Chapter 1：Introduction

Chih－Wei Liu

Outline

- What is a signal?
- What is a system?
- Overview of specific systems
- Classification of signals
- Basic operations on signals
- Elementary signals
- Systems viewed as interconnections of operations
- Properties of systems
- Noises
- Theme example
- Exploring concepts with MATLAB

Introduction

- What is a signal?
- A signal is formally defined as a function of one or more variables that conveys information on the nature of a physical phenomenon.
- What is a system?
- A system is formally defined as an entity that manipulates one or more signals to accomplish a function, thereby yielding new signals.

Overview of Specific Systems

- Example I: Communication Systems

Figure 1.2: Elements of a communication system. The transmitter changes the message signal into a form suitable for transmission over the channel. The receiver processes the channel output (i.e., the received signal) to produce an estimate of the message signal.

- Analog communication systems
- Modulator (AM, PM, FM) \rightarrow Channel \rightarrow Demodulator
- Digital communication systems
- (Sampling+Quantization+Modulation+Coding) \rightarrow Channel \rightarrow (Reversed Function)
- Wireless/Wired Channel
- Noise

Specific System Example 2

- Feedback Control Systems

Figure 1.4 Block diagram of a feedback control system. The controller drives the plant, whose disturbed output drives the sensor(s). The resulting feedback signal is subtracted from the reference input to produce an error signal $e(t)$, which, in turn, drives the controller.

- Response and Robustness
- Single-input, single-output (SISO) system
- Multiple-input, multiple-output (MIMO) system

Specific System Example 3

- Micro-electro-mechanical Systems (MEMS)

- Merging mechanical systems with microelectronic control circuits on a silicon chip.

Figure 1.6 (Taken from Yazdi et al., Proc. IEEE, 1998)

(a) Structure of lateral capacitive accelerometers.
(b) SEM view of Analog Device's ADXLO5 surface-micromachined polysilicon accelerometer.

Specific System Example 4

- Remote Sensing

* The process of acquiring information (detecting and measuring the changes) about an object of interest without being in physical contact with it
- Types of remote sensor
- Radar sensor
- Infrared sensor
- Visible/near-infrared sensor
- X-ray sensor

Figure 1.7 Perspectival view of Mount Shasta (California), derived from a pair of stereo radar images acquired from orbit with the Shuttle Imaging Radar. (Courtesy of Jet Propulsion Lab.)

Specific System Example 5

- Biomedical Signal Processing

Figure 1.8 Morphological types of nerve cells (neurons) identifiable in monkey cerebral cortex, based on studies of primary somatic sensory and motor cortices. (Reproduced from E. R.
Kande, J. H. Schwartz, and T. M. Jessel, Principles of Neural Science, 3d ed., 1991; courtesy of Appleton and Lange.)

Specific System Example 5

- Many biological signals (found in human body) is traced to the electrical activity of large groups of nerve cells or muscle cells

Figure $1.9 \quad 0 \mathrm{~s}$
Time $\longrightarrow \quad 2 \mathrm{~s}$
The traces shown in (a), (b), and (c) are three examples of EEG signals recorded from the
hippocampus of a rat. Neurobiological studies sugge`st that the hippocampus plays a key role in certain aspects of learning and memory.

Specific System Example 6

- Auditory System

- The three main parts of the ear

(b)

Figure 1.10
(a) In this diagram, the basilar membrane in the cochlea is depicted as if it were uncoiled and ------ stretched out flat. (b) This diagram illustrates the traveling waves along the basilar membrane . - .

Overview of Specific Systems

- Analog versus Digital Signal Processing

- Continuous-time approach
- Natural way
- Analog circuit elements: resistors, capacitors, inductors, AP, and diodes
- Discrete-time approach
- More complex and artificial way
\square Sampling (ADC) and Reconstruction (DAC)
- Digital circuit elements: adder, shifter, multiplier, and memory
- Flexibility
- Repeatability

Classification of Signals

- We restrict our attention to one-dimensional signals only
b I. Continuous-time and discrete-time signals
- Continuous-time signals:
\square Real-valued or complex-valued function of time: $x(t)$
- Discrete-time signals:
\square A time series: $\left\{x[n]=x\left(n T_{s}\right), n=0, \pm 1, \pm 2, \ldots\right\}$
$\square T_{s}$: sampling period

(a)

(b)

Figure 1.12
(a) Continuous-time signal $x(t)$.(b) Representation of $x(t)$ as a discrete-time signal $x[n]$.

