to a system with impulse response h(t)=(1/(mt))sin(2rt).
Find the output y(t) = x(t) * h(t).
<Sol.>

From Example 3.26, we have

x(t)<L>X(ja))={é: IZIiZ h(t)<L>H(iw)={(1)’, }Z}izz
Since Y(t):h(t)*x(t)L)Y(ja)): X(ja))H(ja))

1, |a)|<7r

I- Y (JCU) = {O, |a)| > 7 ) y(t) = (1/(nt))sin(nt)



Example 3.32

: 4
Use the convolution property to find x(t), where X (t) 15X ( ja)) = —25|n2 (a))
(4

<Sol.>

(1)
|.Write X(jw) = Z(jw) Z(jw), where Z ( Ja)) = %Sin (a)) 1z
1 [t|<1 |
- t)=1" i
(1) {O, t>1 -0 ]
(a)

2.Apply the convolution property, we have X (t) =Z (t) *Z (’[)

Hence x(1)
2
A' ‘
-2 0 2
(b)
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» The multiplication in frequency domain, i.e. X(jw)H(jw), gives rise to the
“filtering”

» “Filtering” implies that some frequency components of the input signal are
eliminated (stopband) while other are passed by the system (passband)

. H(jo) -
» ldeal filters: At . Hel% |
|
_l ! | |_
; 4 —Q
-W 0 w @ _272' —vT -W 0 W V(4 27[
(a) I |
. | I
Figure 3.53 H(jo) | He®) !
Frequency response of ideal __ ,}[ _ , ,)[ :
continuous- and discrete- o . , “q
time filters: W (|) W -2 —r W (l) w b 27
. b) | I
(@) Low-pass filters. |
H jo
(b) High-pass filters H(jo) ! Hee™™) :
(c) Band-pass filters. '1[ ! 1* : )
@ : - Q
W, =W, (|)

The frequency response of discrete-time filters is based on its
}|4 """"""""""""" characteristic in the range — n < () < 1t because it is 2n-periodic
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The Magnitude Response of Filters

» The magnitude response of the filter is defined by

20log|H (jeo)| or 20Iog‘H(ej9)‘ [dB]

Being described in units of decibels (or dB)
The unit gain is corresponding to 0 dB.
The passband of the filter is normally closed to 0 dB

The edge of the passband is usually defined by the frequencies for

which the response is -3 dB (corresponding to a magnitude response
of 1/72)

Note that IY (i) =|H (jo)| |X (je) , -3 dB points correspond to
frequencies at which the filter passes only half of the input power

‘2

-3 dB points are usually termed as the cutoff frequencies of the filter



Example 3.33 RC Circuit Filtering

For the RC circuit, the impulse response for the case where y(t) is the output is given by
1 YR(®)

he (t) =€ ™ u(t). Since ya(e) = x(9 - yc(©), A

the impulse response for the case where yg(t) is the output R ¥

. . b X(f) C T~ }’c(l‘)
IS given Dy hR (t) _ §(t)—%etmcu(t)

Plot the magnitude responses of both systems on a linear scale and in dB, and characterize
the filtering properties of the systems.
<Sol.>

i 1
The frequency response corresponding to h-(t): H ) =
AHEREYTEP ponding to hc(t): He(J) 1+ jaRC
i i oRC
Hence, H_(jow)=1-H.(jo)= J
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(a)-(b) Frequency response of the system corresponding to y.(t) and yg(t), linear scale.
(c)-(d) Frequency response of the system corresponding to y-(t) and yg(t), dB scale.
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Frequency Response of LTI Systems
» From y(t)=h(t)*x(t) «—— Y(jo)=X(jo)H(jo),

the frequency response of a system can be expressed as the
ratio of the FT or DTFT of the output to that of the input.

If the input spectrum is nonzero at all frequencies, the

frequency response of a system may be determined from the
input and output spectra

Continuous-time system, |H(jw) = Y(J_w)
X(Jo)

jQ
Discrete-time system, |H (e!®)= M
X (e'?)




