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Reviews of Fourier Representations

3 The four Fourier representations are all based on complex sinusoids



Periodicity Properties of Fourier 
Representations

 Periodic time signals have discrete frequency-domain 
representations, while nonperiodic time signals have 
continuous frequency-domain ones.

 In general, representations that are continuous/discrete in one 
domain are nonperiodic/periodic in the other domain.
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Linearity Property of Fourier 
Representations
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 Uppercase symbols denote the Fourier representation of the 
corresponding lowercase ones 

 In case of FS and DTFS, the (two) signals being summed are 
assumed to have the same fundamental period

           
           
           
           

;
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Example 3.30
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z(t) = (3/2)x(t) + (1/2)y(t)

        
        

;2

;2

1 sin 4

1 sin 2

FS

FS

x t X k k k

y t Y k k k
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Symmetry Property for Real-Valued x(t)
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 For a real-valued signal x(t), we have
 Consider the complex-conjugate of X(j):

 For a real-valued x(t), X(j) is complex-conjugate symmetric
 Another representation: 
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Symmetry Property for Imaginary-Valued x(t)
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 For a imaginary-valued signal x(t), we have
 Consider the complex-conjugate of X(j):

 For a pure imaginary x(t), X(j) is conjugate anti-symmetric
 Another representation: 
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Symmetry Properties of Fourier 
Representations 
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 Note that for the periodic signal with period N, X[k] = X[Nk]

 If x(t) is real and even, then X(j)= X(j). That is, X(j) is real
A real and even signal has a real and even frequency representation

 If x(t) is real and even, then X(j)=  X(j). That is, X(j) is imaginary
A real and odd signal has a imaginary and odd frequency representation   



IO-Relationship in Real-Valued LTI System
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1. The real-valued input signal :    cosx t A t  

2. The real-valued impulse response of LTI system: h(t).

         / 2 / 2j t j tx t A e A e      

3. Applied the linear property of the LTI sytem to obtain the output signal:

       cos argy t H j A t H j     

   ( arg ( ) ) ( arg ( ) )( ) ( ) ( / 2) ( ) ( / 2)j t H j j t H jy t H j A e H j A e            
( ) ( )H j H j      arg ( ) arg ( )H j H j   

Rewrite the input signal : Two eigenfunctions
ejt, ejt

tjjAtjjA ejHeejHety     )()()( 22

Exploiting the symmetry conditions:



Convolution of Nonperiodic Signals
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 The convolution property is a consequence of complex sinusoids being 
eigenfunctions of LTI system

 The convolution in time-domain corresponds to the multiplication in 
frequency-domain

         y t h t x t h x t d  
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Example 3.31

12

Let x(t)=(1/(t))sin(t) be the input to a system with impulse response h(t)=(1/(t))sin(2t). 
Find the output y(t) = x(t)  h(t). 
<Sol.>

y(t) = (1/(t))sin(t) 

   
1,
0,

FTx t X j
 


 


   
   

1, 2
0, 2

FTh t H j
 


 


   

           FTy t h t x t Y j X j H j     
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Y j
 


 


  

From Example 3.26, we have

Since



Example 3.32
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Use the convolution property to find x(t), where      2
2

4 sinFTx t X j 


 
<Sol.>

1. Write X(j) = Z(j) Z(j), where    2 sinZ j 




2. Apply the convolution property, we have      x t z t z t 
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Filtering
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 The multiplication in frequency domain, i.e. X(j)H(j), gives rise to the 
“filtering”

 “Filtering” implies that some frequency components of the input signal are 
eliminated (stopband) while other are passed by the system (passband)

 Ideal filters: ( )H j

( )H j

( )H j













2

2

2







2

2

2

Figure 3.53  
Frequency response of ideal 
continuous- and discrete-
time filters:
(a) Low-pass filters. 
(b) High-pass filters
(c) Band-pass filters.

