
Contents
1. Overview..2
2. Background Information ..2

2.1. About µC/OS-II..2
2.2. Task in µC/OS-II ..2
2.3. Task Scheduling & Context Switch ...3
2.4. Coding Guidelines for Embedded RTOS...4
2.5. Starting µC/OS-II ...5
2.6. Setting up the ARMulator ..6

3. Instructions...6
3.1. Building µC/OS-II..6
3.2. Porting Program to µC/OS-II ...8
3.3. Building Program with µC/OS-II... 11

4. Exercise..13
5. References..14

Real-Time OS

1. Overview

This lab is a guide to Real-time Operating System (RTOS) in SoC design. This lab is
based on µC/OS-II, a compact but complete RTOS shipped with ARM Firmware Suite
(AFS). Internal mechanism of µC/OS-II is beyond the scope of this lab. For more
detailed information about µC/OS-II, please refer to the book “MicroC/OS-II, the
real-time kernel” by Jean J. Labrosse.

2. Background Information

2.1. About µC/OS-II

 Soft Real-time – tasks are performed as fast as possible
 Portable – runs on architectures ranging from 8-bit to 64 bit
 Scalable – features are configurable at compile time
 Multitasking – support 64 tasks simultaneously; including 8 reserved tasks
 Preemptive – preemptive multi-tasking with priority scheduling
 Kernel Services – provides task, time, memory management API; inter-process

communication API; task synchronization API
 Nested Interrupt – up to 255 levels of nested interrupt
 Priority Inversion Problem – does not support priority inheritance
 Not using MMU – no well protected memory space like Unix or Win

2.2. Task in µC/OS-II

 Task is a single instance of program
 Task thinks it has all CPU control itself
 Task has its own stack and own set of CPU registers backup in its stack
 Task is assigned a unique priority (highest 0 ~ lowest 63)
 Task is an infinite loop and never returns
 Task has states (see Figure 1)
 µC/OS-II saves task records in Task Control Block(TCB)

Figure 1 Task states in uC/OS-II

Task States in µC/OS-II:

♦ Running – task has control of the processor and executing its job
♦ Ready – task is ready to execute but its priority is less than the running task
♦ Waiting – task requires the occurrence of an event to continue
♦ ISR – task is paused because the processor is handling an interrupt
♦ Dormant – task resides in memory, but not seen by the scheduler

2.3. Task Scheduling & Context Switch

In µC/OS-II, task scheduling is performed on following conditions:

♦ A task is created/deleted
♦ A task changes state
− On interrupt exit
− On post signal
− On pending event
− On task suspension

If the scheduler chooses a new task to run, context switch occurs. First, the context
(processor registers) of current running task is saved in its stack. Next, the context of
the new task is loaded into the processor. Finally, the processor continues execution.
(see Figure 2)

Figure 2 Context switch in uC/OS-II

2.4. Coding Guidelines for Embedded RTOS

Coding for a program to run on embedded RTOS is slightly different from coding for
PC. In an embedded application, workloads and available resources are known at
design time. Hence, the designer should carefully explore the design space and
optimize for short latency, small memory footprint, low power…etc.

When writing programs for µC/OS-II, some rules should be noticed:

♦ Resources
− Use µC/OS-II defined data types for consistency & portability
− Use statically allocated local variables for preemptive multitasking
− Use semaphore to protect global variables and resources

♦ Data transfer
− Inter-task communication can be achieved by mailbox/queue
− µC/OS-II & user program all run in privileged mode, use share memory with

caution!

♦ Memory allocation
− Use µC/OS-II Kernel API: OSMemCreate(), OSMemGet()

♦ Standard C library
− Many standard routine works in semi-hosting mode but not in stand-alone mode.

(e.g. printf, fopen)

2.5. Starting µC/OS-II

µC/OS-II is initialized and started in the main function. The initialization order is
important.

