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 What is a signal?
 A signal is formally defined as a function of one or more 

variables that conveys information on the nature of a physical 
phenomenon.

 What is a system?
 A system is formally defined as an entity that manipulates one 

or more signals to accomplish a function, thereby yielding new 
signals.

Introduction

One or more One or more
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Overview of Specific Systems
 Example 1: Communication Systems

 Analog communication systems
 Modulator (AM, PM, FM)  Channel  Demodulator

 Digital communication systems
 (Sampling+Quantization+Modulation+Coding)  Channel 

(Reversed Function)
 Wireless/Wired Channel

 Noise 

Figure 1.2:  Elements of a communication system.  The transmitter changes the message signal 
into a form suitable for transmission over the channel.  The receiver processes the channel output 
(i.e., the received signal) to produce an estimate of the message signal.
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 Feedback Control Systems

 Response and Robustness
 Single-input, single-output (SISO) system
 Multiple-input, multiple-output (MIMO) system

Specific System Example 2

Figure 1.4  Block diagram of a feedback control system.  The controller drives the plant, whose 
disturbed output drives the sensor(s).  The resulting feedback signal is subtracted from the 
reference input to produce an error signal e(t), which, in turn, drives the controller. 
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Specific System Example 3
 Micro-electro-mechanical Systems (MEMS)
 Merging mechanical systems with microelectronic control 

circuits on a silicon chip.

Figure 1.6 (Taken from Yazdi et al., Proc. IEEE, 1998)
(a) Structure of lateral capacitive accelerometers.
(b) SEM view of Analog Device’s ADXLO5 surface-micromachined polysilicon accelerometer. 
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Specific System Example 4
 Remote Sensing
 The process of acquiring information (detecting and measuring 

the changes) about an object of interest without being in 
physical contact with it

 Types of remote sensor
 Radar sensor
 Infrared sensor
 Visible/near-infrared sensor
 X-ray sensor

Figure 1.7  Perspectival view of Mount Shasta (California), derived from a pair of stereo radar 
images acquired from orbit with the Shuttle Imaging Radar. (Courtesy of Jet Propulsion Lab.)
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Specific System Example 5
 Biomedical Signal Processing

Figure 1.8  Morphological types of nerve cells (neurons) identifiable in monkey cerebral cortex, 
based on studies of primary somatic sensory and motor cortices. (Reproduced from E. R. 
Kande, J. H. Schwartz, and T. M. Jessel, Principles of Neural Science, 3d ed., 1991; courtesy of 
Appleton and Lange.)
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Specific System Example 5
 Many biological signals (found in human body) is traced to 

the electrical activity of large groups of nerve cells or 
muscle cells

Figure 1.9
The traces shown in (a), (b), and (c) are three examples of EEG signals recorded from the 
hippocampus of a rat. Neurobiological studies sugge`st that the hippocampus plays a key role in 
certain aspects of learning and memory.
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Specific System Example 6
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 Auditory System
 The three main parts of the ear

Figure 1.10
(a) In this diagram, the basilar membrane in the cochlea is depicted as if it were uncoiled and 
stretched out flat. (b) This diagram illustrates the traveling waves along the basilar membrane.



Overview of Specific Systems
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 Analog versus Digital Signal Processing
 Continuous-time approach

 Natural way
 Analog circuit elements: resistors, capacitors, inductors, AP, and diodes

 Discrete-time approach
 More complex and artificial way 
 Sampling (ADC) and Reconstruction (DAC)

 Digital circuit elements: adder, shifter, multiplier, and memory
 Flexibility
 Repeatability 



Classification of Signals
 We restrict our attention to one-dimensional signals only
 1. Continuous-time and discrete-time signals

 Continuous-time signals: 
 Real-valued or complex-valued function of time: x(t)

 Discrete-time signals:
 A time series:
 Ts: sampling period 

Figure 1.12
(a) Continuous-time signal x(t). (b) Representation of x(t) as a discrete-time signal x[n].
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Classification of Signals
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 2. Even and odd signals
 For real-valued, continuous (or discrete) signal

 Even signals: x(t) = x(t), t
 Odd signals: x(t) = x(t), t

 Example 1.1: Even or odd signal?

