Chapter 3：
Fourier Representation of Signals and LTI Systems

Chih－Wei Liu

## Outline

- Introduction
- Complex Sinusoids and Frequency Response
- Fourier Representations for Four Classes of Signals
- Discrete-time Periodic Signals Fourier Series
- Continuous-time Periodic Signals
- Discrete-time Nonperiodic Signals Fourier Transform
- Continuous-time Nonperiodic Signals
- Properties of Fourier representations
- Linearity and Symmetry Properties
- Convolution Property


## Outline

- Differentiation and Integration Properties
- Time- and Frequency-Shift Properties
- Finding Inverse Fourier Transforms
- Multiplication Property
- Scaling Properties
- Parseval Relationships
- Time-Bandwidth Product
- Duality


## Introduction

- In this chapter, we represent a signal as a weighted superposition of complex sinusoids.
- AKA Fourier analysis
- The weight associated with a sinusoid of a given frequency represents the contribution of that sinusoid to the overall signal.
- Four distinct Fourier representations:

| Time property | Periodic | Nonperiodic |
| :---: | :---: | :---: |
| Continuous <br> $(\mathrm{t})$ | Fourier Series <br> (FS) | Fourier Transform <br> (FT) |
| Discrete |  |  |
| $[\mathrm{n}]$ |  |  | | Discrete-Time |
| :---: |
| Fourier Series |
| (DTFS) |$\quad$| Discrete-Time |
| :---: |
| Fourier Transform |
| (DTFT) |

## Frequency Response of LTI System

- The response of the LTI system to a sinusoidal input $e^{j \omega t}: H\left\{x(t)=e^{j \omega t}\right\}=e^{j \omega t}$

$$
\begin{aligned}
& H(j \omega) \quad x(t)=e^{j \omega t} \\
& \begin{aligned}
y(t) & =x(t) * h(t) \\
& =\int_{-\infty}^{\infty} h(\tau) e^{j \omega(t-\tau)} d \tau
\end{aligned} \\
& H(j \omega)=\int_{-\infty}^{\infty} h(\tau) e^{-j \omega \tau} d \tau \\
& \text { Dependent on } \omega \text {, } \\
& \text { but independent on } t \\
& =e^{j \omega t} \int_{-\infty}^{\infty} h(\tau) e^{j \omega \tau} d \tau \\
& =e^{j \omega} H(j \omega)
\end{aligned}
$$

- For discrete-time case, the response of the LTI system to a sinusoidal input

$$
e^{j \Omega n} \text { is } H\left\{x[n]=e^{j \Omega n}\right\}=e^{j \Omega n} H\left(e^{j \Omega}\right)
$$

$$
H\left(e^{j \Omega}\right)=\sum_{k=-\infty}^{\infty} h[k] e^{-j \Omega k}
$$

Dependent on $\Omega$, but independent on $n$

$$
\begin{aligned}
y[n] & =x[n] * h[n] \\
& =\sum_{k=-\infty}^{\infty} h[k] e^{j \Omega(n-k)} \\
& =e^{j \Omega n} \sum_{k=-\infty}^{\infty} h[k] e^{-j \Omega k} \\
& =e^{j \Omega n} H\left(e^{j \Omega}\right)
\end{aligned}
$$

## Frequency Response of LTI System

- Frequency response of a continuous-time LTI system

- Frequency response of the LTI system can also be represented by

$$
H(j \omega)=|H(j \omega)| e^{j \arg \{H(j \omega)\}}
$$

, Magnitude response $|H(j \omega)|$

- Phase response $\arg \{H(j \omega)\}$


## Example 3.1 RC Circuit System



The impulse response of the RC circuit system is derived in Example I.2I as $h(t)=\frac{1}{R C} e^{-t / R C} u(t)$ Find an expression for the frequency response, and plot the
<Sol.> Frequency response:

$$
H(j \omega)=\frac{1}{R C} \int_{-\infty}^{\infty} e^{-\frac{\tau}{R C}} u(\tau) e^{-j \omega \tau} d \tau=\frac{1}{R C} \int_{0}^{\infty} e^{-\left(j \omega+\frac{1}{R C}\right) \tau} d \tau
$$

$$
=\left.\frac{1}{R C} \frac{-1}{\left(j \omega+\frac{1}{R C}\right)} e^{-\left(j \omega+\frac{1}{R C}\right) \tau}\right|_{0} ^{\infty}=\frac{\frac{1}{R C}}{j \omega+\frac{1}{R C}}
$$