1. Initialize ARM target
2. Initialize OS
3. OS create/allocate resources
4. Create an initial task with highest priority
5. Create other user tasks
6. OS start scheduling
7. In the initial task, enable global interrupt
8. the initial task deletes itself
9. Now, all other tasks runs under the control of OS

Note that you must create at least one task before OS start scheduling. Otherwise,
you don’t get a chance to start any task and the system remains in idle state.

If an interrupt occurs before OS starts scheduling, the scheduler doesn’t know which
tasks to run on interrupt exit and the system crashes. So, we introduce an initial task to

enable global interrupt. This is for safety, but not required.

2.6. Setting up the ARMulator

The ARMulator can function as virtual prototype to various ARM core and development
boards. However, the original configuration of ARMulator does not match that of ARM
Integrator/AP. To run µC/OS-II on ARMulator, you need to follow the configuration steps
in the reference section.

3. Instructions

3.1. Building µC/OS-II

1. Open µC/OS-II project file in C:/lab08/ucos2/ with Code Warrior.
2. Edit OS_CFG.H to customize µC/OS-II.

The configuration of µC/OS-II is done through a number of #define derivatives found
in OS_CFG.H. Basically, the default settings in OS_CFG.H work fine. You might want
to disable some unused features or decrease some value of settings for more
compact memory footprint on final release.

Option Values Description

OS_MAX_EVENTS default: 20
range: >=2

Maximum number of event control block
available. The value should be greater than the
total number of mailbox, semaphore and queue
required by application.

OS_MAX_MEM_PART default: 10
range: >=2

Maximum partitions to be managed by memory
partition manager. Note that OS_MEM_EN must
be set to 1 first.

OS_MAX_QS default: 5
range: >=2

Maximum number of queue available in system.

OS_MAX_TASKS default: 62
range: 62~2

Maximum number of task can exist at a time.
Note that although µC/OS-II can handle 64 tasks
but it reserves 2 tasks for itself.

OS_LOWEST_PRIO default: 63
range: 63~1

Specifies the lowest task priority (i.e., highest
number) that you intend to use.

OS_TASK_IDLE_STK_SIZE default: 512

Stack size (in 16-bit entries) for IDLE_TASK. The
minimum stack size depends on processor type
and deepest interrupt level allowed. It’s better to
use default setting.

OS_TASK_STAT_EN default: 0
Statistic task computes CPU usage once every
second. The priority of statistic task is always set
to OS_LOWEST_PRIO-1.

OS_TASK_STAT_STK_SIZE default: 512 Stack size (in 16-bit entries) for STAT_TASK. It is
suggested to use default value.

OS_CPU_HOOKS_EN default: 1 This setting indicates whether hook functions

should be included or not. hook functions are
declared in OS_CPU_C.C.

OS_MBOX_EN default: 1 This enables or disables code generation of
message mailbox service.

OS_MEM_EN default: 0
This enables or disables code generation of
memory partition manager and its associated
data structures.

OS_Q_EN default: 1 This enables or disables code generation of
message queue service.

OS_SEM_EN default: 1 This enables or disables code generation of
semaphore manager.

OS_TASK_CHANGE_PRIO_EN default: 0 This indicates whether tasks can change priority
at runtime.

OS_TASK_CREATE_EN default: 1

This enables support for standard task creation
function. You can choose either standard or
extended version of task creation function. If you
wish, you can use both.

OS_TASK_CREATE_EXT_EN default: 0
This enables support for extended task creation
function. Extended version delivers more
powerful control over task.

OS_TASK_DEL_EN default: 0 This enables or disables task deletion capability.

OS_TASK_SUSPEND_EN default: 1 This enables or disables task suspension
capability

OS_TICKS_PER_SEC default: 200
This constant specifies the rate at which
OSTimeTick() is called. Better leave this
untouched.