Example 3.34

The output of an LTI system in response to an input x(t)=e~2w(t) is y(t)=e tu(t).
Find the frequency response and the impulse response of this system.
<Sol.>

| First find the FT of x(t) and y(t): X (jo)= Y (jo)= .

 jo+l

Jo+2
2.Then, the frequency response of the system is
X (ja)) Jo+1 Jo+1

3.The impulse response of the system is the inverse FT of H(jw):

H (jo)=

-
~~
—~t
~
Il

s(t)+eu(t)



Recovery or Equalizer 1. OF ELECTROIIGS ®
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(Inverse Frequency Response)

» Recover the input of the system from the output

Continuous-Time
X (jo)=H™ (jo)Y (jo),where H™ (jo)=1/H(jw)

Discrete-Time
X (ejQ) =H i”V(ejQ)Y (ejg),where H i”V(e"g) =1/H(e*?)

An inverse system is also known as an equalizer, and the
process of recovering the input from the output is known as
equalization.

Causality restrictions make it difficult to build an exact inverse
system. (Time delay in a system need an equalizer to introduce a time advance)

Usually, equallzgr is a noncau.sal systejm i) Approximation!
and cannot be implemented in real-time !

time delay



Example 3.35

Consider the multipath communication channel, where a (distorted) received signal y[n] is
expressed in terms of a transmitted signal x[n] as

y[n]=x[n]+ax[n-1], |a|<1
Use the convolution property to find the impulse response of an inverse system that will

recover x[n] from y[n].
<Sol.>

| . Take DTFT on both side of Y[n] = X[n] + ax[n _1]’ |a| <1

i y[nle " = ix[n]e‘jQn + iax[n —1]e ¥

= > x[n]e " +ae”¥* Y x[n-1]e "
0y (i)« ne B (0w H(ey = YE) 1o
m Y(E?)=XE®)+rae X (") m HE"™)= X(ejQ):1+ae

2.The frequency response of the inverse system is then obtained as H ™ (ejQ) =1/H (e’

® Hm(e)=— ™ h™[n]=(-a)"u[n]
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Convolution of CT Periodic Signals

» Recall that if the impulse response h(t) of the LTI system is periodic, then
the system is unstable. (since h(t) is not absolutely integrable)

=>the convolution of periodic signals does not occur naturally

» Convolution of periodic signals often occurs in the context of signal
analysis and manipulation

» Definition:

The periodic convolution of two CT signals x(t) and z(t), each with period T,
Is defined as the following integral over a single period T:

n
y(t) = x(t) ® z(t) = IOX(T)Z(I —7)d7  also with period T
» Take FS on the both sides with w,=2n/T, we have

%J‘OT y(t)e—jkwotdt = %J‘OT (J‘OTX(Z')Z(t — T)d Z')e_jkwotdt

= Ti ) ( [ 2(t- f)ejk%“”dt)x(r)eik%fd r

b W YKI=TZKIXK ™ 0 oot

»Y [k] = TX[K]Z[K]
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Convolution of DT Periodic Signals

» Definition:
The periodic convolution of two DT signals x[n] and z[n], each with period N,
Is defined as the summation of length- N:
N-1
y[n]=x[n]®z[n]= > x[k]z[n—K] also with period N

k=0

» Take DTFS on the both sides with Q,=271t/N, we have Y [K] = NZ[K]X[k]

2z

"yIn] = X[N] ® z[N]«——N Y [k] = NX [K]Z[K]

€ Convolution in Time-Domain <> Multiplication in Frequency-Domain



Convolution Property Summary

l TABLE 3.5 Convolution Properties.

x(2) * 2(t) s X(juw)Z(joo)

% s TX([k]Z[k]

x(t) ®z(z) ¢

x[n] * 2[n] —2F > X(eM)Z(e?)

DTFS;Q,

x[n] @ z[n] « > NX[k]Z[k]
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» Differentiation and Integration Properties

v

Time- and Frequency-Shift Properties

v

Finding Inverse Fourier Transforms

v

Multiplication Property

» Scaling Properties

v

Parseval Relationships

Time-Bandwidth Product

v

» Duality
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Differentiation and Integration Properties

» Recall that differentiation and integration are operations that apply to
continuous (time or frequency) functions.