Symmetric about the vertical axis

Symmetric about the origin

sin ,
( )

    0    , otherwise

t T t T
x t T

        




Even-Odd Decomposition of Signals
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 An arbitrary signal

 Example 1.2 
 Even-odd decomposition of 

( ) ( ) ( )e ox t x t x t  ( ) ( )e ex t x t 
( ) ( )o ox t x t  

where

( ) ( ) ( )
        ( ) ( )

e o

e o

x t x t x t
x t x t

    
 

(1.4)  1 ( ) ( )
2ex x t x t    1 ( ) ( )

2ox x t x t   (1.5) 

2( ) costx t e t

2 21( ) ( cos cos )
2

       cosh(2 ) cos

t t
ex t e t e t

t t

 



Even component: Odd component:

tt

tetetx tt
o

cos)2(sinh         

)coscos(
2
1)( 22



 



Conjugate Symmetric Complex Signals
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 A complex-valued signal x(t) is conjugate symmetric if its real 
part is even and its imaginary part is odd.

Proof:

 Example 1.2
 A conjugate symmetric signal, where its real part is depicted in Fig. 

1.13(a) and the imaginary part is in Fig. 1.13(b)

( ) ( ) ( )x t a t jb t 
*( ) ( ) ( )x t a t jb t 
( ) ( ) ( ) ( )a t jb t a t jb t    

Let

( ) ( )
( ) ( )

a t a t
b t b t
 
  

Figure 1.13



Classification of Signals
 3. Periodic and nonperiodic signals

 Periodic continuous-time signal: x(t+T) = x(t), t
 Clearly, T=T0, 2T0, 3T0, ….. Then, T0 is called fundamental period and 2T0, 

3T0, …. are harmonic 
 The reciprocal of the fundamental frequency is called frequency
 And, the angular frequency is defined by  = 2f

 Nonperiodic signal: There is no finite T such that x(t+T) = x(t), t
 Example: (a) periodic and (b) nonperiodic continuous-time signals

Figure 1.14 (a) Square wave with amplitude A = 1 and period T = 0.2s. (b) Rectangular pulse 
of amplitude A and duration T1.
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Classification of Signals
 3. Periodic and nonperiodic signals

 Periodic discrete-time signal: x[n+N] = x[n], for integer n
 N is a positive integer
 The smallest integer N is called the fundamental period of x[n]
 The fundamental angular frequency is defined by  = 2/N

 Nonperiodic signal: There is no finite N such that x[n+N] = x[n], for 
integer n

 Example: periodic and nonperiodic discrete-time signals
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Classification of Signals
 4. Deterministic signals and random signals

 A deterministic signal is a signal about which there is no uncertainty 
with respect to its value at any time.
 sin(t), cos(t), …

 A random signal is a signal about which there is uncertainty before it 
occurs.
 noise, stock price index, …

 5. Energy signals and power signals
 The total energy of the continuous-time signal x(t) is defined by

 The power of the signal x(t) is defined by the time-averaged of (1.15)
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2 22

2

lim ( ) ( )
T

TT
E x t dt x t dt



 
   (1.15) 

22

2

1lim ( )
T

TT
P x t dt

T 
  (1.16) 22

2

1 ( )
T

TP x t dt
T   (1.17) or

For periodic signal For nonperiodic signal 



Energy Signals and Power Signals
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 For discrete-time signal x[n], (1.15)(1.17) become to

 Energy signals: iff (if and only if) 0 < E < 
 Power signals: iff 0 < P< 

 The energy and power classifications of signals are mutually exclusive
 An energy signal has zero time-averaged power
 A power signal has infinite energy
 The periodic signals and random signals are usually power signals
 The deterministic, nonperiodic signals are usually energy signals