Classification of Signals

- 2. Even and odd signals
- For real-valued, continuous (or discrete) signal
- Even signals: $x(-t)=x(t), \forall t$
- Odd signals: $x(-t)=-x(t), \forall t$
Symmetric about the origin

Symmetric about the vertical axis

- Example I.I: Even or odd signal?

$$
x(t)=\left\{\begin{array}{cc}
\sin \left(\frac{\pi t}{T}\right), & -T \leq t \leq T \\
0, & \text { otherwise }
\end{array}\right.
$$

Even-Odd Decomposition of Signals

- An arbitrary signal $x(t)=x_{e}(t)+x_{o}(t)$ where $x_{e}(-t)=x_{e}(t)$

$$
\begin{aligned}
x(-t) & =x_{e}(-t)+x_{o}(-t) \quad x_{o}(-t)=-x_{o}(t) \\
& =x_{e}(t)-x_{o}(t)
\end{aligned}
$$

$$
\begin{equation*}
x_{e}=\frac{1}{2}[x(t)+x(-t)] \quad \text { (1.4) } \quad x_{o}=\frac{1}{2}[x(t)-x(-t)] \tag{1.5}
\end{equation*}
$$

- Example 1.2
- Even-odd decomposition of $x(t)=e^{-2 t} \cos t$

Even component:

$$
\begin{aligned}
x_{e}(t) & =\frac{1}{2}\left(e^{-2 t} \cos t+e^{2 t} \cos t\right) \\
& =\cosh (2 t) \cos t
\end{aligned}
$$

Odd component:

$$
\begin{aligned}
x_{o}(t) & =\frac{1}{2}\left(e^{-2 t} \cos t-e^{2 t} \cos t\right) \\
& =-\sinh (2 t) \cos t
\end{aligned}
$$

Conjugate Symmetric Complex Signals

- A complex-valued signal $x(t)$ is conjugate symmetric if its real part is even and its imaginary part is odd.
Proof:

$$
\begin{aligned}
& \text { Let } \quad x(t)=a(t)+j b(t) \\
& \| x^{*}(t)=a(t)-j b(t) \\
& \| a(-t)+j b(-t)=a(t)-j b(t) \\
& a(-t)=a(t) \\
& b(-t)=-b(t)
\end{aligned}
$$

- Example I. 2
- A conjugate symmetric signal, where its real part is depicted in Fig. I.I3(a) and the imaginary part is in Fig. I.I3(b)

Figure 1.13

(a)

Classification of Signals

- 3. Periodic and nonperiodic signals
- Periodic continuous-time signal: $x(t+T)=x(t), \forall t$
\square Clearly, $T=T_{0}, 2 T_{0}, 3 T_{0}, \ldots .$. Then, T_{0} is called fundamental period and $2 T_{0}$, $3 T_{0}, \ldots$. are harmonic
\square The reciprocal of the fundamental frequency is called frequency $f=\frac{1}{T_{0}}$
\square And, the angular frequency is defined by $\omega=2 \pi f$
- Nonperiodic signal:There is no finite T such that $x(t+T)=x(t), \forall t$
- Example: (a) periodic and (b) nonperiodic continuous-time signals

(a)

(b)

Figure 1.14 (a) Square wave with amplitude $A=1$ and period $T=0.2 \mathrm{~s}$. (b) Rectangular pulse of amplitude A and duration T_{1}.

Classification of Signals

- 3. Periodic and nonperiodic signals
- Periodic discrete-time signal: $x[n+N]=x[n]$, for integer n
$\square N$ is a positive integer
\square The smallest integer N is called the fundamental period of $x[n]$The fundamental angular frequency is defined by $\Omega=2 \pi / N$
- Nonperiodic signal:There is no finite N such that $x[n+N]=x[n]$, for integer n
- Example: periodic and nonperiodic discrete-time signals
$x[n]$