The frequency response of discrete-time filters is based on its 
characteristic in the range   <    because it is 2-periodic



The Magnitude Response of Filters
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 The magnitude response of the filter is defined by 

 Being described in units of decibels (or dB)
 The unit gain is corresponding to 0 dB.
 The passband of the filter is normally closed to 0 dB
 The edge of the passband is usually defined by the frequencies for 

which the response is -3 dB (corresponding to a magnitude response 
of 1/2)

 Note that                                    , -3 dB points correspond to 
frequencies at which the filter passes only half of the input power

 -3 dB points are usually termed as the cutoff frequencies of the filter

 20log H j  20log jH e or [dB]

     2 2 2
Y j H j X j  



Example 3.33 RC Circuit Filtering

16

For the RC circuit, the impulse response for the case where yC(t) is the output is given by

   1 t RC
Ch t e u t

RC


the impulse response for the case where yR(t) is the output 
is given by  

     1 t RC
Rh t t e u t

RC
  

.    Since yR(t) = x(t)  yC(t), 

Plot the magnitude responses of both systems on a linear scale and in dB, and characterize 
the filtering properties of the systems.

<Sol.>
The frequency response corresponding to hC(t): 

Hence,

RCj
jHC 





1
1)(

RCj
RCjjHjH CR 





1

)(1)(



RC RC

RC RC

Figure 3.55
(a)-(b) Frequency response of the system corresponding to yC(t) and yR(t), linear scale. 
(c)-(d) Frequency response of the system corresponding to yC(t) and yR(t), dB scale. 
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Frequency Response of LTI Systems
 From ,

 the frequency response of a system can be expressed as the 
ratio of the FT or DTFT of the output to that of the input.

 If the input spectrum is nonzero at all frequencies, the 
frequency response of a system may be determined from the 
input and output spectra

 Continuous-time system, 

 Discrete-time system,

 .

( ) ( )* ( ) ( ) ( ) ( )FTy t h t x t Y j X j H j    

( )( )
( )

Y jH j
X j






( )( )
( )

j
j

j

Y eH e
X e
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Example 3.34
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The output of an LTI system in response to an input x(t)=e2tu(t) is y(t)=etu(t). 
Find the frequency response and the impulse response of this system.
<Sol.>

1. First find the FT of x(t) and y(t):   1
2

X j
j







  1
1

Y j
j







2. Then, the frequency response of the system is

   
 

Y j
H j

X j







3. The impulse response of the system is the inverse FT of H(j):

     th t t e u t  



Recovery or Equalizer 
(Inverse Frequency Response)
 Recover the input of the system from the output
 Continuous-Time

 , where 

 Discrete-Time
 , where 

 An inverse system is also known as an equalizer, and the 
process of recovering the input from the output is known as 
equalization.
 Causality restrictions make it difficult to build an exact inverse 

system.

     invX j H j Y j    inv 1/ ( )H j H j 

     invj j jX e H e Y e    inv 1/ ( )j jH e H e 

Usually, equalizer is a noncausal system 
and cannot be implemented in real-time !

Approximation!

(Time delay in a system need an equalizer to introduce a time advance)

E.g. Compensate for all but 
time delay20



Example 3.35
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Consider the multipath communication channel, where a (distorted) received signal y[n] is 
expressed in terms of a transmitted signal x[n] as

     1 , 1y n x n ax n a   
Use the convolution property to find the impulse response of an inverse system that will 
recover x[n] from y[n].
<Sol.>
1. Take DTFT on both side of      1 , 1y n x n ax n a   
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2. The frequency response of the inverse system is then obtained as  inv 1/ ( )j jH e H e 
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Convolution of CT Periodic Signals
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 Recall that if the impulse response h(t) of the LTI system is periodic, then 
the system is unstable. (since h(t) is not absolutely integrable) 

the convolution of periodic signals does not occur naturally

 Convolution of periodic signals often occurs in the context of signal 
analysis and manipulation

 Definition:

 Take FS on the both sides with 0=2/T, we have

The periodic convolution of two CT signals x(t) and z(t), each with period T, 
is defined as the following integral over a single period T:

 
T

dtzxtztxty
0

)()()()()(  also with period T

 

 









 






 

T jkT tjk

T tjkTT tjk

dexdtetz
T

dtedtzx
T

dtety
T

0 0

)(

0 00

00

00

)()(1                           

)()(1)(1









][][][ kXkTZkY 



][][][][][][
2;

kZkNXkYnznxny N
DTFS

 


Convolution of DT Periodic Signals
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 Definition:

 Take DTFS on the both sides with 0=2/N, we have

The periodic convolution of two DT signals x[n] and z[n], each with period N, 
is defined as the summation of length- N:







1

0

][][][][][
N

k

knzkxnznxny also with period N

][][][ kXkNZkY 

◆ Convolution in Time-Domain  Multiplication in Frequency-Domain



Convolution Property Summary
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Outline
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Differentiation and Integration Properties
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 Recall that differentiation and integration are operations that apply to 
continuous (time or frequency) functions. 

