
 

Contents 
5. Memory Issues......................................................... 5-1 

5.1. Overview.......................................................................................5-1 
5.2. Background information ................................................................5-1 

5.2.1. Memory characteristics ....................................................5-1 
5.2.2. About Scatter-loading.......................................................5-2 

5.3. Instructions ...................................................................................5-3 
5.3.1. Memory access pattern and scatter-loading.....................5-5 

5.4. Exercise ........................................................................................5-9 
5.5. Reference ...................................................................................5-10 

 
 
 
 
 
 



Memory Issues 

教育部 SoC 聯盟教材 5-1

 

5. Memory Issues 

5.1. Overview 

Memory configuration and usage are very important to embedded SoCs. This 
lab demonstrates the effects of different memory access patterns and data 
storage allocations. Moreover, often only a limited memory resource is 
present in a cost-sensitive embedded system, therefore mapping programs to 
limited memory resource is an essential skill. You will learn the followings: 

1. Understand how to allocate data storages and arrange accesses. 
2. Mapping memory using scatter-loading. 

5.2. Background information 

5.2.1. Memory characteristics 

Memories in embedded systems are essentially divided into on-chip memories 
and off-chip memories according to there location in a system. On-chip 
memories are often implemented using SRAM, embedded DRAM, and ROM. 
Off-chip memories include flash, DRAM, and ROM. On-chip memories are 
often faster but also more expensive than off-chip memories. However, the 
high-density and less expensive feature of off-chip memories allow greater 
amount of data to be stored. Therefore on-chip memories are often 
incorporated to handle time-critical tasks, and are often of smaller size 
compare to off-chip memories; while off-chip memories are often adopted 
where data storage that needs great capacity and speed is not critical. 
 
An important characteristic of DRAM is that sequential memory accesses 
requires less wait states then non-sequential accesses. This is because 
DRAM memory organization is addressed by row and column. The row 
address strobe (RAS) signal is first generated, then the column address 
strobe (CAS) is generated. If the next access is within the same row, no new 
row address is required to be provided. This enables faster data access and 
less power consumption. 
 
Therefore ARM exploits the fact that most addresses (75%) are generated 
from address incrementer. A signal seq denoting an address is generated 
from the incrementer is sent to DRAM controller. Thus external logics can 
then check for row boundaries from previous access address. This captures 
most of the accesses which fall within the same DRAM row. Such accesses 
are referred to sequential accesses and have less wait states compare to non-
sequential accesses.  



Memory Issues 

 教育部 SoC 聯盟教材 5-2

 
In this lab, we will demonstrate how to store data efficiently by exploiting 
memory characteristics mentioned. Moreover, effects on performance due to 
different characteristic between SRAM and DRAM are also covered. 

5.2.2. About scatter-loading 

Scatter-loading allows the designer to map the codes and data in a program 
to certain memory space. The memory mapping is defined by writing a 
scatter-loading description file (.scf). The scatter-loading description file 
defines the regions of each object’s RO, RW, and ZI. The linker reads the 
scatter-loading description file and maps the memory as defined in the file. 
Therefore we can map the parts that require faster memory accesses, such as 
mapping ISRs into SRAM. 
 
A scatter-loading description file and its memory mapping are shown in Figure 
1 and Figure 2 respectively. The first line specifies one load region LR_1 at 
base address 0x8000 with a maximum size of 256MB. Four execution regions: 
ALL, RWZI, HEAPS, and STACKS are defined. The first 3 execution regions 
(ALL, RWZI, and HEAPS) are mapped consecutively as defined by +0 in the 
field next to the execution region name. STACKS execution region has a 
stack base address at 0x1000000 and a maximum stack size of 0x0FFC0000. 
The statement inside the execution region defines which data should be 
mapped; for instance, *(+RO) in execution region ALL defines all RO code 
and data to be mapped into ALL region except those specified. Another 
example is to specify the mapping of certain data from a certain object, such 
as heaps.o(+ZI) maps the ZI data into HEAPS region. The term UNINIT 
tells the linker not to initialize the data, this can be used for uninitialized data 
or memory mapped I/O. 
 
