Lab 8 Real-time OS -1

Speaker: Hao-Yun Chin

Advisor: Prof. Tian-Sheuan Chang
Apr 27, 2004

SoC Design Laboratory SOC Consortium Course Material

Outline

 Introduction to Real-time Operation System (RTOS)

 Introduction to a1 C/OS-I1

— Features

— Task & task scheduling
— Start uC/OS-11

— Port application

SoC Design Laboratory SOC Consortium Course Material 1

Real-time OS

» Real-time OS (RTOS) Is an intermediate layer between
hardware devices and software programming

= “Real-time” means keeping deadlines, not speed
» Advantages of RTOS in SoC design

« Shorter development time
» Less porting efforts

o Better reusability

= Disadvantages
* More system resources needed

» Future development confined to the chosen RTOS

SoC Design Laboratory SOC Consortium Course Material 2

Soft and Hard Real Time

= Soft real-time

» Tasks are performed by the system as fast as possible, but
tasks don’t have to finish by specific times

 Priority scheduling

» Multimedia streaming

= Hard real-time
» Tasks have to be performed correctly and on time
» Deadline scheduling

e Aircraft controller, Nuclear reactor controller

SoC Design Laboratory SOC Consortium Course Material 3

Outline

L Introduction to RTOS

d Introduction to g/C/OS-I|

— Features

— Task & task scheduling
— Start g/C/OS-I1

— Port application

SoC Design Laboratory SOC Consortium Course Material 4

L1C/OS-11

= Written by Jean J. Labrosse in ANSI C

= A portable, ROMable, scalable, preemptive, real-time,
multitasking kernel

= Used in hundreds of products since its introduction in 1992
= Certified by the FAA for use in commercial aircraft

= Available in ARM Firmware Suite (AFS)

= QOver 90 ports for free download

= http://www.ucos-ii.com

SoC Design Laboratory SOC Consortium Course Material 5

I1C/OS-11 Features

= Portable

= ROMable

= Scalable

runs on architectures ranging from 8-
bit to 64-bit

small memory footprint

select features at compile time

= Multitasking preemptive scheduling, up to 64 tasks

SoC Design Laboratory

SOC Consortium Course Material

LUC/OS-11 vs. pIHAL

= uHAL (pronounced Micro-HAL) is the ARM Hardware
Abstraction Layer that is the basis of the ARM Firmware Suite

= UHAL is a basic library that enables simple application to run
on a variety of ARM-based development systems

= UC/OS-II use uHAL to access ARM-based hardware

uC/OS-11 & User application AFS Utilities

C, C++ libraries

AFS support

uHAL routines .
routines

Development board

SoC Design Laboratory SOC Consortium Course Material 7

Task

» Task Is an instance of program

» Task thinks that it has the CPU all to itself

= Task iIs assigned a unique priority

= Task has its own set of stack

» Task has its own set of CPU registers (backup in its stack)
» Task is the basic unit for scheduling

» Task status are stored in Task Control Block (TCB)

SoC Design Laboratory SOC Consortium Course Material 8

SOC

snrortium

Task Structure

Task structure:

= An infinite loop

= An self-delete function

Task with infinite loop structure Task that delete itself
void ExampleTask(void *pdata) void ExampleTask(void *pdata)
{ {
for(;;) { [* User Code */
[* User Code */ OSTaskDel(PRIO_SELF);
[* System Call */ }
[* User Code */
}
}

SoC Design Laboratory SOC Consortium Course Material 9

Task States

Task Delete Task Gets Event Task Pending Events

A\ 4

\Task Create / \Highest Priority Task \ Interrupt
R

Dormant Running (ISR
Task Delete Task is Preempted Int. Exit

Task Delete

SoC Design Laboratory SOC Consortium Course Material 10

Task Priority

= Unique priority (also used as task identifiers)
= 64 priorities max (8 reserved)
= Always run the highest priority task that is READY

= Allow dynamically change priority

SoC Design Laboratory SOC Consortium Course Material 11

Task Control Block

uC/OS-11 use TCB to keep record of each task

States

Stack Pointer

Priority

Misc ...