 We consider CT signals in time-domain, or FT/DTFT in frequency-domain

 1. Differentiation in Time 

 Differentiation accentuates the high-frequency components of the signal

 Differentiation destroys any dc component (i.e. =0) of the differentiated 
signal

Consider a nonperiodic signal x(t) and its FT, X(j), representation, i.e.

   




 


 dejXtx tj

2
1    





 


 dejjXtx
dt
d tj

2
1

( ) ( )FTd x t j X j
dt

 

Differentiating 

both sides w.r.t t

◆ Differentiation of x(t) in time-domain  (j)  X(j) in frequency-domain



Example 3.37
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   FTatd je u t
dt a j




 


Verify this result by differentiating and taking the 
FT of the result.

<Sol.>

1. Since           at at at atd e u t ae u t e t ae u t t
dt

         

2. Taking the FT of each term and using linearity, we have

   1FTatd ae u t
dt a j

 
 





Frequency Response from IO-Relationship
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 Given the following IO-relationship of the LTI system:

 Take FT of both sides, we have

 The frequency response is the system’s steady-state response to a sinusoid.

 The frequency response cannot represent initial conditions (it can only 
describes a system that is in a steady-state condition)
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Differentiation and Integration Properties
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 1. Differentiation in Time 

 Differentiation destroys the time-averaged valued (i.e. the dc component) 
of the differentiated signal; hence, the FS coefficient for k=0 is zero

 Example 3.39

Consider a periodic signal x(t) and its FS, X[k], representation, i.e.

Differentiating 

both sides w.r.t t
    0jk t

k

x t X k e 




      tjk

k

ejkkXtx
dt
d

0
0








   0;
0

FSd x t jk X k
dt

 

◆ Differentiation of x(t) in time-domain  (jk0)  X[k] in frequency-domain

( ) ( )dz t y t
dt





Differentiation(in Frequency) Property
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 2. Differentiation in Frequency 
Beginning with the FT of the signal x(t):

Differentiating 

both sides w.r.t 
    dtetxjX tj 

    




 dtetjtxjX
d
d tj


   FT djtx t X j
d




 

◆ Differentiation of X(j) in frequency-domain  (jt)  x(t) in time-domain

Consider the DTFT of the signal x[n]:
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Example 3.40 FT of a Gaussian Pulse
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Use the differentiation-in-time and differentiation-in-frequency properties to determine 
the FT of the Gaussian pulse,   2 / 2( ) 1/ 2 tg t e 

1
2

<Sol.>
1. Differentiation-in-time:

2 / 2( ) ( / 2 ) ( )td g t t e tg t
dt

    

2. Differentiation-in-time property:

   FTd g t j G j
dt

  ( ) ( )FTtg t j G j  

3. Differentiation-in-frequency property:

   FT djtg t G j
d
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4. The integration constant c is determined by     2 / 20 1/ 2 1tG j e dt

 


 
  2 2/ 2 / 21/ 2 FTte e    The FT of a Gaussian pulse is also a 

Gaussian pulse!
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Integration Property
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 3.  Integration 
In both FT and FS, we may integrate with respect to time.
In both FT and DTFT, we may integrate with respect to frequency.

 Case for nonperiodic signal

Since                             implies      dxty
t

 
 ( ) ( )d y t x t

dt
 By differentiation property, we have

1( ) ( )Y j X j
j

 




The value at  =0 can be modified the equation by 

The constant c depends on the average value of x(t) 

This relation is indeterminate at =0
(also implies that X(j0)=0)

This is true only to signals with a zero time-averaged value, i.e. X(j0)=0 .

Or, it is true for all  except  =0.



General Form for Nonperiodic Signal
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We observe that                                    , where

Then, 
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Differentiation and Integration Properties
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Time- and Frequency-Shift Properties
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 1. Time-shift property
Let z(t) = x(t  t0) be a time-shifted version of x(t).

