Contents
2. Debugging and Evaluation

....................................... 2-1
2.1. OVEIVIBW ... e e e e e e 2-1
2.2. INSEFUCHIONS ..o 2-1

221, Debugging skills ... 2-1

2.2.2. Software Quality Measurementcccccoeeiiiinn. 2-17
2.3. EXEICISES ... e 2-27
2.4. REFEIENCEo 2-28

2.5. Appendix

Debugging and Evaluation

2. Debugging and Evaluation

2.1. Overview

This Lab gives step-by-step instructions to perform a variety of debugging
tasks and Software quality evaluation. Thought in this Lab the debugger target
is ARMulator, but the skills can be applied to Multi-ICE/Angel with the ARM
development board(s). The following instructions are based on the
demonstration program that runs the Dhrystone test software, which is the
same to that used in Lab 1. For details of the Dhrystone test program, please
refer to the readme.txt file and the various source files in its subdirectory (e.g.,
C:\Program Files\ARM\ADSv1_2\Examples\dhryansi\).

Debugging skills you will learn

* Set breakpoints and watchpoints

 Locate, examine and change the contents of variables, registers and
memory

The skills you will learn to evaluate software quality:

* Memory requirement of the program

* Profiling: Build up a picture of the percentage of time spent in each

procedure.
* Evaluate software performance prior to implement on hardware

2.2. Instructions
2.2.1. Debugging skills

Initial setup

1. Make your working directory, e.g., C:\ARMSoC\Lab_02\

2.Copy all files in C:\Program Files\ARM\ADSv1_2\Examples\dhryansi\ to
your working directory.

3. Double click on dhryansi.mcp in your working directory.

4.Make dhryansi.mcp and then Select Project —Debug (Ctrl + F5) to
launch AXD.

v 3% SOC B gt it 2-1

Debugging and Evaluation

4.1 A Disassembly processor view of the image is displayed and a blue
arrow indicates the current execution point.

5. Select Execute — Go from the menu (or press F5, or from toolbar) to begin
execution on the target processor.
5.1 Execution stops at the beginning of function main(), where a breakpoint
is set by default. A red disc indicates the line where a breakpoint is set.
5.2 Also, a Source processor view of the relevant few lines of the relevant
file is displayed. If it is not, right-click in the Disassembly processor
view and select Source from the pop-up menu. Again, a red disc
indicates the line where a breakpoint is set, and a blue arrow indicates
the current execution point.

6. Select Go again to continue execution.
6.1 You are prompted, in the Console processor view, for the number of
iterations through the benchmark that you want to performe.
6.2 Enter 8000. The program runs for a few seconds, displays some
diagnostic messages, and shows the test results.

7. To repeat the execution of the program, select Reload Current Image from
the File menu or toolbar shown in Figure 1, then repeat Steps 5 and 6.
7.1 You do not have to open the Source process view again. Once
opened, it remains displayed.

wlesle] @) @l 1] | Gl

B1EN Zearch Processor Views
Load Image...
Load Debug Svmbols...
Reload Current Image

Open File...

Load Memory From File...
Bave Memory To File...

Download an image to the Flash
Load Session... memory of the processor
Bave Bession...

Recent Images L4

Tnload Current Image
Import Formags. ..

Exit

Figure 1. File and Search Menu, and their corresponding Toolbar.

Setting a breakpoint

1. Select Reload Current Image

2. Select Go to reach the first breakpoint, set by default at the beginning of
function main() and indicated by a red dot. You can see the source file

2-2 # 7 3% SOC 75 p 44

Debugging and Evaluation

dhry_1.c with a breakpoint and the current position indicated at line number
87.

3. Scroll down through the source file until line number 759 is visible. This is a
call to Proc_4(). This process will be executed the number of times you
specify.

3.1 Alternatively, you may use Search in Source by Search string set as
“Proc_4()”, as shown in Figure 2.

Search Source El g|

Brocessor: |ARM7TDMI x| | Find Hext |
Source file: |dhoy_le =l Gansel]
Search string: |G =l

Help
Bearch attribte Direction
[Match whole word i Tp
[~ Match cam * Down
[Wap

Figure 2. Search in Source.