Magnitude response:
Phase response:

$$
|H(j \omega)|=\frac{\frac{1}{R C}}{\sqrt{\omega^{2}+\left(\frac{1}{R C}\right)^{2}}}
$$

$$
\arg \{H(j \omega)\}=-\arctan (\omega R C)
$$

## Another Meaning for Frequency Response

- The eigenfunction of the LTI system $\psi(t)$ :
- The eigen-representation of the LTI system

- By representing arbitrary signals as weighted superposition of eigenfunction $e^{j \omega t}$, then

$$
x(t)=\sum_{k=1}^{M} a_{k} e^{j \omega_{k} t}
$$

the weights describe the signal as

- 8
a function of frequency.
(frequency-domain representation)

$$
y(t)=H\{x(t)\}=\sum_{k=1}^{M} \frac{a_{k} H\left(j \omega_{k}\right)}{} e^{j \omega_{k} t}
$$

Multiplication in frequency domain, c.f. convolution in time-domain

## Fourier Analysis

- Non-periodic signals have (continuous) Fourier transform representations, while periodic signals have (discrete) Fourier series representations.
- Why Fourier series representations for Periodic signals
- Periodic signal can be considered as a weighted superposition of (periodic) complex sinusoids (using periodic signals to construct a periodic signal)
- Recall that the periodic signal has a (fundamental) period, this implies that the period (or frequency) of each component sinusoid must be an integer multiple of the signal's fundamental period (or frequency)
$\rightarrow$ in frequency-domain analysis, the weighted complex sinusoids look like a discrete series of weighted frequency impulse $\rightarrow$ Fourier series representation
- Question: Can any a periodic signal be represented or constructed by a weighted superposition of complex sinusoids?


## Approximated Periodic Signals

- Suppose the signal $\hat{X}[n]=\sum_{k} A[k] e^{j k_{0} n}$ is approximated to a discrete-time periodic signal $x[n]$ with fundamental period $N$, where $\Omega_{0}=2 \pi / \mathrm{N}$.
- Since $e^{j(k+N) \Omega_{0} n}=e^{j N \Omega_{0} n} e^{j k \Omega_{0} n}=e^{j 2 m} e^{j k \Omega_{0} n}=e^{j k \Omega_{0} n}$, there are only $N$ distinct sinusoids of the form $e^{j k 2_{0} n}$ : e.g. $k=0,1, \ldots, N-1$
- Accordingly, we may rewrite the signal as $\hat{\chi}[n]=\sum_{k=0}^{N-1} A[k] e^{j k_{0} n}$ DTFS
- For continuous-time case, we then have $\hat{x}(t)=\sum_{k} A[k] e^{j k \omega_{0} t}$, where $\omega_{0}=2 \pi / T$ is the fundamental frequency of periodic signal $x(t)$
- Although $e^{j k \omega_{0} t}$ is periodic, $e^{j k \omega_{0} t}$ is distinct for distinct $k \omega_{0}$
- Hence, an infinite number of distinct terms, i.e. $\hat{x}(t)=\sum_{k=-\infty}^{\infty} A[k] e^{i k \omega_{0} t}$


## Approximation Error

- Mean-square error (MSE) performance:

$$
\text { MSE }=\frac{1}{N} \sum_{n=0}^{N-1}|x[n]-\hat{x}[n]|^{2} d t \quad \quad \text { MSE }=\frac{1}{T} \int_{0}^{T}|x(t)-\hat{x}(t)|^{2} d t
$$

- We seek the weights or coefficients $A[k]$ such that the MSE is minimum
- The DTFS and FS coefficients (Fourier analysis) achieve the minimum MSE (MMSE) performance.