Take FT of z(t): Change variable by  = t  t0:

     




   dexjZ tj 0  




   dexe jtj 0   jXe tj 0

◆Time-shifting by t0 in time-domain  Multiply by e j t0 in frequency-domain

and( ) ( )Z j X j  0arg{ ( )} arg{ ( )}Z j X j t   






 dtettxjZ tj )()( 0

)()( 0
0  jXettx tjFT 

◆ Note that the mag. response and phase response are

◆ unchanged the mag. response but introduces a phase shift
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Example: 
Frequency Response of LTI System
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Time- and Frequency-Shift Properties
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 2. Frequency-shift property
Suppose that: ( ) ( )FTx t X j
By the definition of the inverse FT, we have

Change variable by  =   , we have

     




 


 dejXtz tj

2
1  




 


 dejXe tjtj

2
1  txe tj
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Example 3.42 and 3.43
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Determine the FT of the complex sinusoidal pulse:

<Sol.>
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Recall rectangular pulse                              ,  then      2 sinFTx t X j 
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By Frequency-shift property

Find the FT of the signal         2*3   tuetue
dt
dtx tt

<Sol.>
Let 3( ) ( )tw t e u t

( ) ( 2)tv t e u t and
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Finding Inverse Fourier Transforms 
by Using Partial-Fraction Expansions

40

 Consider a ratio of polynomial in j : 
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If M  N, then we may use long division to express X(j) in the form

Assume that M < N
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Partial-fraction expansion is 
applied to this term

Applying the differentiation property and the 
pair                          to these terms( ) 1FTt 
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for the denominator A(j). Suppose that we have roots dk, k = 1, 2, …, N. 
For M < N, we may the write

 
 

 








 N

k
k

M

k

k
k

dj

jb
jX

1

0






Assuming distinct roots dk, k = 1, 2, …, N, we may write 
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Inverse FT for Partial-Fraction Expansions
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 Recall that

 Similarly,  

 Recall that

  1FTdte u t
j d




Assuming that the real part of each dk, k = 1, 2, …, N, is negative, then
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For the case of repeated roots, please refer Appendix B !!

This pair is valid only for Re{d} < 0.
(if Re{d}<0, edtu(t) is not absolutely integrable) 
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Replace e j with the generic variable v and solve the roots of the polynomial
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Example 3.44
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Frequency response for the MEMS accelerometer is given by  
   2 2

1
n

n

H j
j j

Q

   


 Find the impulse response for the MEMS accelerometer, assuming 
that n = 10,000 rads/s, and (a) Q = 2/5, (b) Q = 1, and (c) Q = 200.
<Sol.>
Case (a): n = 10,000 rads/s and Q = 2/5, then we have
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The roots of the denominator polynomial are d1 =  20,000 and d2 =  5,0000.
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Example 3.45

43

Find the inverse DTFT of

<Sol.>
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First solve the characteristic polynomial: 0
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The roots of the polynomial are d1 =  1/2 and d2 = 1/3.

Then
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C1 = 4,  C2 = 1

         nununx nn 3/12/14 
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Multiplication Property
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 Case of nonperiodic continuous-time signals

 Consider two nonperiodic signals: x(t) and z(t).  Let’s y(t) = x(t)z(t).

Suppose that the FT representation of x(t) and z(t) are: 
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1. Change the integral order.  2. Change variable by + v = 

1( ) ( ) ( ) ( ) ( )* ( )
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Then,

)()(  jZjX 

      1 1
2 2

j ty t X jv Z j v dv e d 
 

 

 

     

◆ Multiplication in time-domain  Convolution in Frequency-Domain  (1/2)



Multiplication Property
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 Case of nonperiodic discrete-time signals

 Consider two nonperiodic signals: x[n] and z[n].  Let’s y[n] = x[n]z[n].

Suppose that the DTFT representation of x[n] and z[n] are: 

and

2-periodic
Then,

◆ Multiplication in time  Periodic Convolution in Frequency  (1/2)
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Windowing Operation – Truncating a Signal
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 Windowing: a signal passes through a window means only the signal within 
the window is visible. The other part is truncated. 

(j )X 

(j )W 

0 0- /  0 /T T 

(j )Y 






Truncated signal y(t) = x(t)w(t)

       1 *
2

FTy t Y j X j W j  


 



Example 3.46 Windowing Effect 
(aka Gibbs Effect in Example 3.14)

48

/2 /2 

/2

2 2

2

2 /2

( )F 



The frequency response H(e j) of an ideal discrete-time low-pass filter. Describe the 
frequency response of a system whose impulse response is truncated to the interval 
 M  n  M.

