Chapter 2：
Time－Domain Representations of Linear Time－Invariant Systems

Chih－Wei Liu

Outline

- Characteristics of Systems Desc
Difference Equations
Block Diagram Representations
- State-Variable Descriptions of LTI Systems
- Exploring Concepts with MATLAB
- Summary

Block Diagram Representations

- A block diagram is a graphical representation of the elementary operations acting on the input signal
I. Scalar multiplication: $y(t)=c x(t)$, and $y[n]=c x[n]$

2. Addition: $y(t)=x(t)+w(t)$, and $y[n]=x[n]+w[n]$
3. Integration and time shift: $y(t)=\int_{-\infty}^{t} x(\tau) d \tau$ and $y[n]=x[n-1]$.

$x(t) \longrightarrow \int \longrightarrow y(t)=\int_{-\infty}^{t} x(\tau) d \tau$
(a)

(b)
$x[n] \longrightarrow \mathrm{S} \longrightarrow y[n]=x[n-1]$
Figure 2.32 (c)
(a) Scalar multiplication. (b) Addition.
(c) Integration for continuous-time systems and time shifting for discrete-time systems.

Discrete-Time Block Diagram

$$
y[n]+a_{1} y[n-1]+a_{2} y[n-2]=b_{0} x[n]+b_{1} x[n-1]+b_{2} x[n-2]
$$

Discrete-Time Block Diagram Representation Example Canonical Form (Direct Form II)

Interchange the order of Direct Form I.

$$
y[n]+a_{1} y[n-1]+a_{2} y[n-2]=b_{0} x[n]+b_{1} x[n-1]+b_{2} x[n-2]
$$

Second-order
2 storage elements

$$
f[n]=-a_{1} f[n-1]-a_{2} f[n-2]+x[n] \quad y[n]=b_{0} f[n]+b_{1} f[n-1]+b_{2} f[n-2]
$$

Continuous-Time Block Diagram Representation

$$
\frac{d}{d t} v^{(n)}(t)=v^{(n-1)}(t), \quad t>0 \text { and } n=1,2,3, \quad \Longleftrightarrow v^{(n)}(t)=\int_{-\infty}^{t} v^{(n-1)}(\tau) d \tau, \quad n=1,2,3, \ldots
$$

Ex. Second-order system: $\quad y(t)=-a_{1} y^{(1)}(t)-a_{0} y^{(2)}(t)+b_{2} x(t)+b_{1} x^{(1)}(t)+b_{0} x^{(2)}(t)$

Cascade Form (Direct Form I)

Canonical Form (Direct Form II)

State-Variable Description of LTI Systems

- The state-variable description consist of
- A series of first-order differential or difference equations that describe how the state of the system evolves
- An equation that relates the output of the system to the current state variables and input

State variables
(The output of the S operation)

- the state of a system may be defined as a minimal set of signals that represents the system's entire memory of the past

State-Variable Description Example

I. Start from the canonical form (i.e. direct form II) of the system
2. Choose state variables: $q_{1}[n]$ and $q_{2}[n]$.
3. State equation:

$$
\begin{aligned}
& q_{1}[n+1]=-a_{1} q_{1}[n]-a_{2} q_{2}[n]+x[n] \\
& q_{2}[n+1]=q_{1}[n]
\end{aligned}
$$

4. Output equation:
5. Matrix Form of state equation:

$$
\left[\begin{array}{l}
q_{1}[n+1] \\
q_{2}[n+1]
\end{array}\right]=\left[\begin{array}{cc}
-a_{1} & -a_{2} \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
q_{1}[n] \\
q_{2}[n]
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] x[n]
$$

4. Matrix form of output equation:
$y[n]=x[n]-a_{1} q_{1}[n]-a_{2} q_{2}[n]+b_{1} q_{1}[n]+b_{2} q_{2}[n]$, $y[n]=\left(b_{1}-a_{1}\right) q_{1}[n]+\left(b_{2}-a_{2}\right) q_{2}[n]+x[n]$

$$
y[n]=\left[\begin{array}{ll}
b_{1}-a_{1} & b_{2}-a_{2}
\end{array}\right]\left[\begin{array}{l}
q_{1}[n] \\
q_{2}[n]
\end{array}\right]+[1] x[n]
$$

State-Variable Description Example (conti.)

Define state vector as the column vector

$$
\mathrm{q}[\mathrm{n}]=\left[\begin{array}{l}
\mathrm{q}_{1}[\mathrm{n}] \\
\mathrm{q}_{2}[\mathrm{n}]
\end{array}\right]
$$

We can rewrite equations as

$$
\begin{aligned}
& \mathbf{q}[\mathrm{n}+1]=\mathbf{A q}[\mathrm{n}]+\mathbf{b x}[\mathrm{n}] \\
& \mathrm{y}[\mathrm{n}]=\mathbf{c q}[\mathrm{n}]+\mathrm{Dx}[\mathrm{n}]
\end{aligned}
$$

where matrix \mathbf{A}, vectors \mathbf{b} and \mathbf{c}, and scalar D are given by

$$
\mathbf{A}=\left(\begin{array}{cc}
-a_{1} & -a_{2} \\
1 & 0
\end{array}\right) \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \mathbf{c}=\left[\begin{array}{ll}
b_{1}-a_{1} & b_{2}-a_{2}
\end{array}\right] \quad D=1
$$

I. Except block diagram, the state-variable describes the internal structure of the system
2. The state-variable description is used in any problem in which the internal system structure needs to be considered
3. For N-th order difference equation, the state vector $q[n]$ is $N \times I$, and matrices A is $N \times N, b$ is $N \times I, c$ is $I \times N$.