Classification of Signals

- 4. Deterministic signals and random signals
- A deterministic signal is a signal about which there is no uncertainty with respect to its value at any time.
$\square \sin (\mathrm{t}), \cos (\mathrm{t}), \ldots$
- A random signal is a signal about which there is uncertainty before it occurs.
\square noise, stock price index, ...
- 5. Energy signals and power signals
- The total energy of the continuous-time signal $x(t)$ is defined by

$$
\begin{equation*}
E=\lim _{T \rightarrow \infty} \int_{\frac{-T}{2}}^{\frac{T}{2}} x^{2}(t) d t=\int_{-\infty}^{\infty} x^{2}(t) d t \tag{I.I5}
\end{equation*}
$$

- The power of the signal $x(t)$ is defined by the time-averaged of (I.I5)

$$
\begin{equation*}
P=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} x^{2}(t) d t \quad \text { (1.16) } \quad \text { or } \quad P=\frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} x^{2}(t) d t \tag{I.I7}
\end{equation*}
$$

Energy Signals and Power Signals

- For discrete-time signal $x[n]$, (I.I5)-(I.I7) become to

$$
\begin{equation*}
E=\sum_{n=-\infty}^{\infty} x^{2}[n] \text { (I.18) } \quad P=\lim _{n \rightarrow \infty} \frac{1}{2 N} \sum_{n=-N}^{N} x^{2}[n] \text { (I.19) } \quad P=\frac{1}{N} \sum_{n=0}^{N-1} x^{2}[n] \tag{1.20}
\end{equation*}
$$

- Energy signals: iff (if and only if) $0<E<\infty$
- Power signals: iff $0<P<\infty$
, The energy and power classifications of signals are mutually exclusive
- An energy signal has zero time-averaged power
- A power signal has infinite energy
- The periodic signals and random signals are usually power signals
- The deterministic, nonperiodic signals are usually energy signals

Outline

- What is a signal?
- What is a system?
- Overview of specific systems
- Classification of signals
- Basic operations on signals
- Elementary signals
- Systems viewed as interconnections of operations
- Properties of systems
- Noises
- Theme example
- Exploring concepts with MATLAB

Basic Operations on Signals

- Operations performed on dependent variables
- Amplitude scaling

$$
y(t)=c x(t) \quad \text { Amplifier, resistor, } \ldots
$$

- Addition

$$
y(t)=x_{1}(t)+x_{2}(t) \quad \text { Audio mixer, } \ldots
$$

- Multiplication

$$
y(t)=x_{1}(t) x_{2}(t) \text { Frequency mixer, AM signal,... }
$$

$$
y[n]=c x[n]
$$

$$
y[n]=x_{1}[n]+x_{2}[n]
$$

$$
y[n]=x_{1}[n] x_{2}[n]
$$

- Differentiation

$$
\left.y(t)=\frac{d}{d t} x(t) \quad \text { Inductor, } \ldots{ }_{\bar{o}}^{v^{+}(t)}\right\}_{L}
$$

- Integration

$$
y(t)=\int_{-\infty}^{t} x(\tau) d \tau \quad \text { Capacitor, } \ldots
$$

Basic Operations on Signals

- Operations performed on the independent variable
- Time scaling

$$
y(t)=x(a t) \Longrightarrow\left\{\begin{array}{cc}
a>1, & \text { compressed } \\
0<a<1, & \text { expanded }
\end{array}\right.
$$

(a)

(b)

(c)

* Reflection (about $t=0$)

$$
y(t)=x(-t)
$$

(a)

(b)

$$
y[n]=x[k n], \quad k>0
$$

Lec I - cwliu@twins.ee.nctu.edu.tw

Basic Operations on Signals

, Time shifting

$$
\begin{aligned}
& y(t)=x\left(t-t_{0}\right) \xrightarrow{\left\{\begin{array}{ll}
t_{0}>0, & \text { right shift } \\
t_{0}<0, & \text { left shift }
\end{array}\right]} \\
& \text { (a) } \\
& \text { (b) }
\end{aligned}
$$

 \(y[n]=x[n-m]\)

Basic Operations on Signals

- Precedence rule for time shifting and time scaling
- A combination of time shifting and time scaling operations

$$
y(t)=x(a t-b)
$$

, The operations must be performed in the correct order

- The scaling operation always replaces t by at
- The shifting operation always replaces t by $t-b$

$$
\begin{aligned}
& v(t)=x(t-b) \\
& y(t)=v(a t)=x(a t-b)
\end{aligned}
$$

time-shifting operation is performed first
b Example I. $5 \quad y(t)=x(2 t+3)$

- Example 1.6

A discrete-time signal is defined by $x[n]=\left\{\begin{array}{cc}1, & n=1,2 \\ -1, & n=-1,-2 \\ 0, & n=0 \text { and }|n|>2\end{array}\right.$
Find $y[n]=x[2 n+3]$.