Link Pointer

SoC Design Laboratory SOC Consortium Course Material 12

Task Control Block(cont.)

TASK 1

Stack

lask Control Block

Status

sp

Priority

Memory

B .
Processor

SoC Design Laboratory

TASK 2

Stack

Task Control Block

Status

SP

Priority

- . - ¥ Te —
Processor Registers

|

TASK n

Stack

Task Control Block

Status

sp

Pricrity

Context Switch

Context

SOC Consortium Course Material

13

Exchanging CPU Control

uC/OS-I11 Kernel API

Control returns from task to OS OSMboxPend();
when Kernel APl is called
OSQPend();

OSSemPend();
OSTaskSuspend();
OSTimeDly();
OSTimeDIyHMSM();

[*System Call */ More...

SoC Design Laboratory SOC Consortium Course Material 14

Exchanging CPU Control

Only one of OS, Task, Interrupt Handler gets CPU control at a time

Interrupt Handler - -
A l A l

OS

Task A BN EE C A

Time

— Scheduling — Interrupt

— System Call — Interrupt Exit

SoC Design Laboratory SOC Consortium Course Material 15

SOC

canrartivm

Task Scheduling

= Non-preemptive

Low-priority Task

—

ISR makes the
high-priority task ready

_High-priority Task

low-priority task
Relinquishes the CPU

v Time

SoC Design Laboratory SOC Consortium Course Material 16

SOC

canrartivm

Task Scheduling

» Preemptive

Low-priority Task

- > ISR

ISR makes the
high-priority task ready

High-priority Task

high-priority task
Relinquishes the CPU

v Time

uC/OS-Il adopts preemptive scheduling

SoC Design Laboratory SOC Consortium Course Material 17

Starting uC/OS-11

SoC Design Laboratory

Initialize hardware & uC/OS-IlI
ARMTargetlinit(), OSInit()

\ 4

Allocate resources
OSMemCreate(), OSMboxCreate(), ...etc

\ 4

Create at least one task
OSTaskCreate()

\ 4

Start Scheduler
OSStart()

SOC Consortium Course Material

18

Porting Application

Necessary coding changes
= variables
* use local variables for preemption

e use semaphore to protect global variables
(resources)

= data transfer
e arguments => mailbox/queue
= memory allocation

 malloc() => OSMemCreate()
OSMemGet()

SoC Design Laboratory SOC Consortium Course Material

19

Porting Application

assign task priorities
= unique priority level in uC/OS-II
o only 56 levels available
e priority can be change dynamically
= call OSTimeDly() in infinite loop task
e ensure lower priority task get a chance to run

MUST: if lower priority task is pending data
from higher priority task

SoC Design Laboratory SOC Consortium Course Material 20

Lab 7:Real-time OS - 1

Q Goal J Steps
— A guide to use RTOS and — Building uC/OS-II
port programs to it — Porting Program to nC/OS-II
. — Building Program with
d Principles 1C/OS-1]

— Basic concepts and

capabilities of RTOS J E)E(S:J(:Iirsegents and
) Task, t_a Sk-schedullng — Write an embedded software
— Coding guideline for a for 1D checking engine
program running on the (single task)
embedded RTOS 0 Discussion

— Setting up the ARMulator — What are the advantages and

1 Guidance disadvantages of using
RTOS in SOC design?

SoC Design Laboratory SOC Consortium Course Material 21

References

[1] AFS_Reference Guide.pdf

SoC Design Laboratory SOC Consortium Course Material 22

	Outline
	Real-time OS
	Soft and Hard Real Time
	Outline
	μC/OS-II
	μC/OS-II Features
	μC/OS-II vs. μHAL
	Task
	Task States
	Task Priority
	Task Control Block
	Task Control Block(cont.)
	Exchanging CPU Control
	Task Scheduling
	Task Scheduling
	Starting C/OS-II
	Lab 7:Real-time OS - 1
	References