## Fourier Analysis

- Why Fourier transform representations for Non-periodic signals
- Using periodic sinusoids (the same approach) to construct a nonperiodic signal, there are no restrictions on the period (or frequency) of the component sinusoids $\rightarrow$ there are generally having a continuum of frequencies in frequency-domain analysis $\rightarrow$ Fourier transform representation
- Fourier transform:
- Continuous-time case

$$
\hat{x}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X\left(e^{j \omega}\right) e^{j \omega t} d \omega
$$

FT

- Discrete-time case
FS

$$
\hat{X}[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \Omega}\right) e^{j \Omega n} d \Omega
$$

DTFT

$$
\hat{x}(t)=\sum_{k=-\infty}^{\infty} A[k] e^{j k \omega_{0} t}
$$

Frequencies separated by an integer

$$
\hat{X}[n]=\sum_{k=0}^{N-1} A[k] e^{j k \Omega_{0} n} \text { DTFS }
$$ multiple of $2 \pi$ are identical

## Outline

- Introduction
- Complex Sinusoids and Frequency Response
- Fourier Representations for Four Classes of Signals
- Discrete-time Periodic Signals
- Continuous-time Periodic Signals
- Discrete-time Nonperiodic Signals Fourier Transform
- Continuous-time Nonperiodic Signals
- Properties of Fourier representations
- Linearity and Symmetry Properties
- Convolution Property


## Discrete-Time Fourier Series (DTFS)

- The DTFS-pair of a periodic signal $x[n]$ with fundamental period $N$ and fundamental frequency $\Omega_{0}=2 \pi / N$ is

$$
X[n] \stackrel{\text { DTFS; } \Omega_{0}}{\longleftrightarrow} X[k] \begin{array}{|l|}
\hline \\
X[n]=\sum_{k=0}^{N-1} X[k] e^{j k \Omega_{0} n} \\
X[k]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \Omega_{0} n} \\
\hline
\end{array}
$$

- The DTFS coefficients $X[k]$ are called the frequency-domain representation for $x[n]$
- The value $k$ determines the frequency of the sinusoid associated with $X[k]$
- The DTFS is exact. (Any periodic discrete-time signal can be described in terms of DTFS coefficients exactly)
- The DTFS is the only one of Fourier analysis that can be evaluated and manipulated in computer for a finite set of $N$ numbers.


## Example 3.2 DTFS Coefficients

Find the frequency domain representation of the signal depicted in Fig. 3.5.

<Sol.>
I. Period: $N=5 \| \Omega_{0}=2 \pi / 5$
2. Odd symmetry $\|$ We choose $n=-2$ to $n=2$
3. Fourier coefficient:

$$
\begin{aligned}
X[k] & =\frac{1}{5} \sum_{n=-2}^{2} x[n] e^{-j k 2 \pi n / 5} \\
& =\frac{1}{5}\left\{x[-2] e^{j k 4 \pi / 5}+x[-1] e^{j k 2 \pi / 5}+x[0] e^{j 0}+x[1] e^{-j k 2 \pi / 5}+x[2] e^{-j k 4 \pi / 5}\right\} \\
X[k] & =\frac{1}{5}\left\{1+\frac{1}{2} e^{j k 2 \pi / 5}-\frac{1}{2} e^{-j k 2 \pi / 5}\right\} \\
& =\frac{1}{5}\{1+j \sin (k 2 \pi / 5)\} \quad \text { cwliu@twins.ee.nctu.edu.tw }
\end{aligned}
$$