 
LR_1 0x00008000 0x10000000 
{ 
 ALL +0 0x00040000 
 { 
  *(+RO) 
 } 
 RWZI 0x00040000 0x0FFC0000 
 { 
  *(+RW,+ZI) 
 } 
 HEAPS +0 UNINIT 0x0FFC0000 
 { 
  heaps.o(+ZI) 
 } 
 STACKS 0x10000000 UNINIT 0x0FFC0000 
 { 
  stack.o(+ZI) 
 } 
} 

Figure 1 Scatter-loading description file – DRAM.scf 

Name of the 1st exec region

Start address of the 1st exec region; 
+0 means immediately after

Max size of the 1st exec region 

Place all code and RO 
data in this region 

Name of load region Start address for load region Max size of load region 



Memory Issues 

教育部 SoC 聯盟教材 5-3

 

RO

RW, ZI

HEAPS

STACKS

0x00000000

0x00040000

0x10000000

DRAM

SRAM

 

Figure 2 The memory map defined in DRAM.scf 

The benefits of using a scatter description file are: 
 All the (target-specific) absolute addresses chosen for your devices, 

code, and data are located in one file and maintenance is simplified. 
 If you decide to change your memory map (for example if peripherals are 

moved), you do not have to rebuild your entire project but only to re-link 
the existing objects. 

5.3. Instructions 

The ARM program in this lab performs block reading from a larger data 
buffer (176x32) to a (4x4) block buffer, which is common in video applications. 
The programs is consists of 2 parts. The first part of the program stores the 
data in data_array in a linear fashion as shown in Figure 3, the address 
generation for the block access is complicated in this part. The other part 
stores the data in a block tile manner as shown in Figure 4, resulting a simpler 
address generation.  
 

0 1 2 3 4 5 6 7 176 177 178 179⋯⋯⋯. 180 181 182 183

0 1 2 3
176 177 178 179

352 353 354 355

528 529 530 531

⋯⋯⋯.

4 5 6 7
180 181 182 183

356 357 358 359

532 533 534 535

 

Figure 3 Block access for sequentially stored data 



Memory Issues 

 教育部 SoC 聯盟教材 5-4

 
 

0 1 2 3 4 5 6 7176 177 178 179 ⋯⋯⋯. 180 181 182 183

0 1 2 3
176 177 178 179

352 353 354 355

528 529 530 531

⋯⋯⋯.

4 5 6 7
180 181 182 183

356 357 358 359

532 533 534 535

 

Figure 4 Block access for block tile stored data 

 
for(iblk_Y = DATA_BLK_HEIGHT;iblk_Y != 0;iblk_Y--) { 

for(iblk_X = DATA_BLK_WIDTH;iblk_X != 0;iblk_X--) { 
for(row = 4; row != 0; row--) {             

memcpy(pblk,pdata_array_tmp,4*sizeof(unsigned short)); 
     pblk += 4; 
     pdata_array_tmp += DATA_WIDTH;   
  } 
  //- update pointers to next block 
  pdata_array += 4; 
  pblk=blk_buff; 
  pdata_array_tmp = pdata_array; 
  //- computblock 
  blk_average[blk_cnt] = compute_block_average(blk_buff); 
  blk_cnt++; 

} 
pdata_array += DATA_WIDTH*3; // next block row 

} 

Figure 5 Block access code for sequentially stored data 

 
 
for(iblk_Y = DATA_BLK_HEIGHT;iblk_Y != 0;iblk_Y--) { 

for(iblk_X = DATA_BLK_WIDTH;iblk_X != 0;iblk_X--) { 
memcpy(pblk, pdata_array_tmp, 16*sizeof(unsigned short)); 
pdata_array_tmp +=16; 

  //- update pointers to next block 
  pblk=blk_buff; 
  //- computblock 
  blk_average[blk_cnt] = compute_block_average(blk_buff); 
  blk_cnt++; 

} 
} 

Figure 6 Block access code for block tile stored data 



Memory Issues 

教育部 SoC 聯盟教材 5-5

5.3.1. Memory access pattern and scatter-loading 

1. Start CodeWarrior IDE 
2. Select File  Open to open the project file Mem_access.mcp. This 

project has the following files: 
main.c   main program file 
retarget_simple.c  retarget file for remapping heaps and stacks 
heaps.s   assembly to export the bottom of heap 
stacks.s   assembly to export the top of stack 

 

 
 

3. Press DebugRelSettings button on the Project Management Window, a 
Debug RelSettings window pops up. 

4. Click on ARM Linker in Target Settings Panel. The current Linktype in 
ARM Linker panel is Simple. 

5. Check Scattered check box in Linktype, specify Scatter-loading 
description file DRAM.scf. Press Apply button after you are done. This 
informs the linker to map the memory according to the descriptions in 
DRAM.scf. DRAM.scf maps all RW and ZI into DRAM region (0x00040000 
~ 0x10000000). 

