
SOC Consortium Course Material

Lab4: Memory IssuesLab4: Memory Issues

Speaker: Nelson ChangSpeaker: Nelson Chang
Directed by Prof. Directed by Prof. Tian-Sheuan Chang

March, 2004, NCTU

1SOC Consortium Course Material

Goal of This Lab

Understand how to allocate data storages and arrange
accesses.
Mapping memory using scatter-loading.

2SOC Consortium Course Material

Outline

Memories in ARM Integrator
Memory Characteristics
Scatter-loading
Lab4 – Memory Issues

3SOC Consortium Course Material

Memories in ARM Integrator

Core Module
– 256/512KB SSRAM
– 16~256 MB SDRAM

Logic Module.
– 1MB ZBT SSRAM

Asic Platform
– 256KB boot ROM
– 32MB flash memory.
– 512KB SSRAM

4SOC Consortium Course Material

Integrator System Memory Map

2

5SOC Consortium Course Material

Core Module Memory Map

6SOC Consortium Course Material

Logic Module Memory Map

7SOC Consortium Course Material

CM FPGA Diagram

8SOC Consortium Course Material

LM FPGA Diagram

AHBAHBTop

AHBDecoder

AHBMuxS2M

AHBZBTRAM

AHB2APB

AHBAPBSys

APBRegs

APBIntcon

Core SDRAM Other
Modules

AHB

A
H

B
A

P
B

ZBTSRAM

MYIP

Logical Module

9SOC Consortium Course Material

System Controller FPGA Diagram

10SOC Consortium Course Material

Integrator/Core Module

SSRAM

SDRAM

11SOC Consortium Course Material

Integrator/Logic Module

ZBT SSRAM

12SOC Consortium Course Material

Integrator/ASIC Platform

Not to scale

SSRAM
Flash

Boot ROM

13SOC Consortium Course Material

Integrator LM Block Diagram

14SOC Consortium Course Material

Integrator/AP Block Diagram

15SOC Consortium Course Material

Outline

Memories in ARM Integrator
Memory Characteristics
Scatter-loading
Lab4 – Memory Issues

16SOC Consortium Course Material

Memory Characteristics
SRAM
– Static cell
– Fast: Access latency <10ns
– Expensive
– Single address decoding
– On-chip memory

DRAM
– Capacitive cell
– Slower: Access latency 200~100ns
– High density, cheapest memory
– Row and column address strobing phase

• Non-sequential access takes longer time
• Sequential access which falls within the same row is faster

– Off-chip memory

17SOC Consortium Course Material

Outline

Memories in ARM Integrator
Memory Characteristics
Scatter-loading
Lab4 – Memory Issues

18SOC Consortium Course Material

Scatter-loading

An image is made up of regions and output sections.
Every region in the image can have a different load and
execution address.
The scatter-loading mechanism enables you to specify the
memory map of an image to armlink.
Scatter-loading gives you complete control over the
grouping and placement of image components.
Scatter-loading is especially important for writing codes
for ROM in embedded systems.

19SOC Consortium Course Material

When to use scatter-loading
Complex memory maps
– Code and data that must be placed into many distinct areas of memory require

detailed instructions on which section goes into which memory space.
Different types of memory
– Many systems contain flash, ROM, SDRAM, and fast SRAM. A scatter-loading

description can match the code and data with the most appropriate type of memory.
For example, the interrupt code might be placed into fast SRAM to improve interrupt
response time and infrequently used configuration information might be placed into
slower flash memory.

Memory-mapped I/O
– The scatter-loading description can place a data section at a precise address in the

memory map.
Functions at a constant location
– A function can be placed at the same location in memory even though the

surrounding application has been modified and recompiled.
Using symbols to identify the heap and stack
– Symbols can be defined for the heap and stack location and the location of the

enclosing module can be specified when the application is linked.
Scatter-loading is therefore almost always required for implementing embedded
systems because these use ROM, RAM, and memory-mapped I/O.

20SOC Consortium Course Material

Scatter-loading description file (1/2)

Information specified in a scatter-loading description file:
– grouping information describing how input sections are grouped

into regions
– placement information describing the addresses where image

regions are to be located in the memory maps.

These information are passed to armlink to construct the
image

21SOC Consortium Course Material

Scatter-loading description file (2/2)
Image with simple memory map

22SOC Consortium Course Material

Outline

Memories in ARM Integrator
Memory Characteristics
Scatter-loading
Lab4 – Memory Issues

23SOC Consortium Course Material

Lab 4: Memory Issues
Goal
– Experience the effect due to

memory issues
• Understand how to allocate data

storages and arrange accesses.
• Mapping memory using scatter-

loading.

Principles
– Memories on Integrator system
– DRAM characteristics
– Scatter-loading

Guidance
– Observer the pointers
– Identify which regions are the

pointers pointing

Steps
– Comparison of memory access

pattern in DRAM is practiced.

Requirements and Exercises
– Modified the scatter-loading

description file to map the whole
image into SRAM for
performance.

Discussion
– Where is the local array

allocated in the memory?

24SOC Consortium Course Material

Memory Storage and Access Pattern

Linearly (sequentially) stored data

Block tile stored data

Read 1 block needs:
4NS_cycle+12S_cycle

Read 1 block needs:
1NS_cycle+15S_cycle

25SOC Consortium Course Material

Stack and Heap
Stack
– Whenever a (non-trivial) function is called, a new activation

frame is created on the stack containing a backtrace record,
local (non-static) variables, and so on.

– When a function returns, its stack space is automatically
recovered and will be reused for the next function call.

Heap
– An area of memory used to satisfy program requests

(malloc()) for more memory for new data structures.
– A program which continues to request memory over a long

period of time should be careful to free up all sections that are
not used, otherwise the heap will run out the memory.

26SOC Consortium Course Material

Scatter-loading description file &
Memory mapping

DRAM.scf
LR_1 0x00008000 0x10000000
{

ALL +0 0x00040000
{

*(+RO)
}
RWZI 0x00040000 0x0FFC0000
{

*(+RW,+ZI)
}
HEAPS +0 UNINIT 0x0FFC0000
{

heaps.o(+ZI)
}
STACKS 0x10000000 UNINIT 0x0FFC0000
{

stack.o(+ZI)
}

}

Memory mapping

27SOC Consortium Course Material

Files Descriptions
Source files:
– main.o

• Main source code implementing block access to linearly (sequentially) stored
data and block tile stored data.

– retarget_simple.c
• Retargets __user_inital_stackheap() to place the stack and heap.

– heaps.s
• Assembly code to export variable $bottom_of_heaps

– stacks.s
• Assembly code to export variable $top_of_stackss

Caution:
– when using scatter-loading, you must use retarget_simple.c to retarget
__user_initial_stackheap() to place the stack and heap. If you do
not, there might be link errors because the default implementation provided
by the C library attempts to use Image$$ZI$$Limit that is not defined when
scatter loading is used.

28SOC Consortium Course Material

References
[1] Using Scatter-loading for…, ADS Developers Guide [DUI0056D, 6.6 6.7 6.8

6.9]
[2] Using Scatter-loading Description Files, ADS Linker and Utilities Guide

[DUI0151A, 5]
[3] Specify code from C and C++, ADS Compilers and Libraries Guide [DUI0067D]
[4] Memory Map, ADS Debug Target Guide [DUI0058D, 2.8]
[5] Steve Furber, “ARM System-on-Chip Architecture,” Addison Wesley, 6.9, 8.1,

2000.