4. Right-click on line 159 to position the cursor there and display the pop-up
menu, and select Toggle Breakpoint (or left-click on the line and press F9,
or double-click in the margin next to the line).

4.1 Another red dot indicates that you have set a second breakpoint.

3 ARM7TDMI - C:\Program Files\sARMMADSy1 2\Examples\lhryansiMhoy 1.¢ mrﬂ]&|
154 -
155 for (Pun_Index = 1; Fun Index <= Numbher 0f Funs; +HHRun_ Index)

156 {

157

158 Proc 5{i:

159 Proc 4] H §

160 A% Ch 1| Execute v | 'B', Bool_Glob == true %/
161 Int_l1_Loc Stepping Mode b

162 Int_Z_ Loc o

163 stropy (5t i : &M, 2'ND STRING™): _J
164 Emum_Loc - Set Watchpoint
165 Bool_Glob : E_&_ Loc);
e /* Bool Interleave Disassembly
167 while [Int “how Execution Contest joop body executed once *F
e ! Disasse_mhly
169 Int 3 Lo = _Loc;
170 4% Ing Got.
171 Proc 7 1 t 3 Loc):
o Watch... PR
172 5 Inf o
173 Int 1 Le Addtowatch
174 V4% while
175 P , Int 3 Loc == 7 %/ -
i i iFei Properties. . e T <
— ————

Figure 3. Set Breakpoint.

5.To edit the details of the new breakpoint, select Breakpoints from the
System Views menu (Figure 4). The breakpoints panel is displayed (Figure
5).

v 3% SOC B gt it 2-3

Debugging and Evaluation

5.1 Double-click on the line in the breakpoints panel that describes the new
breakpoint, or right-click on it and select Properties (Figure 5), to
display a Breakpoint Properties dialog.

5.2 Enter 750 in the out of field in the Conditions box, as shown in Figure
6. This is the number of times execution has to arrive at the breakpoint
to trigger it.

5.3 Click OK.

[=lal[-[=all=l=]
PR

v Control Monitor AT
Registers LR
v Watch AHE
Breakpoints AlK
Watchpodnts
v Cufput Al
Command Line Interface S1HL
Debugger Internals AlD

Figure 4. System View Menu and its corresponding Toolbar.

1 ARM7TDMI - C\Program Files\ARMAADSy1 2\Examples\dhryansitdhoy 1.c

154 -
155 for (Fun_Index = 1; Pun Index <= Number O0f Puns; ++PFun Index)
156 { idd
157 S
158 Proc 5(): Diwable 2
M 159 B rroc_aq): Delete
160 4% Ch 1l Glob == 'A', Ch 2 Glob Delete Al ue +/
15l Int_l_Loc = Z: Locate Taing 8ddress
162 Int_Z Loc = 3;
163 strcpy (Str 2 Loc, "DHRYSTOME PR| Refresh
164 Enum_Loc = Ident 2; -
e i Properties. .
1 | - vl
- . Float within main window e
Brea.kplomts v Allow docking
State | Processor Position | Hide Action
@ ARMTTOMI dhiyansi.awf : dhy_1.c; 87 [0x000033F0] Closs Break,
ARMETOM] dhrpansasf: dhy 1e: 1 !

Figure 5. Breakpoints panel (the lower window).

24 ¥ v % SOC m g %1t

Debugging and Evaluation

Breakpoint Properties

i~ Break At -

Brocessor |4 RM7TDMI - _
" Source o Address Cangel

Image | =] [0x00008638 Help
Be [feie =]
Lie [0

Condition

Count|0 outof |[750] %

when |

Statug Size
[v Enabled " ARM

r WAL £~ Thumb

HW resID v Automatic

Action
o Break
" Log Text

Figure 6. Setting breakpoint details.

6.Press F5 (Go) to resume execution, and enter the smaller number of 5000
this time for the number of iterations required.
6.1 Execution stops when the 750" time your new breakpoint is reached.