## Example 3.2 (conti.)

If we calculate $X[k]$ using $n=0$ to $n=4$ :

$$
\begin{aligned}
X[k] & =\frac{1}{5}\left\{x[0] e^{j 0}+x[1] e^{-j k 2 \pi / 5}+x[2] e^{-j k 4 \pi / 5}+x[3] e^{-j k 6 \pi / 5}+x[4] e^{-j k 8 \pi / 5}\right\} \\
= & \frac{1}{5}\left\{1-\frac{1}{2} e^{-j k 2 \pi / 5}+\frac{1}{2} e^{-j k 8 \pi / 5}\right\} \quad \text { since } \quad e^{-j k 8 \pi / 5}=e^{-j k 2 \pi} e^{j k 2 \pi / 5}=e^{j k 2 \pi / 5} \\
X[k] & =\frac{1}{5}\left\{1+\frac{1}{2} e^{j k 2 \pi / 5}-\frac{1}{2} e^{-j k 2 \pi / 5}\right\} \\
& =\frac{1}{5}\{1+j \sin (k 2 \pi / 5)\} \quad \text { The same expression for the DTFS coefficients !!! }
\end{aligned}
$$

## Example 3.2 (conti.)



## Example 3.3 Computation by Inspection

Determine the DTFS coefficients of $x[n]=\cos (n \pi / 3+\phi)$, using the method of inspection.
<Sol.>
I. Period: $N=6$

$$
\Omega_{0}=2 \pi / 6=\pi / 3
$$

2. Using Euler's formula, $x[n]$ can be expressed as

$$
\begin{equation*}
x[n]=\frac{e^{j\left(\frac{\pi}{3} n+\phi\right)}+e^{-j\left(\frac{\pi}{3} n+\phi\right)}}{2}=\frac{1}{2} e^{-j \phi} e^{-j \frac{\pi}{3} n}+\frac{1}{2} e^{j \phi} e^{j \frac{\pi}{3} n} \tag{3.I3}
\end{equation*}
$$

3. Compare Eq. (3.I3) with the DTFS of Eq. (3.10) with $\Omega_{0}=\pi / 3$, written by summing from $k=-2$ to $k=3$ :

$$
\begin{aligned}
x[n] & =\sum_{k=-2}^{3} X[k] e^{j k \pi n / 3} \\
& =X[-2] e^{-j 2 \pi n / 3}+X[-1] e^{-j \pi n / 3}+X[0]+X[1] e^{j \pi n / 3}+X[2] e^{j 2 \pi n / 3}+X[3] e^{j \pi n}
\end{aligned}
$$

$$
x[n] \stackrel{\text { DTFS; } \frac{\pi}{3}}{\longleftrightarrow} X[k]=\left\{\begin{array}{cc}
e^{-j \phi} / 2, & k=-1 \\
e^{j \phi} / 2, & k=1 \\
0, & \text { otherwise } \\
\text { on }-2 \leq k \leq 3
\end{array}\right.
$$

## Example 3.4

Find the DTFS coefficients of the $N$-periodic impulse train $x[n]=\sum_{l=-\infty}^{\infty} \delta[n-l N]$.

I. Period: N.
2. By (3.II), we have

$$
X[k]=\frac{1}{N} \sum_{n=0}^{N-1} \delta[n] e^{-j k n 2 \pi / N}=\frac{1}{N}
$$

## Example 3.6

Find the DTFS coefficients for the $N$-periodic square wave given by
<Sol.>

I. Period $=N$, hence $\Omega_{0}=2 \pi / N$
2. It is convenient to evaluate DTFS coefficients over the interval $n=-M$ to $n=N-M-I$.

$$
x[n]=\left\{\begin{array}{ll}
1, & -M \leq n \leq M \\
0, & M<n<N-M
\end{array} \| X[k]=\frac{1}{N} \sum_{n=-M}^{N-M-1} x[n] e^{-j k \Omega_{0} n}=\frac{1}{N} \sum_{n=-M}^{M} e^{-j k \Omega_{0} n}\right.
$$

3. For $k=0, \pm N, \pm 2 N, \ldots$, we have $e^{j k \Omega_{o}}=e^{-j k \Omega_{o}}=1$

$$
X[k]=\frac{1}{N} \sum_{n=-M}^{M} 1=\frac{2 M+1}{N}, \quad k=0, \pm N, \pm 2 N, \ldots
$$

