Contents

O, MemMOrY ISSUES.... oo e 5-1
ST R O 1= VT R 5-1
5.2. Background information.............ccceoiiiiiiiiiiiiiicc e 5-1

5.2.1. Memory characteristiCscccuuuuiiiiiiiiiiiiiiiiiie e 5-1
5.2.2. About Scatter-loading..........cccvevuuiiiiiieeeeeeee e 5-2
5.3, INSITUCTIONS ... 5-3
5.3.1. Memory access pattern and scatter-loading..................... 5-5
ST o (=] ol [T PR 5-9

TR TO 2 (=] (=) €= £ (61X TP T TP 5-10

Memory Issues

5. Memory Issues

5.1. Overview

Memory configuration and usage are very important to embedded SoCs. This
lab demonstrates the effects of different memory access patterns and data
storage allocations. Moreover, often only a limited memory resource is
present in a cost-sensitive embedded system, therefore mapping programs to
limited memory resource is an essential skill. You will learn the followings:
1. Understand how to allocate data storages and arrange accesses.
2. Mapping memory using scatter-loading.

5.2. Background information

5.2.1. Memory characteristics

Memories in embedded systems are essentially divided into on-chip memories
and off-chip memories according to there location in a system. On-chip
memories are often implemented using SRAM, embedded DRAM, and ROM.
Off-chip memories include flash, DRAM, and ROM. On-chip memories are
often faster but also more expensive than off-chip memories. However, the
high-density and less expensive feature of off-chip memories allow greater
amount of data to be stored. Therefore on-chip memories are often
incorporated to handle time-critical tasks, and are often of smaller size
compare to off-chip memories; while off-chip memories are often adopted
where data storage that needs great capacity and speed is not critical.

An important characteristic of DRAM is that sequential memory accesses
requires less wait states then non-sequential accesses. This is because
DRAM memory organization is addressed by row and column. The row
address strobe (RAS) signal is first generated, then the column address
strobe (CAS) is generated. If the next access is within the same row, no new
row address is required to be provided. This enables faster data access and
less power consumption.

Therefore ARM exploits the fact that most addresses (75%) are generated
from address incrementer. A signal seq denoting an address is generated
from the incrementer is sent to DRAM controller. Thus external logics can
then check for row boundaries from previous access address. This captures
most of the accesses which fall within the same DRAM row. Such accesses
are referred to sequential accesses and have less wait states compare to non-
sequential accesses.

F7 3% SoC B Bt F it 51

Memory Issues

In this lab, we will demonstrate how to store data efficiently by exploiting
memory characteristics mentioned. Moreover, effects on performance due to
different characteristic between SRAM and DRAM are also covered.

5.2.2. About scatter-loading

Scatter-loading allows the designer to map the codes and data in a program
to certain memory space. The memory mapping is defined by writing a
scatter-loading description file (.scf). The scatter-loading description file
defines the regions of each object's RO, RW, and ZI. The linker reads the
scatter-loading description file and maps the memory as defined in the file.
Therefore we can map the parts that require faster memory accesses, such as
mapping ISRs into SRAM.

A scatter-loading description file and its memory mapping are shown in Figure
1 and Figure 2 respectively. The first line specifies one load region LR_1 at
base address 0x8000 with a maximum size of 256MB. Four execution regions:
ALL, RWZI, HEAPS, and STACKS are defined. The first 3 execution regions
(ALL, RWZI, and HEAPS) are mapped consecutively as defined by +0 in the
field next to the execution region name. STACKS execution region has a
stack base address at 0x1000000 and a maximum stack size of OxOFFC000O.
The statement inside the execution region defines which data should be
mapped; for instance, *(+R0O) in execution region ALL defines all RO code
and data to be mapped into ALL region except those specified. Another
example is to specify the mapping of certain data from a certain object, such
as heaps.o(+Z1) maps the ZI data into HEAPS region. The term UNINIT
tells the linker not to initialize the data, this can be used for uninitialized data
or memory mapped I/O.

Name of load region Start address for load rw Max size of load region

LR 1/ 000008000 0x10000000 Name of the 1% exec region
{
?LL +0 /0x00040000 ﬁ Max size of the 1% exec region
* Y
\ ‘"zzzftzz:::::::::j Start address of the 1* exec region;
271 OX00040000 OXOE +0 means immediately after

{ \1

*(+RW,+Z1) Place_ all pode gnd RO
data in this region

}
HEAPS +0 UNINIT OxOFFCO0000
{
heaps.o(+Z1)
}
STACKS 0x10000000 UNINIT OxOFFC0O000

stack.o(+ZIl)

Figure 1 Scatter-loading description file — DRAM.scf

5-2 v 3% SoC BB it

Memory Issues

~ ~ x10000000
STACKS
HEAPS DRAM
RW, ZI
_ _ 0x00040000
SRAM
RO
0x00000000

Figure 2 The memory map defined in DRAM.scf

The benefits of using a scatter description file are:

® All the (target-specific) absolute addresses chosen for your devices,
code, and data are located in one file and maintenance is simplified.