Figure 1.27
The proper order of applying the operations of time scaling and time shifting for the case of a discretetime signal. (a) Discrete-time signal $x[n]$, antisymmetric about the origin. (b) Intermediate signal $v(n)$ obtained by shifting $x[n]$ to the left by 3 samples. (c) Discrete-time signal $y[n]$ resulting from the compression of $v[n]$ by a factor of 2 , as a result of which two samples of the original $x[n]$, located at $n=-2,+2$, are lost.

Elementary Signals

- I. Exponential Signals $x(t)=B e^{a t} \quad x[n]=B r^{n}$
- B and a can be real or complex parameters
- Decaying exponential, if $a<0$; growing exponential, if $a>0$
- Decaying exponential, if $0<r<1$; growing exponential, if $r>1$

(a)

Time t

Figure 1.28 (a) Decaying exponential form of continuous-time signal. (b) Growing exponential form of continuous-time signal.

(a)

(b)

Figure 1.30 (a) Decaying exponential form of discrete-time signal. (b) Growing exponential form of discrete-time signal.

Elementary Signals

- 2. Sinusoidal Signals $x(t)=A \cos (\omega t+\phi) \quad x[n]=A \cos (\Omega n+\phi)$
- Periodic continuous-time sinusoidal signals with period $T=2 \pi / \omega$
- Discrete-time sinusoidal signals may or may not be periodic - Periodic if $\Omega=\frac{2 \pi m}{N}$ radians/cycle, integer m, N

$$
\begin{aligned}
x(t+T) & =A \cos (\omega(t+T)+\phi) \\
& =A \cos (\omega t+\omega T+\phi) \\
& =A \cos (\omega t+2 \pi+\phi)=A \cos (\Omega n+\Omega N+\phi) \\
& =A \cos (\omega t+\phi) \\
& =x(t)
\end{aligned}
$$

Physical Examples

Ex. 1 - exponential signals
KVL Eq.:

$$
\begin{align*}
& R C \frac{d}{d t} v(t)+v(t)=0 \tag{1.32}\\
& \| v(t)=V_{0} e^{-t /(R C)} \tag{1.33}
\end{align*}
$$

V_{0} : initial voltage across C
$R C=$ Time constan $R C=$ Time constant,

Figure 1.29 Lossy capacitor, with the loss represented by shunt resistance R.
Ex. 2 - sinusoidal signals
 Natural angular frequency of oscillation of the circuit

Figure 1.32 Parallel $L C$ circuit, assuming that the inductor L and capacitor C are both ideal.

Example 1.7 Discrete-Time Sinusoidallumic

Signals

- A pair of sinusoidal signals with a common angular frequency is defined by $x_{1}[n]=\sin [5 \pi n], x_{2}[n]=\sqrt{3} \cos [5 \pi n]$
(a) Both signals are periodic. Find their common fundamental period.
(b) Express the composite sinusoidal signal $y[n]=x_{1}[n]+x_{2}[n]$ in the form

$$
y[n]=A \cos (\Omega n+\phi)
$$

- Sol.
(a) $\Omega=5 \pi$ radians/cycle $\longrightarrow N=\frac{2 \pi m}{\Omega}=\frac{2 \pi m}{5 \pi}=\frac{2 m}{5}$

$$
\text { This can be only for } m=5,10,15, \ldots \text {, which results in } N=2,4,6, \ldots
$$

(b) $A \cos (\Omega n+\phi)=A \cos (\Omega n) \cos (\phi)-A \sin (\Omega n) \sin (\phi)$

$$
A \sin (\phi)=-1 \text { and } A \cos (\phi)=\sqrt{3}
$$

Solve ϕ and A

$$
\begin{aligned}
& \text { A } \\
& \tan (\phi)=\frac{\sin (\phi)}{\cos (\phi)}=\frac{\text { amplitude of } x_{1}[n]}{\text { amplitude of } x_{2}[n]}=\frac{-1}{\sqrt{3}} \xrightarrow{\phi} A=\frac{-1}{\sin (-\pi / 6)}=2 \\
& A \sin (\phi)=-1
\end{aligned}
$$