For $k \neq 0, \pm N, \pm 2 N, \ldots$, we have

$$
X[k]=\frac{1}{N} \sum_{n=-M}^{M} e^{-j k \Omega_{0} n}=\frac{e^{j k \Omega_{0} M}}{N}\left(\frac{1-e^{-j k \Omega_{0}(2 M+1)}}{1-e^{-j k \Omega_{0}}}\right), k \neq 0, \pm N, \pm 2 N, \ldots
$$

## Example 3.6 (conti.)

$$
X[k]=\frac{e^{j k \Omega_{0} M}}{N}\left(\frac{1-e^{j k \Omega_{0} M(2 M+1)}}{1-e^{-j k \Omega_{0}}}\right), \quad k \neq 0, \pm N, \pm 2 N, \ldots \ldots
$$

$$
X[k]=\frac{1}{N}\left(\frac{e^{j k \Omega_{0}(2 M+1) / 2}}{e^{j k \Omega_{0} / 2}}\right)\left(\frac{1-e^{j k \Omega_{0}(2 M+1)}}{1-e^{j k \Omega_{0}}}\right)=\frac{1}{N}\left(\frac{e^{j k \Omega_{0}(2 M+1) / 2}-e^{-j k \Omega_{0}(2 M+1) / 2}}{e^{j k \Omega_{0} / 2}-e^{-j k \Omega_{0} / 2}}\right)
$$

The numerator and denominator of
above Eq. are divided by $2 j$

$$
k=0, \quad \pm N, \quad \pm 2 N, \ldots
$$



$\checkmark \quad{ }^{\prime} \quad$ The DTFS coefficients for the square wave, assuming a period $N=50$ : (a) $M=4$. (b) $M=12$.

## Symmetry Property of DTFS Coefficients

- If $X[k]=X[-k]$, it is instructive to consider the contribution of each term in $X[n]=\sum_{k=0}^{N-1} X[k] e^{j k \Omega_{0} n}$ of period $N$
- Assume that $N$ is even, so that $N / 2$ is integer. $\Omega_{0}=2 \pi / N$
- Rewrite the DTFS coefficients by letting $k$ range from $-N / 2+I$ to $N / 2$, i.e.

$$
\begin{aligned}
& x[n]=\sum_{k=-N / 2+1}^{N / 2} X[k] e^{j k \Omega_{0} n} \\
& \begin{aligned}
\|[n] & =X[0]+X[N / 2] e^{j \pi n}+\sum_{m=1}^{N / 2-1} 2 X[m]\left(\frac{e^{j m \Omega_{0} n}+e^{-j m \Omega_{0} n}}{2}\right) \\
& =X[0]+X[N / 2] \cos (\pi n)+\sum_{m=1}^{N / 2-1} 2 X[m] \cos \left(m \Omega_{0} n\right)
\end{aligned}
\end{aligned}
$$

- Define new set of coefficients

$$
B[k]=\left\{\begin{array}{cc}
X[k], & k=0, \quad N / 2 \\
2 X[k], & k=1, \quad 2, \ldots, \quad N / 2-1
\end{array} \| x[n]=\sum_{k=0}^{N / 2} B[k] \cos \left(k \Omega_{0} n\right)\right.
$$

## Example 3.7



The contribution of each term in DTFS series to the square wave may be illustrated by defining the partial-sum approximation to $x[n]$ as $\hat{X}_{J}[n]=\sum_{k=0}^{J} B[k] \cos \left(k \Omega_{0} n\right)$
where $J \leq N / 2$. This approximation contains the first $2 J+I$ terms centered on $k=0$ in the square wave above.Assume a square wave has period $N=50$ and $M=12$. Evaluate one period of the $J$ th term and the $2 J+I$ term approximation for $J=I, 3,5,23$, and 25
<Sol.>





(c)


(d)


(e)

The coefficients $B[k]$ associated with values of $k$ near zero represent the lowfrequency or slowly varying features in the signal, while the coefficients associated with values of $k$ near $\pm N / 2$ represent the high frequency or rapidly varying features in the signal.