2[ ]
n

E x n




  (1.18) 21lim [ ]
2

N

n
n N

P x n
N



  (1.19) 
1

2

0

1 [ ]
N

n

P x n
N





  (1.20) 
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Basic Operations on Signals
 Operations performed on dependent variables
 Amplitude scaling

 Addition

 Multiplication

 Differentiation

 Integration

( ) ( )y t cx t [ ] [ ]y n cx n

1 2( ) ( ) ( )y t x t x t  1 2[ ] [ ] [ ]y n x n x n 

1 2( ) ( ) ( )y t x t x t 1 2[ ] [ ] [ ]y n x n x n
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( ) ( )
t

y t x d 


 

( ) ( )dy t x t
dt



Amplifier, resistor, …

Audio mixer, …

Frequency mixer, AM signal,…

Inductor, …

Capacitor, …



Basic Operations on Signals
 Operations performed on the independent variable
 Time scaling

 Reflection (about t=0)
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)()( atxty 







expanded,10
compressed,1

a
a [ ] [ ],     0y n x kn k 

( ) ( )y t x t  ][][ nxny 



Basic Operations on Signals
 Time shifting
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)()( 0ttxty 







shiftleft ,0
shiftright ,0

0

0

t
t

][][ mnxny 



Basic Operations on Signals
 Precedence rule for time shifting and time scaling
 A combination of time shifting and time scaling operations 

 The operations must be performed in the correct order
 The scaling operation always replaces t by at
 The shifting operation always replaces t by tb

 Example 1.5

( ) ( )v t x t b 

( ) ( ) ( )y t v at x at b  
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)()( batxty 

time-shifting operation is performed first
)32()(  txty

)0()
2
3(

)3()0(

xy

xy





))3(2()32(  txtx



• Example 1.6

A discrete-time signal is defined by . 

Find y[n] = x[2n + 3].

 1,    1,2
[ ] 1,   1, 2

 0,   0  and  | | 2

n
x n n

n n


    
  

Figure 1.27
The proper order of applying the operations of time scaling and time shifting for the case of a discrete-
time signal. (a) Discrete-time signal x[n], antisymmetric about the origin. (b) Intermediate signal v(n) 
obtained by shifting x[n] to the left by 3 samples. (c) Discrete-time signal y[n] resulting from the 
compression of v[n] by a factor of 2, as a result of which two samples of the original x[n], located at
n = –2, +2, are lost.
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Elementary Signals
 1. Exponential Signals
 B and a can be real or complex parameters
 Decaying exponential, if a<0; growing exponential, if a>0
 Decaying exponential, if 0<r<1; growing exponential, if r>1

Figure 1.28 (a) Decaying exponential form of 
continuous-time signal. (b) Growing exponential 
form of continuous-time signal.

a = -6, B = 5 a = 5, B = 1
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atBetx )( nBrnx ][

Figure 1.30  (a) Decaying exponential form 
of discrete-time signal. (b) Growing 
exponential form of discrete-time signal. 

0 < r <1 r >1



Elementary Signals
 2. Sinusoidal Signals
 Periodic continuous-time sinusoidal signals with period 
 Discrete-time sinusoidal signals may or may not be periodic

 Periodic if 
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)cos()(   tAtx )cos(][  nAnx
2T

2 radians/cycle, integer ,m m N
N


 

( ) cos( ( ) )
             cos( )
             cos( 2 )
             cos( )
             ( )

x t T A t T
A t T
A t
A t
x t

 
  
  
 

   
  
  
 


[ ] cos( )x n N A n N     

2N m 

2 radians/cycle, integer ,m m N
N


 

or



Physical Examples
Ex.1 – exponential signals

Figure 1.29 Lossy capacitor, with the loss represented by shunt resistance R.

Figure 1.32 Parallel LC circuit, assuming that the inductor L and capacitor C are both ideal.