Table 1 uC/OS-II configuration options in OS_CFG.H

3. In target settings dialog, turn to Language Settings > ARM C Compiler >
Preprocessor. Add INTEGRATOR to List of #DEFINEs to generate specific code
for Integrator. (see Figure 3)

Figure 3 Define INTEGRATOR to generate specific code

4. At last, add 2 directories to the Access Path so header files could be found. In
target settings dialog, select Target > Access Paths. Add
${AFS_ROOT}/AFSv1_4/Source/uHAL/h/ and
${AFS_ROOT}/AFSv1_4/Source/uHAL/Boards/INTEGRATOR/ as shown in
Figure 4.

Figure 4 Adding access path for ARM uHAL library

5. Press the Make button, µC/OS-II library should be built successfully. A static library
ucos2.a is created. Check the file in your working directory.

3.2. Porting Program to µC/OS-II

1. Open the project “eg1” at C:/lab08/eg1/ with CodeWorrior.

2. The original code of eg1.c is listed in Figure 5. This program asks user for name

and age, then it prints greeting message.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

#include <stdio.h>

int main(void)
{

char name[64];
int age;

printf("please enter your name: ");
scanf("%s", name);

 do

{
 printf("please enter your age: ");

 scanf("%d", &age);
}while(age < 0);

printf("Hello, %s. Nice to meet you!\nYour age is %d.\n", name, age);

return(0);

}

Figure 5 Original code of eg1.c

3. In order to port the program to µC/OS-II, include “includes.h” in eg1.c. The
header file is an interface for µC/OS-II. (see Figure 6)
1
2
3

#include "includes.h" /* uC/OS-II interface */

#include <stdio.h>

Figure 6 Including µC/OS-II interface in your code

4. Change the function name from main() to Task1() as shown in Figure 7. In
addition, change the return type from int to void because a task never returns.
Remove the return statements, too.

1
2
3
4
5
6

void Task1(void *pdata)
{
…
…
return(0); <= remove this!
}

Figure 7 Changes from Main() to Task1()

5. A task must receive an argument of type (void*), so change argument list from
void to void *pdata as in Figure 7. The purpose of this pointer is to pass
initialization value to task.
1
2
3
4
5
6
7
8
9
10
11

void Task1(void *pata)
{
 //local variable declaration

 for(;;)
 {
 // user code
 …
 OSTimeDly(100);

 }
}

Figure 8 Warp task body with an infinite loop

6. A task is an infinite loop, so wrap the codes with a for loop (see Figure 8).
Remember, all task should call at least one kernel service in its code body.
Otherwise, the multitasking mechanism of µC/OS-II will not work. You can call
OSTimeDly() service to pause for a while after each round of processing, allowing
lower priority task to execute.

7. Insert a new main function as shown in Figure 10 at the bottom of eg1.c. In the

main function, create an instance for Task1.

OSTaskCreate(void (*task)(void* pd), void *pdata, OS_STK *ptos, INTU8 prio)

Arguments:

*task pointer to the task’s code
*pdata pointer for passing arguments
*ptos pointer to top of stack
prio unique priority for each task. smaller number means higher priority

Figure 9 Syntax for OSTaskCreate()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

int main(int argc, char *argv[])
{
 /* do target (uHAL based ARM system) initialization */
 ARMTargetInit();

 /* needed by uC/OS */
 OSInit();

 /* create the tasks in uC/OS */
 OSTaskCreate(Task1, (void *)0, (void*)&Stack1[STACKSIZE - 1], 3);

 /* Start the (uHAL based ARM system) system running */
 ARMTargetStart();

 /* start the game */
 OSStart();

 /* never reached */
 return(0);
}

Figure 10 Code for main() that creates an instance of Task1()

8. Insert the following code near the top of eg1.c to create a stack for Task1. Each task
must have its own stack. The actual stack size needed depends on processor type,
depth of interrupt allowed and the work your task is running…etc. System crashes
on stack overflow. So, it’s better to allocate a bigger stack first than try to decrease
the value. (see Figure 11)

1
2
3
4
5
6
7
8

/* allocate memory for tasks' stacks */
#ifdef SEMIHOSTED
#define STACKSIZE (64+SEMIHOSTED_STACK_NEEDS)

