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Chapter 3:
Fourier Representation of Signals
and LTI Systems

Chih-Wei Liu
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» Discrete-time Nonperiodic Signals Fourier Transform
» Continuous-time Nonperiodic Signals
» Properties of Fourier representations

» Linearity and Symmetry Properties

» Convolution Property
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Discrete-Time Fourier Transform (DTFT)

» The DTFT-pair of a discrete-time nonperiodic signal x[n] and X(e?)

Xnl=——[" X (e")e*dQ
27 V"

x[n] «2F X(ejQ) -

X(e!?)=> x[nle

N=—o0

DTFT represents x[n] as a superposition of complex sinusoids

Since x[n] is not periodic, there are no restrictions on the periods (or
frequencies) of the sinusoids to represent x[n]. The DTFT would involve a
continuous of frequencies on —t<Q<r (discrete-time sinusoids are unique only
over a 27 interval of frequency)

X(e”?) is termed as the frequency-domain representation of x[n]
If x[n] has finite duration and is finite valued, the infinite sum converges definitely
The infinite sum converges uniformly only if x[n] is absolutely summable

If x[n] is not absolutely summable, but squarely summable (i.e. has finite energy),
the infinite sum converges in a MMSE sense, but does not converge pointwise.
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Example 3.17

Find the DTFT of the sequence x[n] = a"u[n].
<Sol.>

|.DTFT of x[n]:

(eJQ) Za ulnpio" = Za g n

2. For a < |, we have 3.If o is real valued, then
1 o) _ 1
jQ Q X e — . .
X(e7)= Z(“e ) 1_ge @’ o] <1 ( ) 1-acosQ+ jasinQ

4. Magnitude and phase spectra if a is real valued :

. 1 1
X (e =
‘ e ) ((1 o cosQ)* +a’sin Q)l (¢® +1- 22 cos Q)"

arg {X (e 19 )} = arctan(1 _a;l:Og;Qj
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Example 3.17 (conti.)
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The DTFT of an exponential signal x[n] = (a)"u[n].
(@) Magnitude spectrum for a = 0.5. (b) Phase spectrum for oo = 0.5.
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Example 3.18 DTFT of a Rectangular Pulse

Find the DTFT of x[n]. L |n[<M xin]
X[n]=
R RE
<Sol.> M 0 M '
|.DTFT of x[n]: @
X(ejQ)

—
b
=<
+

——

B 2r 27
2M +1 2M +1

\ 2;- AVAVA"Q;Z_’AVAVA\IO VI\VAVA ‘;:;VAVAVI\ 2: f\v[ Q
- - V4
(b)
- jQaM - jQ(2M +1)

M e l-e

X(ejQ)_ Zl.e—an . (1 ) ), Qio,iZﬂ',i47Z—
= = -e

h=-M 2M +1, Q=0,+2r,t4r
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Example 3.19
Inverse DTFT of a Rectangular Spectrum

Find the inverse DTFT of
oy (L Q=sw
X (e )_ 0 W< |n| <« Note that X(e /) is specified only for —n < Q < m.

V\;r[n]
X(e/?) 7 . 7
1 _V_V io‘ W
# . 011 \TYT ,]T/ 1ty
v To w . SIS Salia S[[° °%°
0
(a) (b)
<Sol.>
W
x[n]zijem”dﬂ _ 1 el n;tO:isin(Wn), n=0.
27 3, nj zn
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Example 3.20, 3.21

DTFT .
. S[n] <2y 1 ey
1
1
——o0—0—o——6—o—o—o—n % :
-3 =2 -1 0 1 2 3 -2 - 0 T 27

- 272_ iJc[n]
2r
| I I I T 17
AU N R v A A AR AN A A
2z 7 o 7T 2 3« A7 -2 -1 12
(a) 00 ((t:)
7 X eJQ = o(Q— k27).
X[n] = Zi [s(@)d0 - Zi (") 2, 9(Q-kr)
T 4 & We can define X(e/?) over all Q by writing it as an
Jg T infinite sum of delta functions shifted by integer

multiples of 2m.
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Remarks
X Zi:[n]
A L R e T AR AR
2r T IO T 20 37 A -2 -1 1 2
® (g)
X =Ys@Q-k2z) . BT, x[n]=i S 5(n—k)
k=—o0 k=—o0

» x[n] is not absolutely summable (or not square summable), but it is still a
valid DTFT-pair.

» Strictly speaking, the DTFT of the impulse train x[n] does not exist;

however, we can still identify their DTFT-pair. That is, we still can utilize the
DTFT as a problem-solving tool.
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Example 3.22
Simple Low-Pass and High-Pass Filters

Consider two different moving-average systems described by the input-output equations

1 1
yl[n]:a(x[n]+x[n—l]) and yz[n]:E(x[n]—x[n—l])
Find the frequency response of each system and plot the magnitude responses.