» We consider CT signals in time-domain, or FT/DTFT in frequency-domain

» |.Differentiation in Time
Consider a nonperiodic signal x(t) and its FT, X(jw), representation, i.e.

o0

X(t):i J‘X(ja))ejwtda) Differentiating N d X(t):i jX(ja))ja)eja’tda)
27 S both sides w.rtt i 27 =,

I %x(t) s joX(jo)

@ Differentiation of x(t) in time-domain <> (jw) x X(jw) in frequency-domain

» Differentiation accentuates the high-frequency components of the signal

» Differentiation destroys any dc component (i.e. ®=0) of the differentiated
signal



Example 3.37

d (e—atu (t)) PN Jo Verify this result by differentiating and taking the

dt a+ Jo  FT of the result.

<Sol.>

e u(0) =-ae () +e 5 (1) = —ae u(t)+ (1)

|.Since

2. Taking the FT of each term and using linearity, we have

d
dt

(e‘atu(t)) PRLILEEN aj}a)Jrl
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Frequency Response from [O-Relationship

» Given the following |O-relationship of the LTI system:

N dk M dk
—vit)=) b, —xlt
kzzoak dtk y() ; k dtk X()
» Take FT of both sides, we have

2
Zak Ja) Zb ja) Ja)) I Y(J_w) _ kl\_—lo
2

by (Ja))k

ak(ja))k

» The frequency response is the system’s steady-state response to a sinusoid.

) |H(jo)=

PM=[E1M=

x
Il

0

» The frequency response cannot represent initial conditions (it can only
describes a system that is in a steady-state condition)
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Differentiation and Integration Properties

» |. Differentiation in Time
Consider a periodic signal x(t) and its FS, X[k], representation, i.e.

Differentiating d

X(t):kiox [k]ejkwot > X(t)z ix[k]jkwoejk%t

both sides w.rtt a

K=—00

— %x(t) 2% kapX [K]

@ Differentiation of x(t) in time-domain <> (jka,) x X[k] in frequency-domain

» Differentiation destroys the time-averaged valued (i.e. the dc component)
of the differentiated signal; hence, the FS coefficient for k=0 is zero

» Example 3.39 Z(t):%y(t)

y() 2(8)

\/\/\T//\/\/\ 2
1 } } t f t t t t + f

T 2T L2 -7 0 T 2T

I
&~
N

I 0 L
(a) (b)
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Differentiation(in Frequency) Property

» 2. Differentiation in Frequency
Beginning with the FT of the signal x(t):

X(ja))= f» X(’[)e_jwtdt Differentiating > d X(J'w)=f;— th(’[)e_jwtdt

both sides w.r.t @ dw

) |- jtx(t) < all d X (jo)

do

A 4

& Differentiation of X(jw) in frequency-domain <> (—jt) x x(t) in time-domain

Consider the DTFT of the signal x[n]:

. i . Differentiating
X (@)=Y x[n]e ™"
(™) Z [n] both sides wrtQ dQ

N=—0o0

X (e") = Z jnx[nJe "

N=—0o0

- | DTFT d 1e)
nx[n]«< >—— X (e’
Jnx[n] © (e™)




Example 3.40 FT of a Gaussian Pulse

Use the differentiation-in-time and differentiation-in-frequency properties to determine
the FT of the Gaussian pulse, g(t) = (1/\/271)6_t /2
<Sol.>

| Differentiation-in-time: % g(t) =(-t/ \/E)e_tzl2 =—tg(t)

g(t)

2. Differentiation-in-time property:

U
/

Sot) <o (o) mh OO j06(jw) - = oz

3. Differentiation-in-frequency property:
d

_ita (t FT el
jg(t) «—— -

. . d .. 1d .
G(jo) M — jtg(t) <« > —G(jo) ) —tg(t) <= >waG(ja))

29 G(jw) = joG(je) M |1 6(jo)+aG(jo) =0
jdw dw

) G(jow)=ce™”
4.The integration constant c is determined by G ( jO) = IOO (llﬂ)e_tzlzdt =1

T (1/ /_27z)e_t2/2 FT a~®'/2| The FT of a Gaussian pulse isalsoa
Gaussian pulse!
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Integration Property

» 3. Integration
In both FT and FS, we may integrate with respect to time.