Hence, we have

$$
y[n]=2 \cos \left(5 \pi n-\frac{\pi}{6}\right)
$$

Euler's Identity

- 3. Relation Between Sinusoidal and Complex Exponential Signals
- Euler's identity: $\quad e^{j \theta}=\cos \theta+j \sin \theta$

$$
\begin{aligned}
& B e^{j \omega t} \\
& =A e^{j \phi} e^{j \omega t} \\
& =A e^{j(\phi+\omega t)} \\
& =A \cos (\omega t+\phi)+j A \sin (\omega t+\phi)
\end{aligned}
$$

$$
A \cos (\omega t+\phi)=\operatorname{Re}\left\{B e^{j \omega t}\right\}
$$

$$
A \sin (\omega t+\phi)=\operatorname{Im}\left\{B e^{j \omega t}\right\}
$$

Figure 1.34 Complex plane, showing eight points uniformly distributed on the unit circle. The projection of the points on the real axis is $\cos (n \pi / 4)$, while the projection on the imaginary axis is $\sin (n \pi / 4) ; n=0,1, \ldots, 7$.

Elementary Signals

4. Exponential Damped Sinusoidal Signals

- Continuous-time case $x(t)=A e^{-\alpha t} \sin (\omega t+\phi), \alpha>0$
- Discrete-time case $\quad x[n]=B r^{n} \sin [\Omega n+\phi], 0<|r|<1$

Figure 1.35 (p. 41)
Exponentially damped sinusoidal signal $A e^{-a t} \sin (\omega t)$, with $A=60$ and $\alpha=6$.

Elementary Signals

- 5. Step Function
- Discrete-time case

$$
u[n]= \begin{cases}1, & n \geq 0 \\ 0, & n<0\end{cases}
$$

Figure 1.37
Discrete-time version of step function of unit amplitude.

- Continuous-time case $u(t)= \begin{cases}1, & t>0 \\ 0, & t<0\end{cases}$

Figure 1.38
Continuous-time version of the unit-step function of unit amplitude.

Unit-Step Function Application

- $u(t)$ is a particularly simple signal to apply
- $u(t)$ can be used to construct other discontinuous waveform, e.g. rectangular pulse

$$
x(t)=A u\left(t+\frac{1}{2}\right)-A u\left(t-\frac{1}{2}\right)
$$

(b)
$v(t)=V_{0}\left(1-e^{-t /(R C)}\right) u(t)$
I. Initial value: $v(0)=0$
2. Final value: $\quad v(\infty)=V_{0}$
(a)

$$
x(t)= \begin{cases}A, & 0 \leq|t|<0.5 \\ 0, & |t|>0.5\end{cases}
$$

Elementary Signals

- 6. Impulse Function
- Discrete-time case

$$
\delta[n]= \begin{cases}1, & n=0 \\ 0, & n \neq 0\end{cases}
$$

Figure 1.41
Discrete-time form of impulse.
, Continuous-time case $\delta(t)=0$ for $t \neq 0$ and $\int_{-\infty}^{\infty} \delta(t) d t=1$

Figure 1.42
(a) Evolution of a rectangular pulse of unit area into an impulse of unit strength.
(b) Graphical symbol for unit impulse. (c) Representation of an impulse of strength a.

Impulse Function

- AKA Dirac delta function
> $\delta(t)$ is zero everywhere except at the origin
- The total area under the impulse $\delta(t)$ (or unit impulse), called the strength, is unity
- Mathematical relation between impulse and rectangular functions:

$$
\delta(t)=\lim _{\Delta \rightarrow 0} x_{\Delta}(t)-\quad \begin{aligned}
& \text { 1. } x_{\Delta}(t): \text { even function of } t, \Delta=\text { duration. } \\
& \text { 2. } x_{\Delta}(t): \text { Unit area. }
\end{aligned}
$$

- $\delta(t)$ is the derivative of $u(t) ; u(t)$ is the integral of $\delta(t)$:

$$
\begin{equation*}
\delta(t)=\frac{d}{d t} u(t) \quad(1.62) \quad u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau \tag{I.63}
\end{equation*}
$$

RC Circuit Example (conti.)