<Sol.>
|. The frequency response is the DTFT of the impulse response.

2. For system # | — For system # 2 —

1 1 1 1
h[n]=76[n]+>8[n-1] h, [n]=28[n]-~8[n~1]
The corresponding frequency response:

2 2
_ 2 a2 2 _i©
H,(e%) =e 2 ©EE e cos(gj.
2 2
i -
_i2a'2 _p 2 _i&
(o) =5 -3¢ =i Pt e D)
J
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Example 3.22 (conti.)

|H, /| |Hye/® |
Q : Q
=/ 0 T —IT 0 V4
(a) (b)
Low-pass filter High-pass filter
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Fourier Transform (FT)

» The FT-pair of a continuous-time nonperiodic signal x(t) and X(j®)

Ly
x(t)—gf_ooX(Ja))e’ dw

x(t) <7 X(jo)

X (jo) = j"; x(t)e dt

FT represents x(t) as a superposition of complex sinusoids

Since x(t) is not periodic, there are no restrictions on the periods (or
frequencies) of the sinusoids to represent x(t). The FT would involve a
continuous of frequencies ranging from -co to co.

X(jw) is termed as the frequency-domain representation of x(t)
The integral in FT-pair may not converge for all functions of x(t) and X(jw)

if x(t) is square integral, the integral converges in a MMSE sense, but not
converge poitwise.

If x(t) satisfies Dirichlet’s conditions, the integral converges pointwise.
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Example 3.24

Find the FT of x(t) = e ~2t u(t).

x(1)

<Sol.> e
For a < 0, x(t) is not absolutely integrable.
0
Therefore, we consider a > 0.The FT of x(t) is @)
. I e, —jotqr _ [ A-(atio)t .
X(Ja))_j_ooe u(t)e dt_j0 e dt |X(]02) |

—_ 1_ e—(aﬂw)t‘goz 1_ ______ 1
a+ jo a+ jo

Magnitude and phase spectra of X(jw) are: a5 .
: 1 {X(jw)}
‘X ( Ja))‘ = 1 e __(I(;)t)/z
(%o’ <t
arg{ X (jo)} =—arctan (w/a), E I i
TC/; ©
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Example 3.25

1, T, <t<T,
Find the FT of x(t)=
0, [t|>T, X (jo)
x(1) 2T
1
— — [0
-T, lo T, "3 _2NAx |0 NS
T, T T, T T, T,
<Sol.> (a) (b)

| . The rectangular pulse x(t) is absolutely integrable, provided that T, < oo.
2. FT of x(t):

X (Jo)=[" x(t)e™dt=[" e a

1 . 2 .
=[5 =g sin(eT). 020 ) X(ja)):%sin(a)To),
Iimgsin(a)To)=2To. X (jo) = 2Tysinc(aT, /7).

o—0 0
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Remarks
X(jo)
# Time-domain - Frequency-domain
|
— f @
-T, 0 T, 3z 27 /T K 27 3w
T, T, T, T, T, T,
«(t) = 1, -Ty<t<T, X (jo)=2T,sinc(aT,/7).
0, |t>T,

» As T, increases, the nonzero time extent of x(t) increases, while the X(jw)
becomes more concentrated about the frequency origin

» Conversely, as T, decreases, the nonzero duration of x(t) decreases, while
the X(jw) becomes less concentrated about the frequency origin

» The duration of x(t) is inversely related to the bandwidth of X(jw)

» The signal which is concentrated in one domain is spread out in the other
domain.
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Example 3.26

Find th FT of th | X (jo) L We<ao<W
ind the inverse of the rectangular spectrum )=
$ P . 0, |a)|>W
x(t)
W
X(jo) T
| /\/\/
W 0w ! 3 /z 0 gz 3z 5z i
W w w w W
<SO|.> (a) (b)
The inverse FT of x(t): X('[)zi ! ej”tda)z—iejwt‘w —isin(\Nt) t=0
27 J-W jt Yot

.1 .
ItLrgEQn (Wt)=W/r,

- x(t)=—sin(Wt),

t

16 Lec 3 - cwliu@twins.ee.nctu.edu.tw



Example 3.27, 3.28

Find the FT of x(t) = o(t).

