

Contents

1. Overview ... 1
2. Background Information .. 1

2.1. Coverage-driven Verification..1
3. Instructions.. 1

3.1. Coverage-driven Verification..1
3.2. Design Implementation with Xilinx ISE...5

4. Exercises... 8
5. Reference.. 8

ASIC Logic

ASIC Logic

1. Overview

This lab gives a brief introduction to digital IP authoring techniques. The ability
of writing hardware description language is essential in this lab. In this lab,
you will design your own IP with hardware description language. Next, the
design will be checked by lint tools and coverage verification tool. Finally, the
design is to be synthesized and downloaded to FPGA on ARM Logic Module
for verification.

2. Background Information

2.1. Coverage-driven Verification

Generally speaking, a coverage-driven verification methodology makes the
verification flow more complete and efficient, and coverage report gives us a
sense of the good and the bad of our HDL design and test bench.

The coverage-driven verification can be performed using several coverage
metrics. A simple example of these metrics is the code coverage. By
investigating the code coverage helps the designer find untested or redundant
code in early stage of development and the quality of the stimuli can be
measured. Therefore coverage gives the information that you need to know
when you are ready for RTL sign-off. With a high coverage score, you can
have more confidence that the code, in passing, works correctly.

3. Instructions

3.1. Coverage-driven Verification

1. In the directory where you want to work, start VN-Cover with the

command:

% vn &

2. Click on the “Dynamic Verification VN-Property DX/VN-Cover” button

in the main flow diagram to invoke VN-Cover. The flow diagram will now
show the VN-Cover flow.

教育部 SoC 聯盟教材 3-1

ASIC Logic

3. In the VN-Cover flow diagram, select “Set Simulator”. In the Select

Simulator window, select “Cadence Verilog-XL 3.1-3.4 (loadpli1)” as
your simulator for coverage verification and click “OK”. You have to
make sure this simulator is properly configured on your system and
supports Verification Navigator’s PLI plug-ins.

4. Now, select the files to be verified. In the flow diagram, select “VN-

Cover/VN-Property DX Options”. A window entitled “Instrument” pops
up.

5. In the Instrument window, click the “Verilog+” button, and then select

the verilog files you want to verify. Note that you have to include your test
bench in the file list since the coverage verification is a dynamic
verification that requires stimulus. You can load the file named “test.f”
which automatically loads all necessary files.

6. Disable all verification on “test.v”, which we are not interested. Do this

action for both the “Code Coverage” tab and the “FSM Coverage” tab.
In addition, disable all verification on non-FSM modules in the “FSM
Coverage” tab.

教育部 SoC 聯盟教材 3-2

ASIC Logic

7. Now, click on the “Instrument” button. VN adds some extra commands

to your verilog files which will generate the coverage results. A dialog box
requesting the file name of command file will pop up. Use the default
name is ok.

教育部 SoC 聯盟教材 3-3

ASIC Logic

8. Next, click the “Simulate” button in the flow diagram. In the “Simulate”

window, select the “Add” button on the top, and select the command file
you just created in the previous step.

9. Click the “Simulate” button to generate coverage verification results.

10. Click the “Results” button in the flow diagram. Click “Load Result

Files” and load the vnavigator_results/vnavigator.index” file.

11. You will see the coverage verification summary of the design.

12. Click the “Detail” button to find out those uncovered statements or FSM

states.

教育部 SoC 聯盟教材 3-4

ASIC Logic

13. Refine your test vectors. Try to increase the coverage results.

3.2. Design Implementation with Xilinx ISE

1. Launch Xilinx ISE 6.1i

教育部 SoC 聯盟教材 3-5

ASIC Logic

2. Select “File New Project” from menu. In the dialog, enter the

following options.

 Project Name: MYIP
 Project Location: C:\lab7\Xilinx\hw\work
 Top-Level Module Type: HDL

Click “Next Step”, and enter the following options.

 Device Family: VertexE
 Device: xcv2000e
 Package: fg680
 Speed Grade: -6

 Top-Level Module Type: HDL
 Synthesis Tool: XST (VHDL/Verilog)
 Simulator: Other
 Generated Simulation Language: Verilog

教育部 SoC 聯盟教材 3-6

ASIC Logic

Click “Next Step” twice, we will skip the step adding new source. Instead,
we add existing sources.

Click “Add Source”, and add the following source files.

In C:\lab7\Xilinx\hw\verilog:
"AHB2APB.v"”
“AHBAHBTop.v"
"AHBAPBSys.v"
"AHBDecoder.v"
"AHBDefaultSlave.v"
"AHBMuxS2M.v"
"AHBZBTRAM.v"
"APBIntcon.v"
"APBRegs.v"

Finally, click “Finish” to create the project.

3. We want to constraint the implementation. So, select “Project Add

Source” from menu. And add the constraint
C:\lab7\Xilinx\hw\work\AHBAHBTop.ucf as source file. You have to
associate this file to a module. Select the top module: AHBAHBTop to be
associated.

教育部 SoC 聯盟教材 3-7

ASIC Logic

4. In the “Module View”, select the top module “AHBAHBTop”, and then

run the processes for the module in the following order:

 Synthesis -XST
 Implementation Design
 Generate Programming File

5. Download the generated bitstream and use the test software in

C:\lab7\sw\ to test the design.

4. Exercises

1. Try to improve the coverage of RGB2YUV design. You must achieve

100% code coverage and 100% state coverage and 100% arc
coverage.

5. Reference

1. http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.html
2. http://twins.ee.nctu.edu.tw/courses/ip_core_01/index.html

http://www.arm.com/ 4. Integrator ASIC Platform [DUI_0098B_AP_UG]
3. System Memory Map [DUI_0098B_AP_UG 4.1]
4. Counter/Timer [DUI_0098B_AP_UG 3.7, 4.6]
5. Interrupt [DUI_0098B_AP_UG 3.6, 4.8]

教育部 SoC 聯盟教材 5-8

http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.html

	Overview
	Background Information
	Coverage-driven Verification

	Instructions
	Coverage-driven Verification
	Design Implementation with Xilinx ISE

	Exercises
	Reference