 



Memory Issues 

 教育部 SoC 聯盟教材 5-6

 
 

 
6. Click on Listings tab in ARM Linker panel. Check the Image map check 

box to generate the image map after linking. You can specify the output file 
for the image map by inputting path and filename in List file name. Press 
OK when you are done. 

 
 

 



Memory Issues 

教育部 SoC 聯盟教材 5-7

7. Press Make button on the Project Management Window to build the 
project. The warning in the Errors&Warning is OK. The image map will be 
listed in the Errors&Warnings window. Please observe how the image map 
is organized. 

8. Press Run-debug button on the Project Management Window to debug 
Mem_access.axf in AXD. 

 
9. In AXD, Options  Config Target. Select ARMUL in Choose Target 

window to configure ARMulator.  
 
10. In ARMulator Configuration window, configure as follows then press OK. 

Clock: check Emulated, Speed=20MHz 
Memory map file: check Map File, Memmap.map 

 
 

 
 
 



Memory Issues 

 教育部 SoC 聯盟教材 5-8

11. AXD will restart, when ask upon reloading the image, press yes. The RDI 
Log of the System Output Monitor shows the memory configuration. 

 
 
 

12. Press F5 or Go button, the program halts at int main(void). Set 4 
breakpoints at line 58, 76, 100, and 115. The process in the first 2 
breakpoints are block accesses for sequentially stored data, the process in 
the last 2 breakpoints are block accesses for block tile stored data. 

 
 

 



Memory Issues 

教育部 SoC 聯盟教材 5-9

 
13. Press F5 or Go again to run to line 58 (1st breakpoint). Open Debugger 

Internals by pressing ALT-D or from menu System Views  Debugger 
Internals. 

14. Click on Statistics tab in Debugger Internals panel, then right mouse 
click in Debugger Internals panel to access the drop menu. Click Add 
New Reference Point in drop menu, name the reference point seq. 

 
 

15. Press F5 or Go button, the program will halt at line 76 (2nd breakpoint). 
Record the statistics in Debugger Internals for reference point seq. These 
statistics represents the statistics for block accessing sequentially stored 
data. 

16. Press F5 or Go again to run to line 100 (3rd breakpoint). Add a new 
reference point named blk in statistics of Debugger Internals. 

17. Press F5 or Go button, the program will halt at line 115 (4th breakpoint). 
The staticstics in reference point blk represents the process of block 
accessing block tile stored data. Record the blk statistics and compare 
with the previously recorded seq statistics. 

18. The NS cycles in blk case should be less than the NS cycles in seq case. 
The wait states for blk case should also be less then that of seq case. 
Pleas try to explain this result. 

 

5.4. Exercise 

First, try to show the address pointed by pblk and pdata_array. Identify 
which regions are the two arrays (blk_buff, data_array) located in. 
(Hint: move the cursor to the pointers or use add watch) 
 
Then try to load all RW and ZI of main.o into SRAM region (0x8000~0x40000). 
Rerun the simulation and compare the statistics results for seq and blk case. 
Compare the address pointed by pointer again with previous case. 
 
Finally, try move the declaration of blk_buff and data_array into main() 
function. Compare the address pointed by pointer again with previous cases. 
(Hint: observe the value of r13) 
 
 



Memory Issues 

 教育部 SoC 聯盟教材 5-10

5.5. Reference 

1. Using Scatter-loading for…, ADS Developers Guide [DUI0056D, 6.6 6.7 
6.8 6.9] 

2. Using Scatter-loading Description Files, ADS Linker and Utilities Guide 
[DUI0151A, 5] 

3. Specify code from C and C++, ADS Compilers and Libraries Guide 
[DUI0067D] 

4. Memory Map, ADS Debug Target Guide [DUI0058D, 2.8] 
5. Steve Furber, “ARM System-on-Chip Architecture,” Addison Wesley, 6.9, 

8.1, 2000. 