7.Select Variables from the Processor Views menu (Figure 7) to check
progress. Reposition or resize the window if necessary.
7.1 Click the Local tab and look for the Run_Index variable. Its value is
shown as 0x2EE (hexadecimal).
7.2 Right-click on the variable so that it is selected and a pop-up menu
appears (Figure 8). Select Format — Decimal and the value is now

displayed as 750 (decimal).

Bl = ==

OIS
Registers CtlR +—
Watch CtME

Wariahles Ctl+F

Backirace {10474 P
Memony Crl+bd
Low Level Bwmbols AMHE

Comms Channel Cirl+H

Copzole Cirl+ N
Disazsembly Cil+D
Source. . Cirl+d

Figure 7. Processor View Menu and its corresponding Toolbar.

v 3% SOC B gt it 2-5

Debugging and Evaluation

Yariables EI
ARM7TDMI - Faviables
Local | Globel | Class |

Variable Value

Ch_Index Variable not used yet (optimization)
EEnum_Loc Ox01

Int 1 Loc Ox00000005

Int 2 _Loc Variable not currently used (optimization)

Int_3_Loc 0x00000007

Number 0f ROx00001385

A4dd To Processor Watch

i LATL
Ehsee_1_Loc [31] "DHRYSTONE PR
T Add To Svstemn Watch

Ebste_2_Loc [31] "DHRYSTONE PR

ASCII
printf.

Properties. Floating Pomt *
Registers 4
(-Format »
Criher L4

Refresh

Float within main window
v Lllow docking

Hide

Close

Figure 8. Pop-up menu for Local variable in Processor View.

8.Press F5 to resume execution, and the value of the Run_Index local
variable changes to 7500. It is now (red) colored to show that its value has
changed since the previous display.

9.Press F5 repeatedly until the value of Run_Index reaches the highest
multiple of 750 (1500=>»2250->»3000=>»3750>4500) before exceeding your
specified number of runs, then once more to allow the program to complete
execution.

10.Close down the Breakpoints system view, either by right-clicking and
selecting Close or by clicking on the Close button in the title bar if the view
is not docked.

Setting a watchpoint

1. Select Reload Current Image

2. Select Go to reach the first breakpoint, set by default at the beginning of
function main().

3. Select Go to continue execution.

4.When you are prompted for the number of iterations to execute, enter 770.
Execution continues until it reaches the breakpoint at line 759 for the 750"
time. This is the breakpoint you defined in last section.

5. Select Watchpoints from the System Views menu/toolbar (Figure 4), right-
click in the Watchpoints system view (Figure 9), and select Add to display
the Watchpoint Properties dialog (Figure 10).

5.1 Enter Run_Index in the Item field in the Watch box.

5.2 Set the out of field in the Conditions box to a value of 6. This is the
number of times the watched value has to change to trigger the
watchpoint action.

2-6 %% 3% SOC B B 44

5.3 Click the OK button. Take a

f3 ARM7TDMI - C:\Program Files\ARMADSy1_2\Examples\ hryansiVihey 1.c

Debugging and Evaluation

look at the changes in Watchpoints view.

154

155 for (Fun_Index = 1; Fun Index <= Number 0f BFunsz; ++Run_ Index)

156 i

157

155 Proc_5(): -
for1ss B prectan: o

160 /% Ch_l Glob == '4', Ch 2 6 Enable/MDisble : true %/

161 Int_1_Loc = Z;

lsz Int_2Z Loc = 3;

Grifcs: " Delete A1

163 stropy (Str_2_ Loc, "DHREYSTONE| fa_

164 Ermum_Loc = Ident 2 A

165 Bool Glob = ! Func 2 (Str 1 L

= = Bl Refresh

166 /% Bool_Glob == 1 */ Bl

187 while (Int 1 Loc < Int 2 Loc) once */ =
il E— f
e —————————————————— 102t 4ithin main wind o -
TWatchpoints b giow docking

- e -

State | Processor Item Wwatching Action

2l e) il Close

Figure 9. Watchpoints from the System Views.