® |f you decide to change your memory map (for example if peripherals are
moved), you do not have to rebuild your entire project but only to re-link
the existing objects.

5.3. Instructions

The ARM program in this lab performs block reading from a larger data
buffer (176x32) to a (4x4) block buffer, which is common in video applications.
The programs is consists of 2 parts. The first part of the program stores the
data in data_array in a linear fashion as shown in Figure 3, the address
generation for the block access is complicated in this part. The other part
stores the data in a block tile manner as shown in Figure 4, resulting a simpler
address generation.

[0]1]2]3]4a]5]6]7] . [176]177]178]170]180]181[182]183] .

\—"%01234567

176177178179 |180|181 | 182|183
352 | 353|354 | 355|356 | 357 | 358 | 359
528|529 |530| 531|532 (533|534 |535

Figure 3 Block access for sequentially stored data

F7 3% SoC B Bt F it 5-3

Memory Issues

‘ 0 ‘ 1 ‘ 2 ‘ 3 ‘176‘177‘178‘179|

I

‘ 4 ‘ 5 ‘ 6 ‘ 7 |180‘181‘182‘183‘

176|177|178|179|180|181 | 182|183
352 | 353|354 | 355|356 357 | 358 | 359
528 529|530 (531|532 (533|534 | 535

Figure 4 Block access for block tile stored data

for(iblk_ Y = DATA_BLK_HEIGHT;iblk_ Y != O;iblk _Y--) {
for(iblk_X = DATA_BLK _WIDTH;iblk X != 0O;iblk X--) {
for(row = 4; row = 0; row--) {
memcpy(pblk,pdata_array_ tmp,4*sizeof(unsigned short));
pblk += 4;
pdata_array tmp += DATA_WIDTH;
}
//- update pointers to next block
pdata_array += 4;
pblk=blk_buff;
pdata_array tmp = pdata_array;
//- computblock
blk _average[blk _cnt] = compute block average(blk buff);
blk _cnt++;
}

pdata_array += DATA WIDTH*3; // next block row

bs

Figure 5 Block access code for sequentially stored data

for(iblk_Y = DATA_BLK_HEIGHT;iblk_Y != O;iblk_Y--) {
for(iblk_X = DATA_BLK_WIDTH;iblk_X != O;iblk X--) {
memcpy(pblk, pdata_array tmp, 16*sizeof(unsigned short));
pdata_array_ tmp +=16;
//- update pointers to next block
pblk=blk_buff;
//- computblock

blk _average[blk_cnt] = compute_ block_average(blk _buff);
blk _cnt++;

Figure 6 Block access code for block tile stored data

5-4 %7 2% SoC % P %4

Memory Issues
5.3.1. Memory access pattern and scatter-loading

1. Start CodeWarrior IDE
2. Select File = Open to open the project file Mem access.mcp. This
project has the following files:

main.c main program file

retarget_simple.c retarget file for remapping heaps and stacks
heaps.s assembly to export the bottom of heap
stacks.s assembly to export the top of stack

i@ Mem access.mcp

| % DetugRel "By By f
Files | LinkOnder | Tareets |
W File Code | Data |46 H
B main.c 06 11296 « o m -
B retarget simplec 12 0« + =
B heaps 0 4 « » =
ﬂ stack s 0 1 &« =l
4 files 808 11K]

3. Press DebugRelSettings button on the Project Management Window, a
Debug RelSettings window pops up.

4. Click on ARM Linker in Target Settings Panel. The current Linktype in
ARM Linker panel is Simple.

5. Check Scattered check box in Linktype, specify Scatter-loading
description file DRAM.scf. Press Apply button after you are done. This
informs the linker to map the memory according to the descriptions in
DRAM.scf. DRAM.scf maps all RW and ZI into DRAM region (0x00040000
~ 0x10000000).

