1.

3.

Overview .

Contents

Background Information.............c.ccccoeeeiiiiiiiincinee,
2.1. Coverage-driven VerifiCation.............oooieiiiiiiiiiiieeeeeeeeeeiiiis e eeeeeens

INSEIUCLIONS....ccoviiiie e
3.1. Coverage-driven Verification............ccccccvvvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee
3.2. Design Implementation with XilinX ISE...............ccoovviiiiiiiiiiiieeeeeeenn,

Exercises.
Reference

ASIC Logic

ASIC Logic

1. Overview

This lab gives a brief introduction to digital IP authoring techniques. The ability
of writing hardware description language is essential in this lab. In this lab,
you will design your own IP with hardware description language. Next, the
design will be checked by lint tools and coverage verification tool. Finally, the
design is to be synthesized and downloaded to FPGA on ARM Logic Module
for verification.

2. Background Information

2.1. Coverage-driven Verification

Generally speaking, a coverage-driven verification methodology makes the
verification flow more complete and efficient, and coverage report gives us a
sense of the good and the bad of our HDL design and test bench.

The coverage-driven verification can be performed using several coverage
metrics. A simple example of these metrics is the code coverage. By
investigating the code coverage helps the designer find untested or redundant
code in early stage of development and the quality of the stimuli can be
measured. Therefore coverage gives the information that you need to know
when you are ready for RTL sign-off. With a high coverage score, you can
have more confidence that the code, in passing, works correctly.

3. Instructions

3.1. Coverage-driven Verification

1. In the directory where you want to work, start VN-Cover with the
command:

| % vn & \

2. Click on the “Dynamic Verification VN-Property DX/VN-Cover” button
in the main flow diagram to invoke VN-Cover. The flow diagram will now
show the VN-Cover flow.

F7 ¥% SoC B B F it 31

ASIC Logic

3. In the VN-Cover flow diagram, select “Set Simulator”. In the Select
Simulator window, select “Cadence Verilog-XL 3.1-3.4 (loadplil)” as
your simulator for coverage verification and click “OK”. You have to
make sure this simulator is properly configured on your system and
supports Verification Navigator's PLI plug-ins.

Select Simulator [_ O]
Current Simulator: Cadence Yerilog-xL 3.1-3.4 (loadpli1)
VHIL Verilog Dual Language
Cadence Affirma MC 31-34 Cadence Affirma MC 3.1-34 Cadence Affirma MC 3.1-3.-
Cadence Leapfrog 2.83 Cadence Affirma NC 3.1-3.4 (Verilot MATI ModelSim 5.4-5.5(32-t
FATI Modelsim 5.4032-hif) Cadence affirma MNC 3.1-3.4 (loadpli FATI bodelSim 5.4-5.5(64-t
MATI Modelsim 5.5032-hif) Cadence Affirma NC 3.1-34 WMNCon
FATI Modelsim 55064 -hif) Cadence Yerllog-xL 3.1-3.4
Synopsys Scirocco Z000.06-2000.1, E:_a_cj@pp_e__v_qr_il_qgj_}{_l:_q.]_—_@.fl_gl_n_a_qp!
Synopsys Scirocco 2001.10 Cadence Verilog-*L 3.1-3.4 ¥MNCor
Synopsys WSS 2000.06-200012 Co-Design SystemSim 2.0
MTI bAodelSim 54032 - hif)
MTI bAodelSim 5.4-5.5(32-hif) VMCo
MTI ModelSim 55032 - hit)
FTI Modelsim 55064 - hit)
synopsys V5 5.2-6.0
Synopsys VC5 5.2-6.0 WHNControl
=l | o =l e I

4. Now, select the files to be verified. In the flow diagram, select “VN-
Cover/VN-Property DX Options”. A window entitled “Instrument” pops
up.

5. In the Instrument window, click the “Verilog+” button, and then select
the verilog files you want to verify. Note that you have to include your test
bench in the file list since the coverage verification is a dynamic
verification that requires stimulus. You can load the file named “test.f”
which automatically loads all necessary files.