#else
#define STACKSIZE 64

#endif

OS_STK Stack1[STACKSIZE];

Figure 11 Define stack size and create resources for task

9. Finally, eg1.c is an executable program at µC/OS-II.

3.3. Building Program with µC/OS-II

1. Open the project “eg1” at C:/lab08/eg1/ with CodeWorrior.

2. Add µC/OS-II as a sub-project. This enables automatic rebuilt of sub-project

whenever necessary. This approach is more flexible than add the pre-compiled
ucos2.a library file. (see Figure 12)

------ Note ------
When adding sub-projects, a popup message might appear indicating that some
Access Path is added. This is ok.

3. Add ARM uHAL library as a sub-project. The project file is located in

${AFS_ROOT}\Source\uHAL\Build\Integrator.b\uHALlibrary.mcp. (see Figure 12)

------ Note ------
The uHAL library is board specific. Choose the project file that matches your
development board. We choose “Integrator.b” for Integrator/AP.

Figure 12 Adding uC/OS-II and uHAL as sub-projects

4. Now, specify which target to build and link. In project window, click the Target tab
to display the Targets view for the project. Then, click the plus sign next to a build
target containing the subproject to expand the hierarchy. Each build target in the
subproject is listed in the hierarchy (see Figure 13).

Figure 13 build target hierarchy view

5. Click on the Target icon next to the subproject build targets you want to build
along with the main project. The CodeWarrior IDE displays an arrow and target
icon for selected build targets (see Figure 14).

6. Click in the Link Column next to the subproject build targets. Select the target you

want to link with the main project (see Figure 14).

targets to
link with

Figure 14 Select target to build and link with

------ Note ------
You are free to create link dependencies to any of the build targets in a subproject.
However, semi-hosted target must be selected for uHAL in order to support
debugging with AXD.

------ Note ------
The µC/OS-II shipped with AFS has been tested, so you can select Release target for
to focus on debugging user application only.

7. Define SEMIHOSTED for programs to run in semi-hosted mode. In semi-hosted

mode, an extra space of 1K bytes is needed for stack.

8. Build the main project. An executable file that contains both user application and

operating system will be created.

9. Press Run button, you can see programs running on µC/OS-II in AXD console

window. (see Figure 15)

Figure 15 Application running in AXD console

4. Exercise

Write an ID checking engine. The checking rule is in the reference section.

User input:
 The ID numbers

Program output:

 The ID number
 Check result

Example:

Please Enter ID : A123456789
======= check result =======
A123456789 valid

5. References

Information about µC/OS-II
♦ http://www.ucos-ii.com/
♦ “MicroC/OS-II, the real-time kernel” (ISBN: 0-87930-543-6)

ID Checking Rules

 ID number comes in a 10-digit set. The ID starts with an alphabet, followed by 9
digits of numeral.

 Check the first numeral, it should be either “1” or “2”.
 Transform the alphabet into 2 digits. Use Figure 16 for transformation.

ID A 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 91

A B C D E F G H I J K L M
10 11 12 13 14 15 16 17 34 18 19 20 21
N O P Q R S T U V W X Y Z

22 35 23 24 25 26 27 28 29 30 31 32 33

Figure 16 Transform table for alphabet

 Multiply each digit with its weighting and sum them up.

 Digit

 Weighting

0 1 2 3 4 5 6 7 8 9

9 8 7 6 5 4 3 2 1 11

1

http://www.ucos-ii.com/

130)1918273645546372819011(=×+×+×+×+×+×+×+×+×+×+×

 The summation of a valid ID should be devisable by 10.

130 mod 10 = 0 valid

	Overview
	Background Information
	About μC/OS-II
	Task in μC/OS-II
	Task Scheduling & Context Switch
	Coding Guidelines for Embedded RTOS
	Starting μC/OS-II
	Setting up the ARMulator

	Instructions
	Building μC/OS-II
	Porting Program to μC/OS-II
	Building Program with μC/OS-II

	Exercise
	References