Ex.2 – sinusoidal signals
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( ) ( ) 0dRC v t v t
dt

 

KVL Eq.:

(1.32) 

/( )
0( ) t RCv t V e (1.33) 

V0: initial voltage across C
RC = Time constant,

Circuit Eq.:
2

2 ( ) ( ) 0dLC v t v t
dt

 

0 0( ) cos( ), 0v t V t t 

(1.36) 

(1.37) 

where
0

1
LC

  (1.38) 
Natural angular frequency of 
oscillation of the circuit



Example 1.7 Discrete-Time Sinusoidal 
Signals

29

 A pair of sinusoidal signals with a common angular frequency is 
defined by 
(a) Both signals are periodic. Find their common fundamental period. 
(b) Express the composite sinusoidal signal y[n]=x1[n]+x2[n] in the form 

 Sol.
 (a) 

 (b)

Solve  and A

Hence, we have

]5cos[3][  ],5sin[][ 21 nnxnnx  

)cos(][  nAny

5  radians/cycle 
2 2 2

5 5
m m mN  


  


This can be only for m = 5, 10, 15, …, which results in N = 2, 4, 6, …

cos( ) cos( )cos( ) sin( )sin( )A n A n A n       

sin( ) 1   and   cos( ) 3A A   

1

2

sin( ) amplitude of  [ ] 1tan( )
cos( ) amplitude of  [ ] 3

x n
x n





  

sin( ) 1A     
1 2

sin / 6
A




 


 =   / 6

[ ] 2cos 5
6

y n n    
 



Euler’s Identity
 3. Relation Between Sinusoidal and Complex Exponential Signals

 Euler’s identity:

Figure 1.34   Complex plane, showing eight points uniformly 
distributed on the unit circle. The projection of the points on 
the real axis is cos(n/4), while the projection on the imaginary 
axis is sin(n/4); n=0,1, …, 7.

cos sinje j   

cos( ) Re{ }j tA t Be   

sin( ) Im{ }j tA t Be   

cos( ) Re{ }j nA n Be   

sin( ) Im{ }j nA n Be   
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/4
/4

( )

          

cos( ) sin( )

j t

j j t

j t

Be

Ae e

Ae
A t jA t



 

 

   






   



Elementary Signals
 4. Exponential Damped Sinusoidal Signals
 Continuous-time case

 Discrete-time case

Figure 1.35  (p. 41)
Exponentially damped sinusoidal signal 
Ae at sin(t), with A=60 and =6.
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0   ),sin()(    tAetx t

10   ],sin[][  rnBrnx n 



Elementary Signals
 5. Step Function
 Discrete-time case

 Continuous-time case

1, 0
0, 0[ ] n

nu n 


Figure 1.37
Discrete-time version of step function of unit amplitude.

x[n]

n
1 2 3 40123

1

1, 0( ) 0, 0
tu t t
 

Figure 1.38
Continuous-time version of the unit-step function of 
unit amplitude.
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Unit-Step Function Application
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 u(t) is a particularly simple signal to apply

 u(t) can be used to construct other discontinuous 
waveform, e.g. rectangular pulse

 /( )
0( ) 1 ( )t RCv t V e u t 

1. Initial value: (0) 0v 

0( )v V 2. Final value:

, 0 0.5( )
0, 0.5
A tx t

t
  

  

1 1( )
2 2

x t Au t Au t        
  



Elementary Signals
 6. Impulse Function
 Discrete-time case

 Continuous-time case and

1, 0[ ] 0, 0
nn n  

Figure 1.41
Discrete-time form of impulse.

( ) 0 for 0t t   ( ) 1t dt





Figure 1.41  (p. 46)
Discrete-time form of impulse.

(t) a(t)

Figure 1.42
(a) Evolution of a rectangular pulse of unit area into an impulse of unit strength. 
(b) Graphical symbol for unit impulse. (c) Representation of an impulse of strength a.

0
( ) lim ( )t x t 


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Impulse Function
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 AKA Dirac delta function
 (t) is zero everywhere except at the origin
 The total area under the impulse (t) (or unit impulse), called 

the strength, is unity 

 Mathematical relation between impulse and rectangular 
functions:

 (t) is the derivative of u(t); u(t) is the integral of (t) :

0
( ) lim ( )t x t 

 1. x(t): even function of t,  = duration.
2. x(t): Unit area.