## Fourier Series (FS)

- The DT-pair of a periodic signal $x(t)$ with fundamental period $T$ and fundamental frequency $\omega_{0}=2 \pi / T$ is

$$
x(t) \stackrel{F S ; \omega_{0}}{\longleftrightarrow} X[k] \quad \begin{array}{ll}
X(t)=\sum_{k=-\infty}^{\infty} X[k] e^{j k \omega_{0} t} \\
X[k]=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t \\
\text { take one period of } x(t)
\end{array}
$$

- The FS coefficients $X[k]$ are called the frequency-domain representation for $x(t)$
- The value $k$ determines the frequency of the sinusoid associated with $X[k]$
- The infinite series in $x(t)$ is not guaranteed to converge for all possible signals.
- Suppose we define

$$
\hat{x}(t)=\sum_{k=-\infty}^{\infty} X[k] e^{j k \omega_{0} t} \xrightarrow{\text { approach to? }} x(t) \quad \frac{1}{T} \int_{0}^{T}|x(t)-\hat{x}(t)|^{2} d t=0
$$

a zero power in their differences.

## Remarks

- A zero MSE does not imply that the two signals are equal pointwise.
- Dirichlet's conditions:

1. $x(t)$ is bounded
2. $x(t)$ has a finite number of maximum and minima in one period
3. $x(t)$ has a finite number of discontinuities in one period

- Pointwise convergence of $\hat{x}(t)$ and $x(t)$ is guaranteed at all $t$ except those corresponding to discontinuities satisfying Dirichlet's conditions.
- If $x(t)$ satisfies Dirichlet's conditions and is not continuous, then $\hat{x}(t)$ converges to the midpoint of the left ad right limits of $x(t)$ at each discontinuity.


## Example 3.9

Determine the FS coefficients for the signal $x(t)$.
<Sol.>

I. The period of $x(t)$ is $T=2$, so $\omega_{0}=2 \pi / 2=\pi$.
2. Take one period of $x(t): x(t)=e^{-2 t}, 0 \leq t \leq 2$. Then
$X[k]=\frac{1}{2} \int_{0}^{2} e^{-2 t} e^{-j k \pi t} d t=\frac{1}{2} \int_{0}^{2} e^{-(2+j k \pi) t} d t=\frac{1}{4+j k 2 \pi}\left(1-e^{-4} e^{-j k 2 \pi}\right)=\frac{1-e^{-4}}{4+j k 2 \pi}$


The Magnitude of $X[k] \equiv$ the magnitude spectrum of $x(t)$
$\qquad$


The phase of $X[k] \equiv$ the phase spectrum of $x(t)$

## Example 3.10

Determine the FS coefficients for the signal $x(t)$ defined by $x(t)=\sum_{l=-\infty}^{\infty} \delta(t-4 l)$
<Sol.>
I. Fundamental period of $x(t)$ is $T=4$, each period contains an impulse.
2. By integrating over a period that is symmetric about the origin, $-2<t \leq 2$, to obtain $X[k]$ :

$$
X[k]=\frac{1}{4} \int_{-2}^{2} \delta(t) e^{-j k(\pi / 2) t} d t=\frac{1}{4}
$$

3. The magnitude spectrum is constant and the phase spectrum is zero.

## Example 3.11 Computation by Inspection

Determine the FS representation of the signal $x(t)=3 \cos (\pi t / 2+\pi / 4)$
<Sol.>
I. Fundamental frequency of $x(t)$ is $\omega_{0}=2 \pi / 4=\pi / 2$, so $T=4$.
2. Rewrite the $x(t)$ as $x(t)=3 \frac{e^{j(\pi t / 2+\pi / 4)}+e^{-j(\pi t / 2+\pi / 4)}}{2}=\frac{3}{2} e^{j \pi / 4} e^{j \pi t / 2}+\frac{3}{2} e^{-j \pi / 4} e^{-j \pi t / 2}$
3. Compare with
$x(t)=\sum_{k=-\infty}^{\infty} X[k] e^{j k \pi t / 2}$ $X[k]= \begin{cases}\frac{3}{2} e^{-j \pi / 4}, & k=-1 \\ \frac{3}{2} e^{j \pi / 4}, & k=1 \\ 0, & \text { otherwise }\end{cases}$