<Sol.>
x(t) does not satisfy the Dirichlet’s condition, since the discontinuity at the origin is infinite.
However we attempt to process the FT of x(t) directly:

X(jo)=] &(t)e"dt=1

—0o0

- () < 1

Find the inverse FT of X(jw) = 2n6(w).
<Sol.> 1 o

Inverse FT of X(joo) is X(t)= Py 27:5(0))ej“"da) =1
Y

) 1« 276(w)

Duality between Example 3.27 and 3.28
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Example 3.29 BPSK Modulation

In a simple digital communication system, BPSK (binary phase-shift keying) is a
common scheme to assume that the signal representing ‘O’ is the negative of the

signal and the signal representing “1” is the positive of the signal. Fig. 3.44

depicts two candidate signals for this approach: a rectangular pulse x,(t) and a

raised-cosine pulse x_(t) (Note that each pulse is T  seconds long)

x(1) xq(1)
A,
AC
r : /\ t
T, 0 T, T, 0 T,
2 2 2 2
(a) (b)
A [t|<T,/2
()= O, t|<T, « (1)= (A /2)(+2cos(27t/T,)),
, ‘t‘>TO/2 9 0,

For example for the sequence “100101 17, the transmitted BPSK signals for
communicating are
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0

"ot "0 "0"
(a)

\llll ||lll ||II' lllll

"0" IIOIP IIOIP
(b)

Problems:

1 1 1 1 |

With BPSK, the system has a transmission
rate of |/T  bits per second. (Each user’s
signal is transmitted within an assigned
frequency band in order to prevent
interference with others)

Suppose the frequency band assigned to
each user is 20 kHz wide.Then, to prevent
interference with adjacent channels, we
assume that the peak value of the magnitude
spectrum of the transmitted signal outside
the 20-kHz band is required to be — 30 dB
below the peak in-band magnitude spectrum.

|. Choose the constant A, and A_ so that both BPSK signals have unit power.
2. Use FT to determine the maximum number of bits per second that can be transmitted
when the rectangular and raised-cosine pulse shapes are utilized.

<Sol.>

|. BPSK signal is a power signal. Powers in rectangular pulse and raised-cosine pulse are:

_1 To/2 a2
F’r—_l_—ojTO/ZArd'[—Ar and
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Example 3.29 (conti.)

:_IT/Z (A2/4)(1+2cos(27t/2)) dt

“ar I_TO/2[1+ 2c0s(27t/T,)+1/2+1/2cos(4xt/T,) |dt
_3A
8
Hence, unity transmission power is obtained by choosing A, = | and A, =4/8/3 .
2. FT of the rectangular pulse x,(t): : sin(wT,/2
X, (jo)=2 ( - o/2) rad/sec (o = 27f)
Rewrite it in terms of Hz: Xr' ( jf ) -2 SN (ﬂffTO)
T

The normalized magnitude spectrum of the signal is given by

10l0g,,{|X (jf)f} /T, {= 2010, {| X (i )|/T,)
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Spectrum of rectangular pulse in dB, normalized by T,,.

-13.46 dB

0 1 T T

-10

|
|

-15 I —30dB -

GAIT,|

20 logylX,
o
S
—

-40 J |11 1l ! f
=20 -15 -10 -5 0 5 10 15 20

T, T, T, T, T

The normalized by T, removed the dependence of the magnitude on T,.
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* From the figure, we find that the 10% sidelobe is the first one whose peak does not

exceed -30 dB.
* This implies that we must choose T, so that the 10® zero crossing is at 10 kHz in

order to satisfy the constraint.
=) |OK=10/T, M) Data transmission rate = IK bits/sec.

3. FT of raised-cosine pulse x (t): X, ( Ja)) — %\/%J'Ti/; (1+ 2COS(27zt/TO))e—jwtdt

J~To/2 i EJ'T(J/z e_j(w—Zn/To)tdt +1 EJ'T()/2 e_j(w+2”/T0)tdt
To/2 37-To/2 2\ 3J)-1,2
X_(jo)= 2\/%sm(a)T0/2) +\/§sin((a)—27z/To)T0/2) +\Esin((a)+27z/To)To/2)

® w—27/T, o+ 27T,

In terms of f (Hz), the above equation becomes

v [28in(7fTy) 2 sin(z(f-1T,)T,) 2 sin(z(f+1T,)T,)
X°(Jf)_\g 7 +O'5\g z(f-UT,) +0'5\g z(f+UT,)

A superposition of three sinc spectra
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' for T, =1

The sum of three spectra
| has lower sidelobs than
| that of the spectrum of
| the rectangular pulse

2
< 8

The normalized magnitude spectrum of the signal, i.e. 20 Ioglo{\x (jf )‘/To} , is

0

-0} {  the peak value of the
ol ~304B | first sidelobe is below
\ — 30 dB, so we may
g 3 ~~ satisfy the adjacent
i 40 [\ {\ {  channel interference
g | |  specifications by
) , choosing the mainlobe
| ) ( | to be 20 kHz wide:

Data transmission rate -o
= 5000 bits/sec. 1= 10,000 = 2/T,

= ) 4 8 !
23 T, 1, T, T, .1, T, 7, — 4
_ I,=2x10 S