Watchpoint Properties
Tatch -

Brocessor | ARM7TDMI -

Item:

TWatching: |

[Ron Index

Condition
Value:
Count; [0 outof |6 4:

when: |

Size
[~ Force Size

Status
[+ Enshled

[Heodware
H/W resID
Actinn

(+ Break
" Log Teut

e
kil

f+ 3

6. Show the Run_Index variable

Figure 10. Watchpoint Properties dialog.

6.1 If the Variables processor view is not already displayed, select
Variables from the Processor Views menu.
6.2 Click the Local tab and look for the Run_Index variable. The value of

Run_Index is currently 750.

6.3 If it is displayed in hexadecimal notation, right-click on the value and
select Format — Decimal to change the display format to decimal.

7. Press F5 to resume execution.

%7 3% SOC 7 B 4

2-7

Debugging and Evaluation

7.1 Soon the value of the Run_Index local variable changes to 756. It is
now displayed in red to show that its value has changed since the
previous display. Execution stops.

8. Examine any displayed values, then press F5 again to resume execution
and perform six more runs.
8.1 When the value of Run_Index becomes greater than the number of
runs you specified (770 at step four), the test results are displayed in
console window and execution terminates.

9. Delete the watchpoint by right-clicking on its line in the Watchpoints
window and selecting Delete from the pop-up menu, then close down the
Watchpoints system view.

Examining the contents of variables

Two methods of examining the contents of variables are described in this
section:
Contents of variables (variable processor view): This method is simpler
and shows only the contents of the specified variables.
Addresses and contents of variables (watch processor view). This
method shows the addresses of the variables as well as their contents.

I. Contents of variables

To examine the contents of variables as simply as possible, use the Variables
processor view.

1. Select Reload Current Image

2. Select Go to reach the first breakpoint, set by default at the beginning of
function main().

3. Select Go to continue execution.

4.When you are prompted for the number of runs to execute, enter 760.
Execution continues until it reaches the breakpoint at line 759 for the 750"
time. This is the breakpoint you defined in Setting a breakpoint at the step
of previous section.

5. If the Variables processor view is not already displayed, select Variables
from the Processor Views menu. Reposition or resize the window if
necessary. On the Local tabbed page, look for the Run_Index variable.
Other variables that you can see include Enum_Loc, Int_1_Loc,
Int_2 Loc, and Int_3_Loc.

5.1 Right-click in the window, select Properties... — Dec and click OK.
The display is now in decimal format and is similar to that shown in
Figure 11.

2-8 %% 3% SOC B B 44

Debugging and Evaluation

Yamables 3]
ARMTTDMI - Variahles
Local |Gilobal | Class |
WVariable Yalue
Ch_Index Variable not used yet [optimiza
FEEnum Lac 1
Int_1_Lac 5
Int_Z Loc Variable not currently used (op
Int_3_Loc 7
Mumber 0f Runzs 760
Fun Index 750
E-5tr_1_Loc [31] "DHRY3TONE PROGRAM, 1'3T 27
"St,l:_Z_LDC [31] "DHEYSTONE PROGRAM, Z'ND 5

Figure 11. Examining the contents of variables.

6. Press F10. This is equivalent to selecting Step from the Execute menu
(Figure 12). The program executes a single instruction and stops. Any
values that have changed in the Variables processor view are displayed
in red.

HEn| Bl @] £ £
Step In Fa —|
Step F10
Step Ot Shift+Fa,
Bun To Cursox F
Show Execution Context

Toggle Breakpoint Fa

Delete 411 Breakpoints

Figure 12. Execute Menu and its corresponding Toolbar.

7.Press F10 repeatedly. As you execute the program, one instruction at a
time, the values of several of the variables change. After you have allowed
approximately 30 program instructions to execute, the value of Run_Index
increases by 1. The program has now completed one execution iteration of
the Dhrystone test.

8. Explore the various display options available from the pop-up menu (Figure
8). Try some other settings in both the Format submenu and the Default
Display Options dialog displayed when you select Properties....

