Lab6: Virtual Prototype: ARMulator

Speaker: Nelson Chang
Directed by Prof. Tian-Sheuan Chang
April, 2004, NCTU

SOC Consortium Course Material

Goal of This Lab

1 Be able to write and add ARMulator C hardware model
d Learn to write simple drivers

SOC Consortium Course Material 1

Outline

 System synchronization
d ARMulator C hardware model
d Lab6 — Virtual Prototype: ARMulator

SOC Consortium Course Material)

Interrupt

ystem on Chig _ _
[consortium

AN IP device signals an interrupt when it completes its
tasks enabled by ARM core. We say that the IP "raised an
Interrupt request (IRQ)". This IRQ tells the ARM core

Its task, and requests to be handled.

that it has finis

€0

IPd

IP1

P2

IP3

|

¥

¥

Interrupt Comvroller

I

b 2

b 4

l

ARM CORE

IP &

LdearlF‘D'SIHQ

IPO,IP1,IP2, and IP3 raized internpt
request (IR at the zame time. The
IRz are =2nt to the interrupt controller.

Interrup cortraller receivesthe IRGs
and Lpdate the IR G atus indicating the
IR sources,

AR core receives the IRG s,
deteremines which IEG should be
handed acoording to programmed
prorties. and then executes the
cortesponding intermpt serdce routine
1SR

The ISR performs its operations and
dearzthe IP0's interupt.

SOC Consortium Course Material 3

Polling

dThe ARM core keeps accessing a certain register in the IP
which indicates whether it has completed its task enabled
by the ARM core for a certain time interval. Once the IP
has done its task, the register changes its value, so the
ARM core could know the IP is ready and the IP requires
to be handled. The action of continuous accessing and
checking the register with a certain time interval is called
"polling”.

ARM core pollz IP0's ready regder atter
ARM CORE [P0 has been enabled.

TYTYY once IPOis !:icune with itz operation,
Palling IPO by Disable [P0 AR core wdll knu:uwfrn_:um the changed
EE value of the ready redister .

ARM core will execute the
IF 0 cotresponding operations and then
disable|PO.

SOC Consortium Course Material 4

Outline

1 System synchronization
JARMulator C hardware model
d Lab6 — Virtual Prototype: ARMulator

SOC Consortium Course Material 5

Overview of ARMulator

e i Semihosting Ji

i Armulator i . Use the I/O facilities of i

| Sinstruction set | | the host computer,

' simulator | | instead of providing the |

\ 3Model instruction ! facilities on your target |

i set and counts i , System i

, cycles E

i SInclude i

E communication i

i facilities with the !

i debugger |

i =»Components E

i >ARM processor i

1 - memory system | sl

> perphenals | Debugger Communication |

________________________ i_;-[_)ébug monitor E
i = Angel or RealMonitor
| =»EmbeddedICE |

=» Embedded Trace Macrocell
hardware e e '

SOC Consortium Course Material 6

Basic Model Interface

L Extra models can be added without altering existing
models.

— Each model is self contained.
— Communicates with ARMulator through defined interfaces.

J Parts in basic model interface

— Data structure declaration

» Declares private data structure
— Initialization

* Initialize private variables

o Install callbacks

— Finalization
e Uninstall callbacks
» Called upon ARMulator closing

SOC Consortium Course Material 7

Operating memory space of ARMulator and
ARM application SW

J ARMulator runs on PC or Workstation
— Pointers in C hardware models points to memory space on PC

JARM application runs on ARMulator

— Pointers in application software points to ARMulator memory
space

— ARM application software cannot access the memory space of
PC

AXD and ARMulator | —

—> | ARM App. SW

ARMulator memory space

PC memory space

SOC Consortium Course Material

Outline

1 System synchronization
d ARMulator C hardware model
dLab6 — Virtual Prototype: ARMulator

SOC Consortium Course Material 0

Lab 6: Virtual Prototype: ARMulator

O Goal O Guidance
— Be able to write and add ARMulator C — Observer how hardware model
hardware model works
— Learn to write simple drivers O Steps
O Principles — Use nmake to build the hardware
— ARMulator hardware models model, and run the demo program to

test the hardware.

— Observe how hardware model works
using VC++ 6.0

O Requirements and Exercises

— Add a new matrix transpose
hardware

— Test the newly add hardware
U Discussion

— Compare the hardware performance
with pure software implementation

— Memory mapped register

SOC Consortium Course Material 10

Interaction between ARM and RGB2YUV

ARM Processor (Master)

Load RGB values to RGB2YUV
Enable RGB to YUV by writing

0x01 to Control register RGB2YUV (Slave)

2
Idle for loop, the processor can

do other tasks while HW is
running

* RGB2YUV done, generate IRQ, set
Done bit in Control register

IRQ detected, branch to ISR. ISR clears the interrupt and disables RGB2YUV.

Copy RGB2YUV result to memory if necessary.

N

SOC Consortium Course Material 11

Call-graph in RGB2YUV

1 RGB2YUV_Access is called upon a reference to its address
range

RGB2YUV_Access

v

BusState

v

TICRegisterAccess

v

TICEnableRegisterWrite

S

RGB2YUVClearInterrupt KickOffRGB2YUV

v

RGB2YUVDone

SOC Consortium Course Material 12

References

yrtam on Chip
iconsortium

[1] ARM Application Note 32: The ARMulator [DAIO032E].
[2] ARM Debug Target Guide [DUI0058D].

SOC Consortium Course Material

13