I.Voltage across the capacitor:

$$
v(t)=V_{0} u(t)
$$

2. Current flowing through capacitor:

$$
i(t)=C \frac{d v(t)}{d t} \xrightarrow{\|}(t)=C V_{0} \frac{d u(t)}{d t}=C V_{0} \delta(t)
$$

Properties of $\delta(t)$

- Even function

$$
\delta(-t)=\delta(t)
$$

- Shifting property
$\int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) d t=x\left(t_{0}\right)$
- Time-scaling property
$\delta(a t)=\frac{1}{a} \delta(t), \quad a>0$
Sampling at t_{0}

(a)
 If $x(t)$ is continuous at t_{0}

Elementary Signals

- 7. Derivation of the Impulse
- Doublet $\delta^{(1)}(t)$: the first derivative of $\delta(t)$
- Recall Example I.8, the rectangular pulse is $x(t)=A u\left(t+\frac{1}{2}\right)-A u\left(t-\frac{1}{2}\right)$
\rightarrow Unit rectangular pulse is equal to $\frac{1}{\Delta}\left(u\left(t+\frac{\Delta}{2}\right)-u\left(t-\frac{\Delta}{2}\right)\right)$

$$
\delta^{(1)}(t)=\lim _{\Delta \rightarrow 0} \frac{1}{\Delta}(\delta(t+\Delta / 2)-\delta(t-\Delta / 2))
$$

> Fundamental property of the doublet

$$
\int_{-\infty}^{\infty} f(t) \delta^{(1)}\left(t-t_{0}\right) d t=\left.\frac{d}{d t} f(t)\right|_{t=t_{0}} \quad \int_{-\infty}^{\infty} \delta^{(1)}(t) d t=0
$$

- Second derivative of impulse

$$
\frac{\partial^{2}}{\partial t^{2}} \delta(t)=\frac{d}{d t} \delta^{(1)}(t)=\lim _{\Delta \rightarrow 0} \frac{\delta^{(1)}(t+\Delta / 2)-\delta^{(1)}(t-\Delta / 2)}{\Delta}
$$

Elementary Functions

- 8. Ramp Function
- Continuous-time case $r(t)= \begin{cases}t, & t \geq 0 \\ 0, & t<0\end{cases}$
$\underbrace{r(t)=t u(t)}_{0}$ Time t

$$
\text { The integral of } u(t)
$$

Figure 1.46
Ramp function of unit slope.
Discrete-time case $r[n]= \begin{cases}n, & n \geq 0 \\ 0, & n<0\end{cases}$

Figure 1.47
Discrete-time version of the ramp function.

Example 1.11 Parallel Circuit

Consider the parallel circuit of Fig. 1-48 (a) involving a dc current source I_{0} and an initially uncharged capacitor C. The switch across the capacitor is suddenly opened at time $t=0$. Determine the current $i(t)$ flowing through the capacitor and the voltage $v(t)$ across it for $t \geq 0$.

(b)

Figure 1.48(b) Equivalent circuit replacing the action of opening the switch with $u(t)$.

$$
\text { Capacitor voltage: } \quad v(t)=\frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau
$$

$$
\begin{aligned}
v(t) & =\frac{1}{C} \int_{-\infty}^{t} I_{0} u(\tau) d \tau \\
& = \begin{cases}0 & \text { for } t<0 \\
\frac{I_{0}}{C} t & \text { for } t>1\end{cases} \\
& =\frac{I_{0}}{C} t u(t) \\
& =\frac{I_{0}}{C} r(t)
\end{aligned}
$$

A ramp function with slope I_{0} / C

Outline

- What is a signal?
- What is a system?
- Overview of specific systems
- Classification of signals
- Basic operations on signals
- Elementary signals
- Systems viewed as interconnections of operations
- Properties of systems
- Noises
- Theme example
- Exploring concepts with MATLAB

Systems Viewed as Interconnection of umbin Operations

- A system is an interconnection of operations that transforms an input signal into an output signal
- Let the operator $H\{\cdot\}$ denote the overall action of a system

$$
y(t)=H\{x(t)\} \quad y[n]=H\{x[n]\}
$$

, Example: Discrete-time shift operator S^{k} :

$\|$ Shifts the input by k time units

Example 1.12 Moving-Average System

Consider a discrete-time system whose output signal $y[n]$ is the average of three most recent values of the input signal $x[n]$, i.e. $y[n]=\frac{1}{3}(x[n]+x[n-1]+x[n-2])$ Formulate the operator H for this system; hence, develop a block diagram representation for it.
Sol. I. Overall operator H for the moving-average system: $H=\frac{1}{3}\left(1+S+S^{2}\right)$

(b)

Figure 1.51 Two different (but equivalent) implementations of the moving-average system: (a) cascade form of
of the moving-average (b) parallel cascade form of
(a) implementation and (b) parallel form of implementation.