In both FT and DTFT, we may integrate with respect to frequency.
& Case for nonperiodic signal

t d
Since y(t) = LO X(Z'h 7 implies pm y(t) = X(t) By differentiation property, we have

. 1 - This relation is indeterminate at =0
Y (jow)=— X
(Jo)== (Jo)| = (also implies that X(j0)=0)

This is true only to signals with a zero time-averaged value, i.e. X(j0)=0 .

Or, it is true for all ® except @ =0. 1
The value at @ =0 can be modified the equation by Y ( jo) = — X (j®) + co(w)
)]

The constant ¢ depends on the average value of x(t)
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General Form for Nonperiodic Signal

" x()dr s X (jo)+ 72X (j0)5(w)

First note that

v =] x(z)dz =) Y (jo) = X (jo)FT{u(t)}
_ f‘; X(7)u(t —7)d 7z = x(t) *u(t) (1 t<0

We observe that U(t) = 1 + Esgn(t) ,where sgn(t) =4 0, t=0

d d(l 1 1d 1, t>0
Then, —y(t)=—| =+ =sgn(t) |= =—sgn(t L
dt (1) dt(Z 29()j 2dtg()

- 25(t):%sgn(t) ) 2= joFT{sgn(t)} m= FT {sgn(t)}zj%

Thus, FT{u(t)}=FT {1} +FT {lsgn(t)} = 718 (w) + i
2 2 jo

Y (j@) = X (j@)FT{u} = X ij) +28(@)X (jo)
33 a)
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Differentiation and Integration Properties

» Summary
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Time- and Frequency-Shift Properties

» |.Time-shift property
Let z(t) = x(t — t;) be a time-shifted version of x(t).

Take FT of z(t): Z(jw) = [ x(t—t,)e '*dt Change variable by t = t -

Z(jo)=[

o0

) X(t—t)<«T e "X (jw)

X(r)e_j”(“t())dzz gl ro x(r)e'7dr =e 1 X (jo)

—00

@ Time-shifting by t, in time-domain <> Multiply by e=J*% in frequency-domain

€@ Note that the mag. response and phase response are
|Z ( ja))| — |X (Ja))| and arg{Z(jw)}=arg{X(Jjw)}— oyt

€ unchanged the mag. response but introduces a phase shift
x(t—t,) <> e X (jo)
X(t—t,) <« e lmb)x (k)

DTFT N e—anox (ejQ)

DTFS;Qy e—ijOnox[k]

AN

AN

____________________________ x[n—n]

b 35 x[n—n,]

AN\




Example:
Frequency Response of LTI System

kZi;aky[n—k]: kzhi;bkx[n—k]

Taking DTFTof both sides

of this equation
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Time- and Frequency-Shift Properties

» 2. Frequency-shift property

Suppose that: X(t) «——> X(jw) Consider the frequency shift: X (J(w-7))

By the definition of the inverse FT, we have

(1) = ZiJ‘OO X (j(@—7))e'”dew Change variable by n = ® — v, we have
7Z' —Qo0
1 ¢ ) , 1w _ _ :

th=— [ X ity — aint 2 jt _ elty(t

2(t)=— [ X (ime?" "My =e¥ [ X(jn)edn =ex(0)

) 27X (1) «—— X (j(@-7))

@ Frequency-shift by » in frequency-domain <> Multiply by e~7* in time-domain

ex(t) —— X(j(w — ¥))

eomx(t) > X[k — ko]

ex[n] « DTIT > X(e/0-1)