## Example 3.12 Inverse FS

Find the (time-domain) signal $x(t)$ corresponding to the FS coefficients $X[k]=(1 / 2)^{k /} e^{j k \pi / 20}$ Assume that the fundamental period is $T=2$.
<Sol.>
I. Fundamental frequency: $\omega_{0}=2 \pi / T=\pi$. Then

$$
\begin{aligned}
x(t)=\sum_{k=-\infty}^{\infty} X[k] e^{j k \omega_{0} t} & =\sum_{k=0}^{\infty}(1 / 2)^{k} e^{j k \pi / 20} e^{j k \pi t}+\sum_{k=-1}^{-\infty}(1 / 2)^{-k} e^{j k \pi / 20} e^{j k \pi t} \\
& =\sum_{k=0}^{\infty}(1 / 2)^{k} e^{j k \pi / 20} e^{j k \pi t}+\sum_{l=1}^{\infty}(1 / 2)^{l} e^{-j l \pi / 20} e^{-j l / t} \\
& =\frac{1}{1-(1 / 2) e^{j(\pi t+\pi / 20)}}+\frac{1}{1-(1 / 2) e^{-j(\pi t+\pi / 20)}}-1
\end{aligned}
$$

## Example 3.13

Determine the FS representation of the square wave:

I. The period is $T$, so the fundamental frequency $\omega_{0}=2 \pi / T$.
2. We consider the interval $-T / 2 \leq t \leq T / 2$ to obtain the FS coefficients. Then
(I) For $k \neq 0$, we have
$X[k]=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) e^{-j k \omega_{0} t} d t=\frac{1}{T} \int_{-T_{0}}^{T_{0}} e^{-j k \omega_{0} t} d t$
$=\left.\frac{-1}{T j k \omega_{0}} e^{-j k \omega_{0} t}\right|_{-T_{0}} ^{T_{0}}, \quad k \neq 0$
$=\frac{2}{T k \omega_{0}}\left(\frac{e^{j k \omega_{0} T_{0}}-e^{-j k \omega_{0} T_{0}}}{2 j}\right), \begin{aligned} & k \neq 0 \\ & \text { By means of L'Hôpital's rule }\end{aligned}$
$=\frac{2 \sin \left(k \omega_{0} T_{0}\right)}{T k \omega_{0}}, \quad k \neq 0 \rightarrow \lim _{k \rightarrow 0} \frac{2 \sin \left(k \omega_{0} T_{0}\right)}{T k \omega_{0}}=\frac{2 T_{0}}{T} \rightarrow \|[k]=\frac{2 \sin \left(k \omega_{0} T_{0}\right)}{T k \omega_{0}}$

## Example 3.13 (conti.)



Figure 3.22
The FS coefficients, $X[k],-50 \leq k \leq 50$, for three square waves. (a) $T_{o} / T=1 / 4$. (b) $T_{o} / T=1 / 16$.
(c) $T_{o} / T=1 / 64$.

## Sinc Function $\operatorname{sinc}(u)=\frac{\sin (\pi u)}{\pi u}$



- Maximum of $\operatorname{sinc}(u)$ is unity at $u=0$, the zero crossing occur at integer values of $u$, and the amplitude dies off as $I / u$.
- The portion of $\operatorname{sinc}(u)$ between the zero crossings at $u= \pm I$ is known as the mainlobe of the sinc function.
- The smaller ripples outside the mainlobe are termed sidelobes