¥ 7 % SoC F g & it 55

Memory Issues

im DebugRel Settings

H Tarzet Settings Panels]H ARM Linker
= Target - ; e
- Target Settings Outp.ut]01:11:1:1113] Lmﬁngs] E:-d:m:s]
- becess Pathe Linktype -Bimple image
. Build Exras " Partial RO Baz R Base [Eopi [Relocatable
- Funtime Setings " Rimple] A0 | Ji o
- File Mappings f+ Beattered
- Source Trees !
- ARM Target Seatter deseription file | \Labd_MemonylssuesiCodelsrc\ DR AM scf Chuose...{
- Lsngu.age Sethings
. ARM Aessmbler Symbol definitions | Cheose... |
-« ARM C Compiler o " | Choosz...
wmhiol editing
o ARM Ct+ Compiler
~ Thumb C Compiler —— Equivalent Commeand Line
- Thumb C++ Compi. . -info totals -map -scatter C:MLabdMemorylzmedCodetere DEAM sof
= Lmker
> AFRM Linker
‘. ARM fromELF
= Bt | ———
Factory Bethings J Revert] Import Panel... I Export Panel... I
0K | comel | apty |

6. Click on Listings tab in ARM Linker panel. Check the Image map check
box to generate the image map after linking. You can specify the output file
for the image map by inputting path and filename in List file name. Press
OK when you are done.

im DebugRel Settings

H Tarzet Settings Panels]H ARM Linker
= Target [N Li
. Tarzet Settings Cratpmt]Opmm istings]E:-rtm:s]
- Aecess Paths - Listings-
. Build Extras v Imagemap [Swmbols [Mangled C++ [Section cros-references
- Runtme Sethngs List file nmame
- File Mappings Chooss...
- wonrce Trees I
- ARM Target :
= ngu.age Sattings | [T Satic Callgraph
- ARM Assernbler - Give Information on
- ARM C Compiler [~ Sizes W Totals [Unused [Veneers
- ARM C++ Compiler |
- Thumb C Compiler — Equivalent Command Line
- Thumb C++ Campi... -infor totals -map -seatter CALabd_MemorylssuesdtCodebarc DR AM sof
3 Lm.ker
. ARM TromBLF
= Editor d
Factory Bethings J Revert] Import Panel... I Export Panel... I
0K | Camel | amby |

5-6 # ¥ 3% SoC B E kit

Memory Issues

7. Press Make button on the Project Management Window to build the
project. The warning in the Errors&Warning is OK. The image map will be
listed in the Errors&Warnings window. Please observe how the image map
is organized.

8. Press Run-debug button on the Project Management Window to debug
Mem_access.axf in AXD.

9. In AXD, Options= Config Target. Select ARMUL in Choose Target
window to configure ARMulator.

10.In ARMulator Configuration window, configure as follows then press OK.
Clock: check Emulated, Speed=20MHz
Memory map file: check Map File, Memmap.map

ARMulator Confignration

Processar

Wariant |ARM7TOMI |

Clock,

+ Emulated Speed: |20MH:z

" Bealtime

Options
[FEloating Point E rmulation

Debug Endian

o+ Little " Big
Start target Endian

* DebugEndian " Hardware Endian
kemorny tap File

" Mo Map File

* Map File

|Issues"~Eu:ude"'.src"~M EMMImap. map Browse

Floating Paint Coprocesszor

FPU: |MO_FPU

kALL/PL Initialization

Pagetab |NO_PAGETABLES

ok | Cancel | Help |

¥ 7 % SoC F g & it >

Memory Issues

11.AXD will restart, when ask upon reloading the image, press yes. The RDI
Log of the System Output Monitor shows the memory configuration.
Svztemn Cotput Mondtor
RDILog l Debug Log |
Log file:
ARMulator 20512 [Build 837]
For support please contact support-swisiarm. com,
Software zupplied by ARM Ltd
ARMTTDRI, BIU, Little endian, Semihozting, Debug Comms Channel, 20.0MHz, 4GE,
M apfile, Timer, Profiler, Tube, Milizecond [20000 cyclez_per_milizecond]. IntChl,
Tracer, RDI Codesequences
AR RO 1.5 - ASYMC RDI Protocol Corveerter A0S 1.2 [Build number 842]. Copyright [c] ARR Limited
b emomny map:
00040000, QFFEFEEE, 32-Bit, war, wait states: AN=3/1 WH=3/1 R5=1w5=1 RI5=3/1 WI5=3
00000000, QO036EE, 32-Bit, wr, wait states: BH=0WwHMH=0 R5=0"w5=0RI5=0"5=0

4 ?

12.Press F5 or Go button, the program halts at int main(void). Set 4
breakpoints at line 58, 76, 100, and 115. The process in the first 2
breakpoints are block accesses for sequentially stored data, the process in
the last 2 breakpoints are block accesses for block tile stored data.