(1.62) ( ) ( )
t

u t d  


  (1.63) 



RC Circuit Example (conti.)
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1. Voltage across the capacitor:

2. Current flowing through capacitor:

( )( ) dv ti t C
dt

 0 0
( )( ) ( )du ti t CV CV t

dt
 



Properties of (t)
 Even function

 Shifting property

 Time-scaling property

Figure 1.44   Steps involved in proving the time-scaling property of the unit impulse. (a) 
Rectangular pulse xΔ(t) of amplitude 1/Δ and duration Δ, symmetric about the origin. (b) Pulse 
xΔ(t) compressed by factor a. (c) Amplitude scaling of the compressed pulse, restoring it to unit 
area.

( ) ( )t t  

0 0( ) ( ) ( )x t t t dt x t



 

1( ) ( ), 0at t a
a

  

0

1lim ( ) ( )x at t
a




(at)
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If x(t) is continuous at t0

Sampling at t0



Elementary Signals
 7. Derivation of the Impulse
 Doublet (1)(t): the first derivative of (t)

 Recall Example 1.8, the rectangular pulse is
Unit rectangular pulse is equal to

 Fundamental property of the doublet

 Second derivative of impulse

 (1)

0

1( ) lim ( / 2) ( / 2)t t t  


     


(1) ( ) 0t dt



0

(1)
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Elementary Functions
 8. Ramp Function
 Continuous-time case

 Discrete-time case

Figure 1.46
Ramp function of unit slope.

, 0
[ ]

0, 0
n n

r n
n


  

[ ] [ ]r n nu n
Figure 1.47
Discrete-time version of the ramp function.
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The integral of u(t)



Example 1.11 Parallel Circuit
Consider the parallel circuit of Fig. 1-48 (a) involving a dc current source I0
and an initially uncharged capacitor C. The switch across the capacitor is
suddenly opened at time t = 0. Determine the current i(t) flowing through the
capacitor and the voltage v(t) across it for t  0.

Figure 1.48(b) Equivalent circuit replacing 
the action of opening the switch with u(t). 
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0( ) ( )i t I u t

Capacitor voltage:
1( ) ( )

t
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C
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 
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A ramp function with slope I0/C
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Systems Viewed as Interconnection of 
Operations
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 A system is an interconnection of operations that 
transforms an input signal into an output signal
 Let the operator H{} denote the overall action of a system

 Example: Discrete-time shift operator Sk:

)}({)( txHty  ]}[{][ nxHny 

Shifts the input by k time units



Example 1.12 Moving-Average System
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Consider a discrete-time system whose output signal y[n] is the average of

three most recent values of the input signal x[n], i.e.

Formulate the operator H for this system; hence, develop a block diagram
representation for it.

1[ ] ( [ ] [ 1] [ 2])
3

y n x n x n x n    

21 (1 )
3

H S S  Sol. 1. Overall operator H for the moving-average system:
2.

Figure 1.51  Two different (but equivalent) implementations 
of the moving-average system: (a) cascade form of 
implementation and (b) parallel form of implementation.



Properties of Systems
 1. Stability
 A system is said to be bounded-input, bounded-output (BIBO)

stable iff every bounded input results in a bounded output.
 The operator H is BIBO stable if 

 Example 1.13
 Finite moving-average system is BIBO stable
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.   )( whenever ,   )( tMtxtMty xy 
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 

1[ ] [ ] [ 1] [ 2]
3
1       [ ] [ 1] [ 2]
3
1        
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x x x
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y n x n x n x n
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M M M

M

    

    
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Properties of Systems
 2. Memory
 A system is said to possess memory if its output signal depends 

on past or future values of the input signal.
 Inductor

 Moving-average system

 A system is said to possess memoryless if its output signal 
depends only on the present values of the input signal.
 Resistor

 A square-law system   2[ ] [ ]y n x n
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1( ) ( )
t

i t v d
L

 


 
1[ ] ( [ ] [ 1] [ 2])
3

y n x n x n x n    

1( ) ( )i t v t
R



Depends on the infinite past voltage

Depends on two past values of x[n]



Properties of Systems
 3. Causality
 Causality is required for a system to be capable of operating in 

real time. 
 A system is said to be causal if its output signal depends only 

on the present or past values of the input signal.