Properties of Systems

- I. Stability

- A system is said to be bounded-input, bounded-output (BIBO) stable iff every bounded input results in a bounded output.
v The operator H is BIBO stable if

$$
|y(t)| \leq M_{y}<\infty \quad \forall t \text {, whenever }|x(t)| \leq M_{x}<\infty \quad \forall t .
$$

- Example I.I3
- Finite moving-average system is BIBO stable

$$
\begin{aligned}
|y[n]| & =\frac{1}{3}|x[n]+x[n-1]+x[n-2]| \\
& \leq \frac{1}{3}(|x[n]|+|x[n-1]|+|x[n-2]|) \\
& \leq \frac{1}{3}\left(M_{x}+M_{x}+M_{x}\right) \\
& =M_{x}
\end{aligned}
$$

Properties of Systems

- 2. Memory
- A system is said to possess memory if its output signal depends on past or future values of the input signal.
- Inductor $i(t)=\frac{1}{L} \int_{-\infty}^{t} v(\tau) d \tau \quad$ Depends on the infinite past voltage
- Moving-average system $y[n]=\frac{1}{3}(x[n]+x[n-1]+x[n-2])$

Depends on two past values of $x[n]$

- A system is said to possess memoryless if its output signal depends only on the present values of the input signal.
- Resistor $i(t)=\frac{1}{R} v(t)$
- A square-law system $y[n]=x^{2}[n]$

Properties of Systems

- 3. Causality
- Causality is required for a system to be capable of operating in real time.
- A system is said to be causal if its output signal depends only on the present or past values of the input signal.
- A system is said to be noncausal if its output signal depends on one or more future values of the input signal.
- For example,
- Causal moving-average system, $\quad y[n]=\frac{1}{3}(x[n]+x[n-1]+x[n-2])$
- Noncausal moving-average system, $y[n]=\frac{1}{3}(x[n+1]+x[n]+x[n-1])$

Properties of Systems

4. Invertibility

- A system is said to be invertible if the input of the system can be recovered from the output.

| $H^{\text {inv: }}$ inverse operator; I: identity operator
- A one-to-one mapping between input and output signals for a system is invertible
- Distinct inputs applied to the system produce distinct outputs.
- The inverse of the communication channel is aka the equalizer

Invertible and Noninvertible Systems andubin

 Example
Example 1.15 - Inverse of System

Consider the time-shift system described by the input-output relation $y(t)=x\left(t-t_{0}\right)=S^{t_{0}}\{x(t)\}$, where the operator $\boldsymbol{S}^{t_{0}}$ represents a time shift of t_{0} seconds. Find the inverse of this system.

$$
S^{-t_{0}}\{y(t)\}=S^{-t_{0}}\left\{S^{t_{0}}\{x(t)\}\right\}=S^{-t_{0}} S^{t_{0}}\{x(t)\} \quad S^{-t_{0}} S^{t_{0}}=I
$$

Example 1.16 - Non-Invertible System

Show that a square-law system described by the input-output relation $y(t)=x^{2}(t)$ is not invertible.

Since the distinct inputs $x(t)$ and $-x(t)$ produce the same output $y(t)$. Not 1-1 mapping. Accordingly, the square-law system is not invertible.

Properties of Systems

- 5.Time invariance
- A system is said to be time invariant if a time delay (or time advance) of the input signal leads to an identical time shift in the output signal.
- A time-invariant system responds identically no matter when the input signal is applied.

