
SOC Consortium Course MaterialSoC Design Laboratory

Lab 8 RealLab 8 Real--time OS time OS -- 11

Speaker: Hao-Yun Chin

Advisor: Prof. Tian-Sheuan Chang
Apr 27, 2004



1SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Outline

Introduction to Real-time Operation System (RTOS)
Introduction to μC/OS-II
– Features
– Task & task scheduling
– Start μC/OS-II
– Port application



2SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Real-time OS

Real-time OS (RTOS) is an intermediate layer between 
hardware devices and software programming

“Real-time” means keeping deadlines, not speed

Advantages of RTOS in SoC design
• Shorter development time

• Less porting efforts

• Better reusability

Disadvantages
• More system resources needed

• Future development confined to the chosen RTOS



3SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Soft and Hard Real Time

Soft real-time
• Tasks are performed by the system as fast as possible, but 

tasks don’t have to finish by specific times

• Priority scheduling

• Multimedia streaming

Hard real-time
• Tasks have to be performed correctly and on time

• Deadline scheduling

• Aircraft controller, Nuclear reactor controller



4SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Outline

Introduction to RTOS 
Introduction to μC/OS-II
– Features
– Task & task scheduling
– Start μC/OS-II
– Port application



5SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

μC/OS-II

Written by Jean J. Labrosse in ANSI C

A portable, ROMable, scalable, preemptive, real-time, 
multitasking kernel

Used in hundreds of products since its introduction in 1992

Certified by the FAA for use in commercial aircraft

Available in ARM Firmware Suite (AFS)

Over 90 ports for free download

http://www.ucos-ii.com



6SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

μC/OS-II Features

Portable runs on architectures ranging from 8-
bit to 64-bit

ROMable small memory footprint

Scalable select features at compile time

Multitasking preemptive scheduling, up to 64 tasks



7SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

μC/OS-II vs. μHAL

uHAL (pronounced Micro-HAL) is the ARM Hardware 
Abstraction Layer that is the basis of the ARM Firmware Suite

uHAL is a basic library that enables simple application to run 
on a variety of ARM-based development systems

uC/OS-II use uHAL to access ARM-based hardware

uC/OS-II & User application AFS Utilities

C, C++ libraries

uHAL routines

Development board

AFS support
routines



8SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Task

Task is an instance of program

Task thinks that it has the CPU all to itself

Task is assigned a unique priority

Task has its own set of stack

Task has its own set of CPU registers (backup in its stack)

Task is the basic unit for scheduling

Task status are stored in Task Control Block (TCB)



9SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Task Structure

Task structure:

An infinite loop

An self-delete function

void ExampleTask(void *pdata)
{

for(;;) {
/* User Code */
/* System Call */
/* User Code */

}
}

Task with infinite loop structure

void ExampleTask(void *pdata)
{

/* User Code */
OSTaskDel(PRIO_SELF);

}

Task that delete itself



10SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Task States

WaitingWaiting

DormantDormant
ReadyReady RunningRunning ISRISR

Task Create

Task Delete

Highest Priority Task

Task is Preempted

Task Pending EventsTask Gets Event

Task Delete

Interrupt

Int. Exit

Task Delete



11SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Task Priority

Unique priority (also used as task identifiers)

64 priorities max (8 reserved)

Always run the highest priority task that is READY

Allow dynamically change priority



12SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Task Control Block

uC/OS-II use TCB to keep record of each task

States

Stack Pointer

Priority

Misc …

Link Pointer



13SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Task Control Block(cont.)



14SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Exchanging CPU Control

void ExampleTask(void *pdata)

{

for(;;) {

/* User Code */

/*System Call */

/* User Code */

}

}

OSMboxPend();

OSQPend();

OSSemPend();

OSTaskSuspend();

OSTimeDly();

OSTimeDlyHMSM();

More…

uC/OS-II Kernel API
Control returns from task to OS 
when Kernel API is called



15SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Exchanging CPU Control

Only one of OS, Task, Interrupt Handler gets CPU control at a time

A B B C A

Interrupt Handler

OS

Task

Time

Scheduling

System Call

Interrupt

Interrupt Exit



16SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Task Scheduling

Non-preemptive

Time

ISR

Low-priority Task

High-priority Task

ISR makes the
high-priority task ready

low-priority task
Relinquishes the CPU



17SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Task Scheduling

Preemptive

Time

ISR

Low-priority Task

High-priority Task

ISR makes the
high-priority task ready

high-priority task
Relinquishes the CPU

uC/OS-II adopts preemptive scheduling



18SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Starting µC/OS-II

Initialize hardware & uC/OS-II
ARMTargetInit(), OSInit()

Initialize hardware & uC/OS-II
ARMTargetInit(), OSInit()

Allocate resources
OSMemCreate(), OSMboxCreate(), …etc

Allocate resources
OSMemCreate(), OSMboxCreate(), …etc

Create at least one task
OSTaskCreate()

Create at least one task
OSTaskCreate()

Start Scheduler
OSStart()

Start Scheduler
OSStart()



19SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Porting Application

Necessary coding changes
variables

• use local variables for preemption

• use semaphore to protect global variables 
(resources)

data transfer

• arguments => mailbox/queue

memory allocation

• malloc() => OSMemCreate()
OSMemGet()



20SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Porting Application

assign task priorities
unique priority level in uC/OS-II

• only 56 levels available

• priority can be change dynamically

call OSTimeDly() in infinite loop task

• ensure lower priority task get a chance to run

MUST: if lower priority task is pending data 
from higher priority task



21SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

Lab 7:Real-time OS - 1
Goal
– A guide to use RTOS and 

port programs to it

Principles
– Basic concepts and 

capabilities of RTOS
• Task, task scheduling

– Coding guideline for a 
program running on the 
embedded RTOS

– Setting up the ARMulator

Guidance

Steps
– Building µC/OS-II
– Porting Program to µC/OS-II
– Building Program with 

µC/OS-II
Requirements and 
Exercises
– Write an embedded software 

for ID checking engine 
(single task)

Discussion
– What are the advantages and 

disadvantages of using 
RTOS in SOC design?



22SOC Consortium Course Material

R
eal-tim

e O
S

SoC Design Laboratory

References
[1] AFS_Reference_Guide.pdf


	Outline
	Real-time OS
	Soft and Hard Real Time
	Outline
	μC/OS-II
	μC/OS-II Features
	μC/OS-II vs. μHAL
	Task
	Task States
	Task Priority
	Task Control Block
	Task Control Block(cont.)
	Exchanging CPU Control
	Task Scheduling
	Task Scheduling
	Starting C/OS-II
	Lab 7:Real-time OS - 1
	References