<Sol.>
The ideal impulse response is just the inverse FT of H(e j ):   1 sin

2
nh n

n



   
 

Infinite impulse response
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   ,
0, otherwiset

h n n M
h n


 


[ ] [ ] [ ]th n h n w n

  1,
0, otherwise

n M
w n


 




Multiplication Property
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 Case of periodic continuous-time signals

 Case of periodic continuous-time signals

Consider two periodic signals: x(t) and z(t).  Let’s y(t) = x(t)z(t).

This relationship is provided that x(t) and z(t) have a common period T
◆ Multiplication in time-domain  Convolution in Frequency-Domain 

If their fundamental periods are not identical, T should be the LCM of each 
signal’s fundamental period.

Consider two periodic signals: x[n] and z[n].  Let’s y[n] = x[n]z[n].

◆ Multiplication in time  Periodic Convolution in Frequency

][][][][][][ /2; kZkXkYnznxny NDTFS   

][][][)()()( /2; kZkXkYtztxty TFS   

This relationship is provided that x[n], z[n], and Y[k] have a common period N



Summary for Multiplication Property
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Scaling Property
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 Case of scaling the continuous-time signal 
Let z(t) = x(at). Consider the FT of z(t): ( ) ( ) ( )j t j tZ j z t e dt x at e dt 

  

 
  

( / )

( / )

(1/ ) ( ) , 0
( )

(1/ ) ( ) , 0

j a

j a

a x e d a
Z j

a x e d a

 

 

 


 

 



 



  
 




( / )( ) (1/ ) ( ) ,j aZ j a x e d   
 


 

( ) ( ) (1/ ) ( / ).FTz t x at a X j a 

◆ Scaling in time-domain  Inverse scaling in frequency-domain

Changing variable by letting  = at

( )X j





1 ( )X j a
a





Example 3.49
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Find x(t) if 
2

( )
1 ( / 3)

jd eX j j
d j




 
 

   
<Sol.>
Differentiation in frequency, time shifting, and scaling property are used to solve the problem.
First note the FT-pair: 1( ) ( ) ( )

1
FTts t e u t S j

j



  


 2( ) ( / 3)jdX j j e S j

d
 




Then,

We apply the innermost property first: we scale, then time shift, and lastly differentiate.

( ) 3 (3 )y t s t 33 (3 )te u t 33 ( )te u tDefine Y(j) = S(j/3).

Define W(j) = e j2Y(j/3). ( ) ( 2)w t y t  3( 2)3 ( 2)te u t  

( ) ( )dX j j W j
d

 


 ( ) ( )x t tw t 3( 2)3 ( 2)tte u t  Finally



Scaling Property
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 Case of scaling the periodic continuous-time signal 

 Case of scaling the discrete-time signal 

◆ Scaling in time-domain for periodic signal  Same response in frequency

If x(t) is a periodic signal, then z(t) = x(at) is also periodic. 
If x(t) has  fundamental period T, then z(t) has fundamental period T/a. Suppose that a>0 

If the fundamental frequency of x(t) is 0, then the fundamental frequency of z(t) is a0.
/

0
[ ] ( ) o

T a jka taZ k z t e dt
T

 FS coefficients of z(t):

0;( ) ( ) [ ] [ ],      0FS az t x at Z k X k a   

Scaling operation for periodic signal simply changes the harmonic spacing from 0 to a0 !!

First of all, z[n] = x[pn] is defined only for integer values of p. 
If p> 1, then scaling operation discards information.



Parseval Relationships
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 Case of continuous-time non-periodic signal
Recall the energy of x(t) is defined by 2( )xW x t dt




 

Note that 

Express x*(t) in terms of its FT: 

1 ( ) ( )
2xW X j X j d  


 


 

 1 ( ) ( )
2

j t
xW X j x t e dt d 


  

 
  

)()()( 2 txtxtx 





 


 dejXtx tj)(

2
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 dejXdejXtx tjtj )(

2
1)(

2
1)(

1( ) ( )
2

j t
xW x t X j e d dt 


   

 

     
Then, 

2 21( ) ( )
2

x t dt X j d 


 

 
 

The energy or power in the time-domain representation of a signal is equal to the 
energy or power in the frequency-domain representation normalized by 2



Summary for Parseval Relationships
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Table 3.10 Parseval Relationships for the Four Fourier Representations 