$$
\begin{aligned}
& \xrightarrow{x_{1}(t)} S^{t_{0}} \xrightarrow{\begin{array}{c}
x_{2}(t)= \\
x_{1}\left(t-t_{0}\right)
\end{array}} H \xrightarrow{y_{2}(t)} \quad H \xrightarrow{x_{1}(t)} \quad H \quad S^{t_{0}} \xrightarrow{y_{1}\left(t-t_{0}\right)} \\
& \text { (a) } \\
& y_{2}(t)=H\left\{x_{1}\left(t-t_{0}\right)\right\} \\
& =H\left\{S^{t_{0}}\left\{x_{1}(t)\right\}\right\} \\
& =H S^{t_{0}}\left\{x_{1}(t)\right\} \\
& y_{1}\left(t-t_{0}\right) \stackrel{(\mathrm{b})}{=} S^{t_{0}}\left\{y_{1}(t)\right\} \\
& =S^{t_{0}}\left\{H\left\{x_{1}(t)\right\}\right\} \\
& =S^{t_{0}} H\left\{x_{1}(t)\right\}
\end{aligned}
$$

Condition for time-invariant system:

$$
H S^{t_{0}}=S^{t_{0}} H
$$

Example 1.17 vs. Example 1.18

- Ex. I.I7 Inductor

$$
\begin{aligned}
& y_{1}(t)=i(t) \quad y_{1}(t)=\frac{1}{L} \int_{-\infty}^{t} x_{1}(\tau) d \tau \\
& \rightarrow 2002 \longrightarrow \\
& +x_{1}(t)=v(t) \quad- \\
& y_{2}(t)=\frac{1}{L} \int_{-\infty}^{t} x_{1}\left(\tau-t_{0}\right) d \tau
\end{aligned}
$$

Changing variables: $\tau^{\prime}=\tau-t_{0}$

$$
\begin{array}{r:c}
y_{2}(t) & \frac{1}{L} \int_{-\infty}^{t-t_{0}} x_{1}\left(\tau^{\prime}\right) d \tau^{\prime} \\
y_{1}\left(t-t_{0}\right) & \frac{1}{L} \int_{-\infty}^{t-t_{0}} x_{1}(\tau) d \tau
\end{array}
$$

- Ex. I.I8 Thermistor

$$
\xrightarrow[+x_{1}(t)=v(t)-]{\substack{y_{1}(t)=i(t)}} y_{1}(t)=x_{1}(t) / R(t)
$$

$$
y_{2}(t)=\frac{x_{1}\left(t-t_{0}\right)}{R(t)}
$$

$$
y_{1}\left(t-t_{0}\right)=\frac{x_{1}\left(t-t_{0}\right)}{R\left(t-t_{0}\right)}
$$

Since $R(t) \neq R\left(t-t_{0}\right)$
$\xrightarrow{\longrightarrow} y_{1}\left(t-t_{0}\right) \neq y_{2}(t)$ for $t_{0} \neq 0$
Thermistor is time variant

Inductor is time invariant.

Properties of Systems

- 6. Linearity
- Superposition property

$$
H\left\{x_{1}(t)\right\}+H\left\{x_{2}(t)\right\}=y_{1}(t)+y_{2}(t)=H\left\{x_{1}(t)+x_{2}(t)\right\}
$$

- Homogeneity property

$$
a H\left\{x_{1}(t)\right\}=a y_{1}(t)=H\left\{a x_{1}(t)\right\}, \quad a=\text { constant factor }
$$

- A system is said to be linear if it satisfies the superposition and homogeneity properties
- If $X_{X(t)}=\sum_{i=1}^{N} a_{i} x_{i}(t)$

$$
\begin{align*}
& x_{1}(t), x_{2}(t), \ldots, x_{N}(t) \equiv \text { input signal; } \tag{1.86}\\
& a_{1}, a_{2}, \ldots, a_{N} \equiv \text { Corresponding weighted factor }
\end{align*}
$$

v then

$$
y(t)=H\{x(t)\}=H\left\{\sum_{i=1}^{N} a_{i} x_{i}(t)\right\} \xrightarrow{\text { linear }} y(t)=\sum_{i=1}^{N} a_{i} y_{i}(t)
$$

Linear Systems

Figure 1.56 The linearity property of a system. (a) The combined operation of amplitude scaling and summation precedes the operator \boldsymbol{H} for multiple inputs. (b) The operator \boldsymbol{H} precedes amplitude scaling for each input; the resulting outputs are summed to produce the overall output $y(t)$. If these two configurations produce the same output $y(t)$, the operator H is linear.

Outline

- What is a signal?
-What is a system?
- Overview of specific systems
- Classification of signals
- Basic operations on signals
- Elementary signals
- Systems viewed as interconnections of operations
- Properties of systems
- Noises
- Theme example
- Exploring concepts with MATLAB