1= printf("Memory Access Examplein™):
57
@ 55 I for(iblk ¥ = DATA BLE HEIGHT:;iblk ¥ !'= 0;iblk_¥--) {
59 for(iblk_X¥ = DATA BLE WIDTH:;iblk X '= 0:iblk_Xx--) {
&0 for{row = 4; row != 0; row--) { //copy from data array into hl
61 nencpy (phlk, pdata array tmp, 4%*sizeof{unsigned short)):
62 phlk += 4;
63 pdata_ array tmp += DATA WIDTH:; // block access pattern du
64 L
65 /4= update pointers to next bhlock
66 pdata array += 4;
&7 phlk=blk buff:
65 pdata array tmp = pdata array;
63 A4— compurblock
70 blk_average[blk cnt] = compute_block_average(blk_buff):
71 blk_cnt++;
2 1
73 pdata array += DATA WIDTH*3; fF next block row
74 1
75
® 75 I printf|{"blk_average[0]= %d'n\n'n", blk_average[0]):
77
no
98 blk_cnt=0;
99
& lDIZII for(iblk ¥ = DATA BLE HEIGHT:;iblk ¥ !'= 0;iblk_¥--) {
101 for(iblk_X¥ = DATA BLE WIDTH:;iblk X '= 0:iblk_Xx--) {
102 wnencpy (pblk, pdata array tmp, lé*sizeof (unsigned short)):
103 pdata array twmp +=16; S# block access patterh due to block :
104 A4—- update pointers to next bhlock
105 ffpdata_array += 16; Jino need!!
106 phlk=blk_buff;
107 #i/pdata_array tmp = pdata_array; Fino_need!!
103 /4= cowputblock
109 blk_awverage[blk cnt] = compute_block awerage(blk_buff):
110 blk_cnt++;
111 1
11z Sipdata array += DATA WIDTH*3: J/ next block row no_need!!
113 }
114
& llEI printfi("blk_average[0]= %d\n\n\n", blk_awverage[0]):
115

5-8 v 3% SoC BB it

Memory Issues

13.Press F5 or Go again to run to line 58 (1% breakpoint). Open Debugger
Internals by pressing ALT-D or from menu System Views = Debugger
Internals.

14.Click on Statistics tab in Debugger Internals panel, then right mouse
click in Debugger Internals panel to access the drop menu. Click Add

New Reference Point in drop menu, name the reference point seq.
Debugger Internals

Internsl Veriables Statistics |

Reference Fo... | Instructions Core Cycles | 3 Cycles | N Cycles I Cycles C_Cycles Wait jtates | Total

§statistics 74604 100370 77601 21794 23z44 o 25851 145590
seq o o u] o o o ul o

< *

15.Press F5 or Go button, the program will halt at line 76 (2" breakpoint).
Record the statistics in Debugger Internals for reference point seq. These
statistics represents the statistics for block accessing sequentially stored
data.

16.Press F5 or Go again to run to line 100 (3 breakpoint). Add a new
reference point named blk in statistics of Debugger Internals.

17.Press F5 or Go button, the program will halt at line 115 (4" breakpoint).
The staticstics in reference point blk represents the process of block
accessing block tile stored data. Record the blk statistics and compare
with the previously recorded seq statistics.

18.The NS cycles in blk case should be less than the NS cycles in seq case.
The wait states for blk case should also be less then that of seq case.
Pleas try to explain this result.

5.4. Exercise

First, try to show the address pointed by pblk and pdata_array. ldentify
which regions are the two arrays (blk_buff, data_array) located in.
(Hint: move the cursor to the pointers or use add watch)

Then try to load all RW and ZI of main.o into SRAM region (0x8000~0x40000).
Rerun the simulation and compare the statistics results for seq and blk case.
Compare the address pointed by pointer again with previous case.

Finally, try move the declaration of blk_buff and data_array into main()
function. Compare the address pointed by pointer again with previous cases.
(Hint: observe the value of r13)

F7 3% SoC B Bt F it 59

Memory Issues

5.5. Reference

1. Using Scatter-loading for..., ADS Developers Guide [DUIO056D, 6.6 6.7
6.8 6.9]

2. Using Scatter-loading Description Files, ADS Linker and Utilities Guide
[DUIO151A, 5]

3. Specify code from C and C++, ADS Compilers and Libraries Guide

[DUIO067D]

Memory Map, ADS Debug Target Guide [DUIO058D, 2.8]

Steve Furber, “ARM System-on-Chip Architecture,” Addison Wesley, 6.9,

8.1, 2000.

o s

5-10 ¥ 3% SoC B P %1