Example 2.28

Find the state-variable description corresponding to the system depicted in Fig. 2.40 by choosing the state variable to be the outputs of the unit delays.
<Sol.>
I. State equation:

$$
q_{1}[n+1]=\alpha q_{1}[n]+\delta_{1} x[n]
$$

$$
q_{2}[n+1]=\gamma q_{1}[n]+\beta q_{2}[n]+\delta_{2} x[n]
$$

3. Define state vector as

$$
\mathbf{q}[n]=\left[\begin{array}{l}
q_{1}[n] \\
q_{2}[n]
\end{array}\right] \begin{aligned}
& \mathbf{q}[\mathrm{n}+1]=\mathbf{A q}[\mathrm{n}]+\mathbf{b x}[\mathrm{n}] \\
& \mathrm{y}[\mathrm{n}]=\mathbf{c q}[\mathrm{n}]+\mathrm{Dx}[\mathrm{n}]
\end{aligned}
$$

State-Variable Description of Continuous-Time LTI System

- Recall discrete-time case

$$
\begin{aligned}
& \mathbf{q}[\mathrm{n}+1]=\mathbf{A q}[\mathrm{n}]+\mathbf{b x}[\mathrm{n}] \\
& \mathrm{y}[\mathrm{n}]=\mathbf{c q}[\mathrm{n}]+\mathrm{Dx}[\mathrm{n}]
\end{aligned}
$$

- For continuous-time LTI system

$$
\begin{aligned}
& \frac{d}{d t} \mathbf{q}(\mathrm{t})=\mathbf{A q}(\mathrm{t})+\mathbf{b} x(\mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\mathbf{c q}(\mathrm{t})+\mathrm{Dx}(\mathrm{t})
\end{aligned}
$$

〉 States in continuous-time systems?

- In electrical (continuous-time) systems, the (energy) storage devices are the capacitor and the inductor.

Example 2.29

Derive a state-variable description of the system if the input is the applied voltage $x(t)$ and the output is the current $y(t)$ through the resistor R_{1}. <Sol.>
I. State variables: the voltage across each capacitor.
2. KVL Eq. for the loop involving $x(t), R_{1}$, and C_{1} :

$$
x(t)=y(t) R_{1}+q_{1}(t)
$$

KVL Eq. for the loop involving C_{1}, R_{2}, and C_{2} :

$$
q_{1}(t)=R_{2} i_{2}(t)+q_{2}(t)
$$

$$
y(t)=-\frac{1}{R_{1}} q_{1}(t)+\frac{1}{R_{1}} x(t) \text { Output eq. }
$$

$$
\begin{aligned}
& \text { 3. Current Eq: } \\
& \left.\begin{array}{rl}
y(t)=i_{1}(t)+i_{2}(t) & \begin{array}{rl}
i_{2}(t) & =C_{2} \frac{d}{d t} q_{2}(t) \\
i_{1}(t) & =y(t)-i_{2}(t) \\
& =-\frac{1}{R_{1}} q_{1}(t)+\frac{1}{R_{1}} x(t)-\frac{1}{R_{2}} q_{1}(t)+\frac{1}{R_{2}} q_{2}(t)
\end{array} \\
&
\end{array}\right] \frac{d}{d t} q_{2}(t)=\frac{1}{C_{2} R_{2}} q_{1}(t)-\frac{1}{C_{2} R_{2}} q_{2}(t) \\
&
\end{aligned}
$$

Example 2.30

Determine the state-variable description corresponding to the block diagram.

State Transformation

- The transformation of states can be considered as a new set of state variables that are a weighted sum of the original ones.
- After state variables transformation, the IO characteristics of the system (or the system's behavior) is not changed.
I. Original state-variable description: $\dot{\mathbf{q}}=\mathbf{A q}+\mathbf{b} x$

$$
y=\mathbf{c q}+D x
$$

2.Transformation: $\quad \mathbf{q}^{\prime}=\mathbf{T q} \| \mathbf{q}^{\boldsymbol{q}} \mathbf{T}^{-1} \mathbf{q}$
3. New state-variable description:
I) State equation: $\quad \dot{\mathbf{q}}^{\prime}=\mathbf{T A q}+\mathbf{T b} x . \| \dot{\mathbf{q}}^{\prime}=\mathbf{T A T}^{-1} \mathbf{q}^{\prime}+\mathbf{T} \mathbf{b} x$.
2) Output equation: $y=\mathbf{c q}+D x \quad \| \longmapsto y=c \mathbf{T}^{-1} \mathbf{q}^{\prime}+D x$ then

$$
\begin{array}{lll}
\dot{\mathbf{q}}^{\prime}=\mathbf{A}^{\prime}+\mathbf{b}^{\prime} x & \text { and } & \mathbf{A}^{\prime}=\mathbf{T A T}^{-1}, \quad \mathbf{b}^{\prime}=\mathbf{T b}, \mathbf{c}^{\prime}=\mathbf{c T}^{-1}, \text { and } D^{\prime}=D \\
\hline y=\mathbf{c}^{\prime} \mathbf{q}^{\prime}+D^{\prime} x & \mathbf{q}^{\prime}=\mathbf{T q} &
\end{array}
$$