 A system is said to be noncausal if its output signal depends on 
one or more future values of the input signal.

 For example,

 Causal moving-average system,

 Noncausal moving-average system,

1[ ] ( [ ] [ 1] [ 2])
3

y n x n x n x n    

1[ ] ( [ 1] [ ] [ 1])
3

y n x n x n x n    
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Properties of Systems
 4. Invertibility
 A system is said to be invertible if the input of the system can be 

recovered from the output.

 Hinv: inverse operator; I: identity operator
 A one-to-one mapping between input and output signals for a system 

is invertible
 Distinct inputs applied to the system produce distinct outputs. 

 The inverse of the communication channel is aka the equalizer

invH H I
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      ( ) ( ) ( )inv inv invH y t H H x t H H x t 

Condition for an invertible system



Invertible and Noninvertible Systems 
Example

Example 1.15 – Inverse of System

Consider the time-shift system described by the input-output relation

, where the operator St0 represents a time
shift of t0 seconds. Find the inverse of this system.

 0
0( ) ( ) ( )ty t x t t S x t  

Example 1.16 – Non-Invertible System

Show that a square-law system described by the input-output relation

is not invertible.2( ) ( )y t x t
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0 0 0 0 0{ ( )} { { ( )}} { ( )}t t t t tS y t S S x t S S x t    0 0t tS S I 

Since the distinct inputs x(t) and x(t) produce the same output y(t). Not 1-1
mapping.  Accordingly, the square-law system is not invertible.
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Properties of Systems
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 5. Time invariance
 A system is said to be time invariant if a time delay (or time 

advance) of the input signal leads to an identical time shift in 
the output signal.
 A time-invariant system responds identically no matter when the 

input signal is applied. 

0 0t tHS S HCondition for time-invariant system: H and St0 must be communicated 
with each other
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Example 1.17 vs. Example 1.18
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 Ex. 1.17 Inductor  Ex. 1.18 Thermistor

x1(t) = v(t)

y1(t) = i(t) 1 1
1( ) ( )

t
y t x d

L
 


  1 1( ) ( ) / ( )y t x t R t

x1(t) = v(t)

y1(t) = i(t)

0

1 0 1
1( ) ( )

t t
y t t x d

L
 




  

2 1 0
1( ) ( )

t
y t x t d

L
 


 

0

2 1
1( ) ( ') '

t t
y t x d

L
 




 

Changing variables: 0' t  

Inductor is time invariant.

1 0
2

( )( )
( )

x t ty t
R t




1 0
1 0

0

( )( )
( )

x t ty t t
R t t


 



Since R(t)  R(t  t0)

1 0 2 0( ) ( )   for  0y t t y t t  

Thermistor is time variant



Properties of Systems
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 6. Linearity
 Superposition property

 Homogeneity property

 A system is said to be linear if it satisfies the superposition and 
homogeneity properties
 If

 then 

)}()({)()()}({)}({ 212121 txtxHtytytxHtxH 

factorconstant    )},({)()}({ 111  ataxHtaytxaH

1

( ) ( )
N

i i
i

x t a x t


 (1.86) 

1
( ) { ( )} { ( )}

N

i i
i

y t H x t H a x t


  

x1(t), x2(t), …, xN(t)  input signal; 
a1, a2, …, aN  Corresponding weighted factor

1

( ) ( )
N

i i
i

y t a y t


 
linear



Linear Systems
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

Figure 1.56 The linearity property of a system. (a) The combined operation of amplitude scaling 
and summation precedes the operator H for multiple inputs. (b) The operator H precedes 
amplitude scaling for each input; the resulting outputs are summed to produce the overall 
output y(t).  If these two configurations produce the same output y(t), the operator H is linear. 
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