## More on the FS Pairs

- The original FS pairs are described in exponential form:
- Let's consider the trigonometric form

$$
x(t)=\sum_{k=-\infty}^{\infty} X[k] e^{j k \omega_{0} t}
$$

$$
\begin{aligned}
x(t)=\sum_{k=-\infty}^{\infty} X[k] e^{j k \omega_{0} t} & =X[0]+\sum_{k=1}^{\infty}\left(X[k] e^{j k \omega_{0} t}+X[-k] e^{-j k \omega_{0} t}\right) \\
& =X[0]+\sum_{k=1}^{\infty}\left(|X[k]| e^{j k \omega_{0} t+j \arg \{X[k]\}}+|X[-k]| e^{-j k \omega_{0} t+j \arg [X[-k]]}\right)
\end{aligned}
$$

- For real-valued signal $x(t):|X[k]|=|X[-k]|$ and $\arg \{X[-k]\}=-\arg \{X[k]\}$
$\| x(t)=X[0]+\sum_{k=1}^{\infty} \mid X[k]\left(e^{j\left(k \omega_{0} t+\arg \{X[k]\}\right)}+e^{-j\left(k \omega_{0} t \operatorname{targ}\{X[k]\}\right)}\right)$
$=X[0]+\sum_{k=1}^{\infty} 2|X[k]| \cos \left(k \omega_{0} t+\arg \{X[k]\}\right)$
$=X[0]+\sum_{k=1}^{\infty} 2 \mid X[k]\left(\cos (\arg \{X[k]\}) \cos \left(k \omega_{0} t\right)-\sin (\arg \{X[k]\}) \sin \left(k \omega_{0} t\right)\right)$
Rewrite the signal as

$$
x(t)=B[0]+\sum_{k=1}^{\infty} B[k] \cos \left(k \omega_{0} t\right)+A[k] \sin \left(k \omega_{0} t\right) \quad \text { we have }
$$

## Trigonometric FS Pair for Real Signals

$$
x(t)=B[0]+\sum_{k=1}^{\infty} B[k] \cos \left(k \omega_{0} t\right)+A[k] \sin \left(k \omega_{0} t\right)
$$

where

$$
\begin{aligned}
B[0]=X[0], B[k] & =2|X[k]| \cos (\arg \{X[k]\}) & A[k] & =-2|X[k]| \sin (\arg \{X[k]\}) \\
& =2 \operatorname{Re}\{X[k]\} & & =-2 \operatorname{Im}\{X[k]\}
\end{aligned}
$$

Or, if we use trigonometric FS representation for a real-valued periodic signal $x(t)$ with period $T$, then

$$
B[0]=\frac{1}{T} \int_{0}^{T} x(t) d t \quad B[k]=\frac{2}{T} \int_{0}^{T} x(t) \cos \left(k \omega_{0} t\right) d t \quad A[k]=\frac{2}{T} \int_{0}^{T} x(t) \sin \left(k \omega_{0} t\right) d t
$$

## Example 3.15

Let us find the FS representation for the output $y(t)$ of the $R C$ circuit in response to the square-wave input depicted in Fig. 3.2I, assuming that $T_{0} / T=1 / 4, T=1 \mathrm{~s}$, and $R C=0.1 \mathrm{~s}$.



## <Sol.>

I. If the input to an $L T I$ system is expressed as a weighted sum of sinusoids (eigenfunctions), then the output is also a weighted sum of sinusoids.
2. Input:

$$
\begin{array}{ll}
\qquad x(t)=\sum_{k=-\infty}^{\infty} X[k] e^{j k \omega_{0} t} \quad X[k]=\frac{2 \sin \left(k \omega_{0} T_{0}\right)}{T k \omega_{0}} & y(t) \stackrel{F S ; \omega_{0}}{\longleftrightarrow} Y[k]=H\left(j k \omega_{0}\right) X[k] \\
\text { 4. Frequency response of the } R C \text { circuit: } & y(t)=\sum_{k=-\infty}^{\infty} H\left(j k \omega_{0}\right) X[k] e^{j k \omega_{0} t}
\end{array}
$$

$$
H(j \omega)=\frac{1 / R C}{j \omega+1 / R C}
$$

5. Substituting for $H\left(j k \omega_{\circ}\right)$ with $R C=0 . I$
$s$ and $\omega_{\circ}=2 \pi$, and $T_{\circ} / T=1 / 4$