----------------- DTFS; 0},

e*eo"x[n] < > X[k — ko]  wis




Example 3.42 and 3.43

e |t <7
Determine the FT of the complex sinusoidal pulse: Z(t) =

0, ‘t‘ > T
<Sol.> 1 ‘t‘ < . - 5
Recall rectangular pulse X(t) = ‘t‘ o’ then X(t) «—> X (ja)) =—2=SIn (a)ﬂ)
@
By Frequency-shift property

eletX(t) « X( (- 10)) sy Z(t) < LI 2 Sin((a)—lO)ﬂ)

w—10
Find the FT of the signal X %{(e - ) ( 2))}
<Sol.> : 1
Let w(t)=e"u(t) < W(je)= 3+ jw
—j2w
and v(t) =e 'u(t—2) m= y(t)= e_ze_(t_z)U(t —2)«— V(jo)=¢ 1e+ jw

Then, X(t):i{w(t)*v(t)} = X(jo)= joW(joN (jo);

& - 2 joe %
X(jw)=e"
(jo)=e (+ jo)3+ jo)
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Finding Inverse Fourier Transforms by Using Partial-
Fraction Expansions

v

Multiplication Property

v

Scaling Properties

» Parseval Relationships

» Time-Bandwidth Product
» Duality
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Finding Inverse Fourier Transforms @
by Using Partial-Fraction Expansions

» Consider a ratio of polynomial in jo :

X (joo) = by (jeo)" +---+by(jew)+by _ B(j)
(Ja))N N aN_l(J—a))N—l A(ja)) Assume that M < N

If M > N, then we may use long division to express X(jw) in the form

"‘"'al(ja))"'ao

=/ : Partial-fraction expansion is
B(jo) P

_ N o
X(ja))z kzz(; f, (ja) )+ A(ja)) applied to this term

Applying the differentiation property and the
pair 5(t) <—— 1 to these terms

Replacing jo with a generic variable v, then we have v+ aN_lvN‘l +---+aVv+a, =0
for the denominator A(jw). Suppose that we have roots d,, k = 1, 2, ..., N.

For M < N, we may the write
M Nk Assuming distinct roots d,, k = 1,2, ..., N, we may write
k
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Inverse FT for Partial-Fraction Expansions

1
— g This pair is valid only for Re{d} < 0.
Jo (if Re{d}<0, e®u(t) is not absolutely integrable)
Assuming that the real part of each d,,k = 1,2, ..., N, is negative, then

4

» Recall that €*u(t) <

N N
=Y Ce®u(t) «"— X(jo)=
k=

1 Jo— dk

For the case of repeated roots, please refer Appendix B !!

.. - jom -jQ
»  Similarly, X(e jQ): Pue +-+ e + 5 Normalized to |
a6 N p o e N g e gl

Replace e/ with the generic variable v and solve the roots of the polynomial

vV a v Tt e vV P eV ay =0

» Recall that( ) [n] DTFT_ 1 —5 Assuming that all the d, are
1-d.e distinct and | d, |[<I, then
_ N
X[n] = Zc (d)" U]« 25 X () =Y e
---------------- k=1 1_dke ! e




Example 3.44

Frequency response for the MEMS accelerometer is given by H ( ja)) =

1

: L 5
Find the impulse response for the MEMS accelerometer, assuming (ja)) +Q( Ja)) T,
that w, = 10,000 rads/s,and (a) Q = 2/5,(b) Q = I, and (c) Q = 200.

<Sol.>

Case (a): @, = 10,000 rads/s and Q = 2/5, then we have( jw)* + 25000( jw) + (10000)° = 0
The roots of the denominator polynomial are d;, = — 20,000 and d, = — 5,0000.

H (Ja’) = - = G + C,
(jow)? +25000(jw)+(10000)°  j@+20000 jo+5000
: -1
== C,(jw+5000) =1 C,=—
1(J )‘Jw:—ZOOOO H- 1 15000
- 1
C,(jw+20000) .. =1 C, = oo
= H(jo)- ~1/15000  1/15000

+
Jo+20000 jw+5000



Example 3.45 5
6

Find the inverse DTFT of X (e jQ):

14 1eio Lo
6 6

<Sol.>
First solve the characteristic polynomial: v2 + —y - = =

The roots of the polynomial are d, = — [/2 and d, = 1/3.