Representations Parseval Relationships 

FT 2 21( ) ( )
2

x t dt X j d 


 

 
   

FS 2 2

0

1 ( ) [ ]
T

k
x t dt X k

T



  

DTFT 
22 1[ ] ( )

2
j

n
x n X e d




 
 

  
DTFS 1 12 2

0 0

1 [ ] [ ]N N

n k
x n X k

N
 

 
   

The power is defined as the integral or sum of the magnitude squared 
over one period, normalized by the length of the period



Example 3.50
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Let sin( )[ ] Wnx n
n



Use Parseval’s theorem to evaluate

21 ( )
2

jX e d









 

2
2

2 2

sin ( )[ ]
n n

Wnx n
n




 

 

  
<Sol.>

1. Using the DTFT Parseval relationship, we have

2. Since 1,
[ ] ( )

0,
DTFT j W

x n X e
W 

  
     

1 1 /
2

W

W
d W 

 
  

Direct calculation in time-domain 
is very difficult!



Time-Bandwidth Product
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 Preview the fact:

 As signal’s time extent decreases (T0 decreases ),  the signal’s frequency 
extent increases.

 The product of the time extent T0 and main-lobe width (i.e. the bandwidth) 
2/T0 is a constant.  

 The bandwidth of a signal is the extent of the signal’s significant frequency 
content.

 Compressing a signal in time leads expansion in frequency and vice versa

0T


0T


( )X j

1,
( ) ( ) 2sin( ) /

0,
o FT

o
o

t T
x t X j T

t T
  


   

finite duration in time infinite duration in freq.



Time-Bandwidth Product
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 Effective duration of a signal x(t) is defined by

 Effective bandwidth of a signal x(t) is defined by

 The uncertainty principle:

1/ 2
22

2

( )

( )
d

t x t dt
T

x t dt








 
 
 
  




1/ 2
22

2

( )

( )
w

X j d
B

X j d

  

 








 
 
 
  




The time-bandwidth product for any signal x(t) is lower bounded by 1/ 2d wT B 

We cannot simultaneously decrease the duration and bandwidth of a signal.



X(jω)

X(jω)

ω

ω
(ωT0)

t

ω

ω

Duality
 Preview

 A rectangular pulse in either time or frequency corresponds to a sinc
function in either frequency or time domain.

 A impulse in either time or frequency transforms to a constant in either 
frequency or time domain.

 Convolution, Differentiation, ...



Duality Property of the FT
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 Recall that                                          and 

 Duality property

 Example 3.52 

1( ) ( )
2

j tx t X j e d 





  ( ) ( ) j tX j x t e dt

 


 

Difference in the factor 2 and the sign change in the complex sinusoid

( ) ( )FTf t F j ( ) 2 ( )FTF jt f  

Find the FT of
1( )

1
x t

jt



<Sol.>

Note that:
1( ) ( ) ( )

1
FTtf t e u t F j

j



  


Replacing  by t, we obtain

1( )
1

F jt
jt




Apply duality property:

( ) 2 ( ) 2 ( )X j f e u       



Duality Property of the DTFS
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 FT-pair: mapping a CT nonperiodic function into a CT nonperiodic function.

 DTFS-pair: mapping a DT periodic function into a DT periodic function.

 Recall that                                 and 

 Duality property

Difference in the factor N and the sign change in the complex sinusoid

1

0

[ ] [ ] O

N
jk n

k

x n X k e







1

0

1[ ] [ ] O

N
jk n

n

X k x n e
N


 



 

2;
[ ] [ ]

DTFS
Nx n X k



2; 1[ ] [ ]

DTFS
NX n x k

N



 



Duality Property of the DTFT and FS
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 FS-pair: mapping a CT periodic function into a DT nonperiodic function.

 DTFT-pair: mapping a DT nonperiodic function into a CT periodic function.

 Recall that                                 

 and 

 Duality property

FS of a periodic continuous time signal z(t):

DTFT of a nonperiodic discrete-time signal x[n]: ( ) [ ]j j n

k
X e x n e


  



 

[ ] ( )DTFS jx n X e  ;1( ) [ ]FSjtX e x k 

2. Duality relationship between z(t) and X(e j) requires z(t) to have the same 
period as X(e j), that is, T = 2

( ) [ ] ojk t

k

z t Z k e 




 

1. Difference in the sign change in the complex sinusoid