6. Disable all verification on “test.v”, which we are not interested. Do this
action for both the “Code Coverage” tab and the “FSM Coverage” tab.
In addition, disable all verification on non-FSM modules in the “FSM
Coverage” tab.

3-2 35 % SoC B #it

ASIC Logic

Instroment _ (O] x|
Instrument atop Code/F sk Froperty Help |

Instrumenit

Code Coverage | FSM Coverage | Property Checking

Yerilog == Cptions
Library Filename Stat Br Caond Tog 0
BLOCK_RAR.Y “ o X X x> X
RGEZY U v o o X x > >
RGEZYUY_CORE.v “ o X X X X
RGEZYUY_CTRL.W i ' b x * o
RGEZYUY_FShv i vy X x * X
RGEZY UV _IDBUF.v X X * X
testy ® X X X X i
i
F | -
Instroment _ (O] x|
Instrument Stop Code/F 5k Fropery Help |

Cloze Instrument

Code Coverage | FSh Coverage | Propery Checking

Yetilog = Crptions
Librrary Filename State Arc FShAPath i
BLOCK_RAM.Y 4 X o
RGEEY LW Y * X X
RGBeYUY_CORENW pd X X
RGEBzYUY_CTRL.Y X
RGEEYUY_FSky " X @
RGEEYUY_IOBUF.» * P T
testy b4 * X =
i
] e

Now, click on the “Instrument” button. VN adds some extra commands
to your verilog files which will generate the coverage results. A dialog box
requesting the file name of command file will pop up. Use the default
name is ok.

7 % SoC F g & it 3-3

ASIC Logic

Add Command File o1 Top Level Onit =] E3

~ Top level Unit 4 Command File

Command File: vnavigétnr.f

o]

8. Next, click the “Simulate” button in the flow diagram. In the “Simulate”
window, select the “Add” button on the top, and select the command file
you just created in the previous step.

9. Click the “Simulate” button to generate coverage verification results.

10. Click the “Results” button in the flow diagram. Click “Load Result
Files” and load the vnavigator_results/vnavigator.index” file.

11. You will see the coverage verification summary of the design.

Eesults Summary =]
Help |

File Besults

MRAIDMCOURSEsoclabdisoclabll/ah TR GEZ Y Uil navigator_resultsnavigator.history J
£

Code Results Summary — F3hd Results Summary Property Coverage Summary
Statement 102403 99.0 % State 6/6 100.0 % Expected Behaviour
Coverage E Coverage ﬁ Coverage
Branch a0/52 96.2 % Arc /3 B88.9 % Frohibited Eehaviour
Caverage ﬁ Caoverage 'ﬁ Caoverage
Condition = | FSM Path s konitor
Coverage E Coverage E Coverage
Triggeting EmE
Coverage E
T mamal o -‘r

12. Click the “Detail” button to find out those uncovered statements or FSM
states.

3-4 #c7 3% SoC o B 4

ASIC Logic

Code Yiew: test uDUY oRGHZYOY _CTRELO oRGB2YUY_FSMO

File View Help |

|Gu:|tn:| Iine:|—ﬂ |Search string: ﬂ| :

Source | FSM Path |

I staternent | W branch | _| condition | _| trigpgering | 1 path | | emcluded |_| raultiple errar
B ST DONE: /]
117a hegin
T if(elear interrupt)
118a hegin

0 119 F S EREISESEENSISTEIIDER
120 and,

121 =
1i1a begin

2 122 next state = ST DONE;

123
124 zmd B
- |

13. Refine your test vectors. Try to increase the coverage results.

3.2. Design Implementation with Xilinx ISE

1. Launch Xilinx ISE 6.1i

%5 ¥% SoC B B #ci4 35

ASIC Logic

i) HYRERTER
T EmE A
I ARM Develaper Suite v1.2
I ARM Multi-ICE v2.2
I DLPorlO
™ MATLABGS
Windows Catalog I Micrasoft Developer Netwark
) Microsoft Visval Studio 6.0
Wind ows Update [ACD Systems
@ ALL-11
{7 ICAP_4 Demo
¥ Office 2014 I ModelSim XE I v5 e
I Morton Ghost 2003
SRTERE T A AR E = @) Acoessoriss