Then —2ej9 5

TSI PSR e
6 6 2

C1 + C2 ”- CI = 4, C2 = |
Lo g 1o
3

w  x[n]=4(-1/2)"u[n]+(1/3)"u[n]
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Multiplication Property

» Case of nonperiodic continuous-time signals
y Consider two nonperiodic signals: x(t) and z(t). Let’s y(t) = x(t)z(t).

Suppose that the FT representation of x(t) and z(t) are:

:ifw X(jv)eMdv and z(t —j (jne'™dn
Then

27[ J J Z(jn)e’ " dndv
|. Change the integral order. 2. Change variable by n+ v = o

1 o) 1 ¢o : : L
) y(t)= {EJ‘_OO (JV)Z(j(a)—V))dv:l elotg o

27
— X(Jo)*Z(Jw)

) Y1) =x@O)2() «—— Y(jw):iX(ja))*Z(ja))

& Multiplication in time-domain <> Convolution in Frequency-Domain x (1/27)



pipr. OF ELECTROMC . N 7
L @)
Multiplication Property

» Case of nonperiodic discrete-time signals
y Consider two nonperiodic signals: x[n] and z[n]. Let’s y[n] = x[n]z[n].
Suppose that the DTFT representation of x[n] and z[n] are:
1 T . . T . .
K] == [ X(e)edQ and z[n] == [* Z(e*)e* 402
27[ - 272' /1

2n-periodic 2n-periodic

Then,
yIn] = X[nTZ[n]<2"T> Y () = zix () ®Z(e!)
T

& Multiplication in time <> Periodic Convolution in Frequency x (1/2m)
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Windowing Operation — Truncating a Signal

» Windowing: a signal passes through a window means only the signal within
the window is visible.The other part is truncated.

0 X o)

" N~ /N

\_/ o T n @

x %k
w(t) W (jw)
. 2T,
Tt
-T, 0 T, Aw%gwmg”—‘v:‘w“_ 4
— -zlT, 0 7/T,
y() y (j_a))

T, o \-i'ro r { 5 { 5 »
Truncated signal y(t) = x(t)w(t) 0



Example 3.46 Windowing Effect
(aka Gibbs Effect in Example 3.14)

The frequency response H(e/¥?) of an ideal discrete-time low-pass filter. Describe the

frequency response of a system whose impulse response is truncated to the interval
—-M<n<M.

H(el5Y)
1
; ; - } Q
-2z -7 zl2 rl2 & 2
(a)
Fo (6)
2M + 1 +
27
[\;+2M+l
. ~— 1 N 0
-z /2 \Q ~ zl2
Q- 27
2M + 1
<Sol.> (b)
o . . . L an[7n
The ideal impulse response is just the inverse FT of H(e/?): h [n] = —nSIn 7
T

__________________________________________________________________________________________ Infinite impulse response



] = h[n], |n|<M
t 0,  otherwise

me) h[n]=h[n]w[n]

1L |nj<M

w[n] - 0, otherwise

1.5 T T 1
-4
-0.5 | | 1 i i -3
-05 -04 -03 -02 -0.1 O 01 02 03 04 0.
t
(b)
15 e R | :
&
-05 i | i ] i : :
-05 -04 -03 -02 =01 0 O01 02 03 04 05
t
©

-0 L | L

5 ~ 5
-05 -04 -03 =02 -0.1 0 O1 02 03 04 05
t
@
1.5 i i I !
l — —
g 0.5
&
0l
-05 ] 1 L i

~05 -04 -03 -02 -0.1

O

01 02 03 04 05
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Multiplication Property

» Case of periodic continuous-time signals
Consider two periodic signals: x(t) and z(t). Let’s y(t) = x(t)z(t).

| V() = X(1)2(t) <22y [k] = X [K]* Z[K]

& Multiplication in time-domain <> Convolution in Frequency-Domain

This relationship is provided that x(t) and z(t) have a common period T

If their fundamental periods are not identical, T should be the LCM of each
signal’s fundamental period.

» Case of periodic continuous-time signals
Consider two periodic signals: x[n] and z[n]. Let’s y[n] = x[n]z[n].

