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Introduction
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 In this chapter, we represent a signal as a weighted 
superposition of complex sinusoids.
 AKA Fourier analysis
 The weight associated with a sinusoid of a given frequency 

represents the contribution of that sinusoid to the overall 
signal.

 Four distinct Fourier representations:
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Frequency Response of LTI System
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 The response of the LTI system to a sinusoidal input ejt : H{x(t)=ejt}= ejt

H(j)

 For discrete-time case, the response of the LTI system to a sinusoidal input 
ejn is H{x[n]=ejn}= ejn H(ej)

LTI System h(t)
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Frequency Response of LTI System

6

 Frequency response of a continuous-time LTI system

 Frequency response of the LTI system can also be represented by 

 Magnitude response
 Phase response
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Example 3.1 RC Circuit System
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The impulse response of the RC circuit system is derived in Example 1.21 as

/1( ) ( )t RCh t e u t
RC


Find an expression for the frequency response, and plot the 
magnitude and phase response.

<Sol.>
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Phase response:
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Another Meaning for Frequency Response

8

 The eigenfunction of the LTI system (t):

 The eigen-representation of the LTI system

 By representing arbitrary signals as weighted superposition of eigenfunction
ejt, then

LTI System h(t)
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the weights describe the signal as 
a function of frequency. 
(frequency-domain representation)

Multiplication in frequency domain,
c.f. convolution in time-domain



Fourier Analysis
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 Non-periodic signals have (continuous) Fourier transform 
representations, while periodic signals have (discrete) Fourier 
series representations.

 Why Fourier series representations for Periodic signals
 Periodic signal can be considered as a weighted superposition of 

(periodic) complex sinusoids (using periodic signals to construct a 
periodic signal)

 Recall that the periodic signal has a (fundamental) period, this implies 
that the period (or frequency) of each component sinusoid must be 
an integer multiple of the signal’s fundamental period (or frequency)
 in frequency-domain analysis, the weighted complex sinusoids 
look like a discrete series of weighted frequency impulse  Fourier 
series representation

 Question: Can any a periodic signal be represented or constructed by a 
weighted superposition of complex sinusoids?
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Approximated Periodic Signals
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 Suppose the signal                        is approximated to a 
discrete-time periodic signal x[n] with fundamental period N, 
where 0 = 2/N.

 Since                                                       , there are only N
distinct sinusoids of the form        : e.g. k=0, 1, …, N-1

 Accordingly, we may rewrite the signal as

 For continuous-time case, we then have                      , where 
0 = 2/T is the fundamental frequency of periodic signal x(t)

 Although        is periodic,         is distinct for distinct k0

 Hence, an infinite number of distinct terms, i.e. 
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Approximation Error
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 Mean-square error (MSE) performance:

 We seek the weights or coefficients A[k] such that the MSE is 
minimum

 The DTFS and FS coefficients (Fourier analysis) achieve the 
minimum MSE (MMSE) performance. 


1 2

0

1 [ ] [ ]
N

n

MSE x n x n dt
N





  
2

0

1 ( ) ( )
T

MSE x t x t dt
T

 



Frequencies separated by an integer 
multiple of 2 are identical

Fourier Analysis
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 Why Fourier transform representations for Non-periodic 
signals
 Using periodic sinusoids (the same approach) to construct a non-

periodic signal, there are no restrictions on the period (or frequency) 
of the component sinusoids  there are generally having a 
continuum of frequencies in frequency-domain analysis Fourier 
transform representation

 Fourier transform: 
 Continuous-time case

 Discrete-time case
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Discrete-Time Fourier Series (DTFS)
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 The DTFS-pair of a periodic signal x[n] with fundamental period N and 
fundamental frequency 0=2/N is

 The DTFS coefficients X[k] are called the frequency-domain representation for 
x[n]

 The value k determines the frequency of the sinusoid associated with X[k]
 The DTFS is exact.  (Any periodic discrete-time signal can be described in terms 

of DTFS coefficients exactly)
 The DTFS is the only one of Fourier analysis that can be evaluated and 

manipulated in computer for a finite set of N numbers.
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Example 3.2 DTFS Coefficients
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Find the frequency domain representation of the signal depicted in Fig. 3.5.

<Sol.>
1. Period: N = 5 o = 2/5

2. Odd symmetry We choose n =  2 to n = 2
3. Fourier coefficient:
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Example 3.2 (conti.)
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If we calculate X[k] using n = 0 to n = 4:

            5/85/65/45/20 43210
5
1  jkjkjkjkj exexexexexkX  
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  The same expression for the DTFS coefficients !!!



Example 3.2 (conti.)
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[ ] Magnitude spectrum of [ ]X k x n
[ ]X k Even function

 arg [ ] Phase spectrum of [ ]X k x n arg [ ]X k

Odd function



Example 3.3 Computation by Inspection
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Determine the DTFS coefficients of x[n] = cos (n/3 + ), using the method of inspection.

<Sol.>
1. Period: N = 6 o = 2/6 = /3
2. Using Euler’s formula, x[n] can be expressed as

( ) ( )
3 3

3 31 1[ ]
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j n j n
j n j nj je ex n e e e e

    
 

  


   (3.13) 

3. Compare Eq. (3.13) with the DTFS of Eq. (3.10) with o = /3, written by summing 
from k =  2 to k = 3:
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Example 3.4 
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Find the DTFS coefficients of the N-periodic impulse train                                  .