@) Windows Media Player M Documentation

B Office 204

EHREE

] Read
) XHO r: Feme Project Nawigator
;@j Software Tpdate Cent
EER

2. Select “File 2 New Project” from menu. In the dialog, enter the
following options.

® Project Name: MYIP
® Project Location: C:\lab7\Xilinx\hnw\work
® Top-Level Module Type: HDL

New Froject E]

Enter a Name and Location for the Project

Project Name: Froject Location:

[LTTF] C:lab T tinhewwork =

Select the type of Top-Lewvel module for the Progect

Top-Level Module Type:
|HDL

4

L

| [F2m-] ms | zeg |

Click “Next Step”, and enter the following options.

Device Family: VertexE
Device: xcv2000e
Package: fg680

Speed Grade: -6

Top-Level Module Type: HDL

Synthesis Tool: XST (VHDL/Verilog)
Simulator: Other

Generated Simulation Language: Verilog

3-6 5 3% SoC B B Foit

ASIC Logic

New Froject

Select the Devire and Design Flow for the Froject

| Property Name l Yalue |
| Dievice Farmly VirtexE

Device [y Z000:

[Package [fefiE0

|Speed Grade =

| Top-Level Module Type [HDL |
|Synthesds Tool [EET (VHDL Merilog)
|Simulator [Other o
|Crenerated Simulation Langnage |Verilng

t—#m | [FT-fw-] @=F | e |

Click “Next Step” twice, we will skip the step adding new source. Instead,
we add existing sources.

Click “Add Source”, and add the following source files.

In C:\lab7\Xilinx\hw\verilog:
"AHB2APB.v"”"
“AHBAHBTOp.V"
"AHBAPBSys.v"
"AHBDecoder.v"
"AHBDefaultSlave.v"
"AHBMuxS2M.v"
"AHBZBTRAM.v"
"APBIntcon.v"
"APBRegs.v"

Finally, click “Finish” to create the project.

3. We want to constraint the implementation. So, select “Project = Add
Source” from menu. And add the constraint
C:\lab7\Xilinx\nw\work\AHBAHBTop.ucf as source file. You have to
associate this file to a module. Select the top module: AHBAHBTop to be
associated.

A znciate AHBAHE Top nef with the source that

it affects.

AHEZLPE :~

AHBATESvs 3

AHEDscodsr P
Help

7 % SoC F g & it 3-7

ASIC Logic

In the “Module View”, select the top module “AHBAHBTop”, and then
run the processes for the module in the following order:

Synthesis -XST
Implementation Design
Generate Programming File

Frocesses for Sonme: "AHEAHBTop"

[[][]-[F

0 Add Existing Sowrce

] Create New Somrce

W Design Entryr Uilities

W Teer Constraints

YT Synthesize - £3T

i Implement Design

Trp? Generate Programming File

5. Download the generated bitstream and use the test software in
C:\lab7\sw\ to test the design.
4. Exercises
1. Try to improve the coverage of RGB2YUV design. You must achieve

100% code coverage and 100% state coverage and 100% arc
coverage.

5. Reference

1. http://twins.ee.nctu.edu.tw/courses/ip _core 02/index.html

2. http://twins.ee.nctu.edu.tw/courses/ip_core_01/index.html

http://www.arm.com/ 4. Integrator ASIC Platform [DUI_0098B_AP_UG]

3. System Memory Map [DUI_0098B_AP_UG 4.1]

4. Counter/Timer [DUI_0098B_AP_UG 3.7, 4.6]

5. Interrupt [DUI_0098B_AP_UG 3.6, 4.8]

5-8 ¥ 3% SoC HE kit

http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.html

	Overview
	Background Information
	Coverage-driven Verification

	Instructions
	Coverage-driven Verification
	Design Implementation with Xilinx ISE

	Exercises
	Reference