- y[n] = x[n]z[n]« DTFS;27/N_ oy [k]= X[k]® Z[K]

& Multiplication in time <> Periodic Convolution in Frequency

This relationship is provided that x[n], z[n], and Y[k] have a common period N
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Summary for Multiplication Property

x(t)2(t) —— = X(jw) * Z(jw)

x(8)z(t) 22— X[k] * Z[k]

x[nJeln] > £ X(¢®) @ Z(™)

DTFS; 0,

x[n]z[n] < > X[k]® Z[k]
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Scaling Property

» Case of scaling the continuous-time signal
Let z(t) = x(at). Consider the FT of z(t): Z(jw) = j z(t)e 1dt = j x(at)e dt

Changing variable by letting 7= at

(Wa)| x@e “dr, a>0 ) |
- Z(jo) =1 - | ) Z(jw)=(/[a)[ x(r)e ' dr,
(1/a) j x(r)e 1 “d7dzr, a<0 e

= [z2(t)=x(at) <" @/la)X(jola).

& Scaling in time-domain <> Inverse scaling in frequency-domain
*® X (jo)

1 1

T T T t T T <
o 1 N— — \/ lo 1\_/
scale by a I scale by l/a
1 .
x(at) —X(jo/a)

2




Example 3.49

| | d ej2a)
Find x(t) if X (Joo) = ] da){1+ J(w/3)}

<Sol.>

Differentiation in frequency, time shifting, and scaling property are used to solve the problem
First note the FT-pair: s(t) =e'u(t) <« FT_, S(jw) =

1+ jo
Then, .
™ X(j0)= - (S (jol3)

do

We apply the innermost property first: we scale, then time shift, and lastly differentiate.
Define Y(jw) = S(jo/3). wmp y(t) =3s(3t) =3e>'u(3t) =3e'u(t)
Define W(jw) = e 2Y(jwi3). ™ \(t) = y(t+2) = 3e3y(t + 2)

Finally X (jw) = Jdd_a)W(Jw) ) X(t) =tw(t) =3te ¥ u(t+2)
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Scaling Property

» Case of scaling the periodic continuous-time signal
If x(t) is a periodic signal, then z(t) = x(at) is also periodic.
If x(t) has fundamental period T, then z(t) has fundamental period T/a. Suppose that a>0

If the fundamental frequency of x(t) is w,, then the fundamental frequency of z(t) is aw,.

FS coefficients of z(t): Z[k] = TEJ-OT/a Z(t)e_jkaw"tdt

| z(t) = x(at) <« FSiaay >»Z[k]=X[k], a>0

@ Scaling in time-domain for periodic signal <> Same response in frequency

Scaling operation for periodic signal simply changes the harmonic spacing from @, to aw, !!
» Case of scaling the discrete-time signal

First of all, z[n] = x[pn] is defined only for integer values of p.
If |p |> I, then scaling operation discards information.
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Parseval Relationships

» Case of continuous-time non-periodic signal
Recall the energy of x(t) is defined by W, = |X(t)|2dt

Note that ‘X(t)‘ = X(t)x"(t)

Express x*(t) in terms of its FT: X(t) = —j X(ja))eja’tda)

* — 1 ' joot * _ x 7 = —joot
- X" (t) = {EJwX(ja))e da)} ‘gL@X (jow)e *de
Then,

szjix(t)[ j X*(jow)e ""tda)}dt——j X" (Jw){j x(t)e™ ""tdt}d

= W, == [ X (jo)X (jo)do
27T ¥~

-

. 1 =y,
| x@F dt=—=] [X(jo) do

The energy or power in the time-domain representation of a signal is equal to the
energy or power in the frequency-domain representation normalized by 2w
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Summary for Parseval Relationships

Table 3.10 Parseval Relationships for the Four Fourier Representations

Representations Parseval Relationships

FT [”Ix@f dt= %f;lx (jo) do
ES % jOT x@)dt=>"" |X[KI
DTFT > IxnT =$ | x ™ do
DTFS %ZNJ X" =Y XK

The power is defined as the integral or sum of the magnitude squared
over one period, normalized by the length of the period



Example 3.50
sin(Wn)

7N

© =T

Use Parseval’s theorem to evaluate

sin (\Nn) Direct calculation in time-domain
X = Z |X[n]| - Z 2n> is very difficult!