<Sol.>
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1. Period: N.  
2. By (3.11), we have
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Example 3.6
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Find the DTFS coefficients for the N-periodic square wave given by

<Sol.>
1. Period = N, hence o = 2/N
2. It is convenient to evaluate DTFS coefficients over the interval n = M to n = NM1.
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Example 3.6 (conti.)
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The DTFS coefficients for the square wave, assuming a period N = 50: (a) M = 4. (b) M = 12.
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Symmetry Property of DTFS Coefficients
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 If X[k] = X[-k], it is instructive to consider the contribution of each term in         

of period N

 Assume that N is even, so that N/2 is integer. o = 2/N
 Rewrite the DTFS coefficients by letting k range from N/2 +1 to N/2, i.e.

 Define new set of coefficients
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A similar expression may be derived for N odd.




0

0
[ ] [ ]cos( )

J

J
k

x n B k k n


 

Example 3.7
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The contribution of each term in DTFS series to the square wave may be illustrated by 
defining the partial-sum approximation to x[n] as

where J  N/2. This approximation contains the first 2J + 1 terms centered on k = 0 in the 
square wave above. Assume a square wave has period N = 50 and M = 12. Evaluate one 
period of the Jth term and the 2J + 1 term approximation for J = 1, 3, 5, 23, and 25
<Sol.>

J = 1

J = 3
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J = 5

J = 23

J = 25

The coefficients B[k] associated with values of k near zero represent the low-
frequency or slowly varying features in the signal, while the coefficients 
associated with values of k near  N/2 represent the high frequency or rapidly 
varying features in the signal.



Fourier Series (FS)

Lec 3 - cwliu@twins.ee.nctu.edu.tw25

 The DT-pair of a periodic signal x(t) with fundamental period T and 
fundamental frequency 0=2/T is

 The FS coefficients X[k] are called the frequency-domain representation for x(t)
 The value k determines the frequency of the sinusoid associated with X[k]
 The infinite series in x(t) is not guaranteed to converge for all possible signals.  

 Suppose we define
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Remarks
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 A zero MSE does not imply that the two signals are equal pointwise.

 Dirichlet’s conditions:
1. x(t) is bounded

2. x(t) has a finite number of maximum and minima in one period

3. x(t) has a finite number of discontinuities in one period

 Pointwise convergence of         and x(t) is guaranteed at all t except 
those corresponding to discontinuities satisfying Dirichlet’s
conditions.

 If x(t) satisfies Dirichlet’s conditions and is not continuous, then        
converges to the midpoint of the left ad right limits of x(t) at each 
discontinuity.

 x̂ t

 x̂ t
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Example 3.9

Lec 3 - cwliu@twins.ee.nctu.edu.tw27

Determine the FS coefficients for the signal x(t).

1. The period of x(t) is T = 2, so o=2/2 =.
2. Take one period of x(t): x(t) = e2t, 0  t  2.   Then

   2 2 22

0 0

1 1
2 2

jk tt jk tX k e e dt e dt     

<Sol.>

The Magnitude of X[k] 
the magnitude spectrum of x(t)

The phase of X[k]  
the phase spectrum of x(t)



Example 3.10 
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Determine the FS coefficients for the signal x(t) defined by    4
l

x t t l




 
<Sol.>
1. Fundamental period of x(t) is T = 4,  each period contains an impulse.

2. By integrating over a period that is symmetric about the origin,  2 < t  2, to obtain X[k]:
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3. The magnitude spectrum is constant and the phase spectrum is zero.



Example 3.11 Computation by Inspection
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Determine the FS representation of the signal    4/2/cos3   ttx
<Sol.>
1. Fundamental frequency of x(t) is o= 2/4= /2, so T = 4.
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2. Rewrite the x(t) as
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Example 3.12 Inverse FS
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Find the (time-domain) signal x(t) corresponding to the FS coefficients
Assume that the fundamental period is T=2.

    20/2/1 jkk ekX 

<Sol.>
1. Fundamental frequency: o= 2/T= . Then
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Example 3.13
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Determine the FS representation of the square wave:  

<Sol.>
1. The period is T, so the fundamental frequency o= 2/T. 
2. We consider the interval  T/2  t  T/2 to obtain the FS coefficients. Then
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(2) For k = 0, we have
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Example 3.13 (conti.)
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Figure 3.22 
The FS coefficients, X[k], –50  k  50, for three square waves. (a) To/T = 1/4 . (b) To/T = 1/16. 
(c) To/T = 1/64.



Sinc Function 
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 Maximum of sinc(u) is unity at u = 0, the zero crossing occur at integer 
values of u, and the amplitude dies off as 1/u.

 The portion of sinc(u) between the zero crossings at u =  1 is known as 
the mainlobe of the sinc function.

 The smaller ripples outside the mainlobe are termed sidelobes

sin( )sinc( ) uu
u







More on the FS Pairs

34

 The original FS pairs are described in exponential form: 
 Let’s consider the trigonometric form

 For real-valued signal x(t):                         ,   and 
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Rewrite the signal as we have



Trigonometric FS Pair for Real Signals
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0
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Or, if we use trigonometric FS representation for a real-valued periodic signal x(t) 
with period T, then



Example 3.15

36

Let us find the FS representation for the output y(t) of the RC circuit in response to the 
square-wave input depicted in Fig. 3.21, assuming that To/T = ¼, T = 1 s, and RC = 0.1 s.

1. If the input to an LTI system is expressed as a weighted sum of sinusoids (eigenfunctions), 
then the output is also a weighted sum of sinusoids.

2. Input:
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4. Frequency response of the RC circuit:
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<Sol.>
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5. Substituting for H(jko) with RC = 0.1 
s and o = 2, and To/T = ¼

   



 k
k

kj
kY 2/sin

102
10