<Sol.>

|. Using the DTFT Parseval relationship, we have ¥ = —J

elﬂ)\ do

2. Since
. 1, QI <W
X[n] DTFT X(eJQ): | |
0, W<|Q<x
1 ew
) y=—| 1WdQ=W/x
27 J-W
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Time-Bandwidth Product

1, [T, _ _
» Preview the fact: X(t) = | | P« X(jw)=2sin(wl)/ o
0, |t[>T,
X (jo)
x(1) 2T,
| 4)7@?
| FT
—'iI“o 0 T, ‘ — Tﬂ_ T v
finite duration in time © % " infinite duration in freq.

» As signal’s time extent decreases (T, decreases ), the signal’s frequency
extent increases.

» The product of the time extent T, and main-lobe width (i.e. the bandwidth)
2n/T, is a constant.

» The bandwidth of a signal is the extent of the signal’s significant frequency
content.

» Compressing a signal in time leads expansion in frequency and vice versa
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Time-Bandwidth Product - s
[ x| dt

| [~ [x@ dt |

» Effective duration of a signal x(t) is defined by T, =

1/2

[ X (jo)f do
_ jj0|X(ja))|2dco

» Effective bandwidth of a signal x(t) is defined by B, =

» The uncertainty principle:
The time-bandwidth product for any signal x(t) is lower bounded by T,B,, >1/2

We cannot simultaneously decrease the duration and bandwidth of a signal.
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Duality

i in (wT
4 PI’eVIeW X(jw) = 2sin (WTy)
x(1) w
|
FT
- 5
! w
_T:’J 0 Ta 0
= sin (W) ] w
mt X(jw)
1
FT
-—
A w
0 -W 0 W

A rectangular pulse in either time or frequency corresponds to a sinc
function in either frequency or time domain.

A impulse in either time or frequency transforms to a constant in either
frequency or time domain.

Convolution, Differentiation, ...
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Duality Property of the FT
» Recall that X(t) = %j_z X (jw)e'dw and X (Jo) = Jjo x(t)e 't
Difference in the factor 2t and the sign change in the complex sinusoid
» Duality property

ft) <« F(jo) @ F(jt) «—— 27f(-o)

» Example 3.52

Find the FT of Xx(t) = 1 :
1+ Jt
<Sol.> 1
Note that: f (t) =e 'u(t) «—— F(jo)= :
1 1+ Jo
Replacing @ by t, we obtain F( jt) = ——
1+ Jt

Apply duality property:
m) X(Jo)=27f(-w)=27re"U(-w)
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Duality Property of the DTFS

» FT-pair: mapping a CT nonperiodic function into a CT nonperiodic function.

» DTFS-pair: mapping a DT periodic function into a DT periodic function.

N-1

D x[n]e” "

N-1 _
» Recall that x[n]:ZX[k]eJmon and x[k]:%
k=0

>

Difference in the factor N and the sign change in the complex sinusoid

» Duality property

27 DTFS; ==

X[n] «——n 5 x[k] @ X[ «—> :lx[_k]




Duality Property of the DTFT and FS

FS-pair: mapping a CT periodic function into a DT nonperiodic function.

v Vv

DTFT-pair: mapping a DT nonperiodic function into a CT periodic function.

v

Recall that FS of a periodic continuous time signal z(t): Z(t) = Z Z[kJe !
k=—o0

[e¢]

» and DTFT of a nonperiodic discrete-time signal x[n]:  y (ejQ) _ Z x[n]e‘jQ”
k=—o0

|. Difference in the sign change in the complex sinusoid

2. Duality relationship between z(t) and X(e /?) requires z(t) to have the same
period as X(e /%), thatis, T = 27

v

Duality property
x[n] «2Z= 5 X(e?) @& X(e') «——> x[-K]