9.Press F5 to allow the program to complete its execution, then close down
the Variables processor view.

Il. Addresses and contents of variables

v 3% SOC B gt it 2-9

Debugging and Evaluation

An alternative method of examining a variable is to use a Watch processor
view. This allows you to see the memory address of the variable as well as its
value.

1. Select Reload Current Image

2. Select Go to reach the first breakpoint, set by default at the beginning of
function main().

3. Select Go to continue execution.

4.When you are prompted for the number of runs to execute, enter 760.
Execution continues until it reaches the breakpoint at line 759 for the 750"
time.

5. Select Watch from the Processor Views menu (Figure 7) and reposition or
resize the window if necessary. You can specify items to watch on several
tabbed pages. In this example you examine a few variables using the first
tabbed page only.

6. Right-click in the window, and select Add Watch from the pop-up menu
(Figure 13). A Watch dialog appears, prompting you to enter an
expression. For this example you enter some valid variable names, most of
them preceded by an ampersand (&).

6.1 Enter the first expression in the Expression field (as shown in Figure 14)
by typing:
&Enum_Loc

Note
e Enum_Loc is a global variable, so it is stored in RAM at the address
&Enum_Loc.
* These names are case-sensitive.
* You can also add a variable to the Watch view by selecting it in the
source view using right-clicking and selecting Watch, as show in Figure
15. And then using the Add Watch pop-up menu command. € Try this.

System Watch
Tabl |Tab3 | Tab3 | Tabd |
Watch Value

Refresh

Properties...

Float within madn window
v Allow docking

Hide

Clos=

2-10 #5738 SOC 7 P! &+

Debugging and Evaluation

Figure 13. Add Watch to Processor Watch window.

Add Watch

Expresion: | HiSRnnmEay

Procesor:

[ARMTIDMI =]

alue

EFARMTIDMI {..}

[Eh-deEnum_Lodx07FEFED]
El* D01
k001 { Ident 2}

Help
iew
{s" Proc
" Sustern

Tab
¢ Tab1

 Tab2
" Tab 2
" Tah 4

Figure 14. Watch dialog.

£1 ARM7TDMI - C:\Program Files\ARMAADSv1 2\Examples\dhryansiMhry. 1 .c

158 Proc_5(): -
b 150 B Proc 4i):

1a0 A% Ch 1 Glob == 'A', Ch 2 Gloh == 'B', Bool_Glob == true */

161 = 2

162 Int_Z_Loc Execute 4

163 STECPY (5 oo bods , RAM, 2'ND STRING"):

164 Enum Loc ;

165 Bool Glop . 0&gk Breakpoint Bt 2 Lee):

166 /% Bool| Set Watchpoint

167 while (In : loop body executed once */ _ll

168 Intexleave Dimsembly

163 Int 3_L Show Execution Context g_Loc:

170 /% In .

171 Proc_7 | Dissssembly ht 3 Loc):

172 4% o Goto

173 Int 1 L

174 P/ whil

175 4% Int | Addtowatch 3, Int 3 _Loc == 7 #/

176 Proc_8 (& . 1 Loc, Int 3 Loc);

177 s% Int | CoRY

178 Proc_1 (F Propertios... iy
| ' I ;lJ |

Figure 15. Add a variable to the Watch view by selecting it in the source
view.

7.Press the Enter key or click on the Evaluate button. The expression you
entered appears in the Expression column, and its value, being the address
of the variable, appears in the Value column.
7.1 Click on the + symbol to expand the display, and another line appears
showing the contents of the variable in the Value column.
7.2 Enter, in a similar way:
&Int_1_Loc
&Int 3 Loc
Run_Index
7.3 Expand these lines. The result is shown in Figure 16.

%57 3% SOC 7 B %4 2-11

Debugging and Evaluation

Add Watch

Expression;]Ru.n_Index Add To View |4- —

Processor: [ARM7TDMI | Evaluate |
Expression | Value | Close
SHARMITDMI {.} =

; fi o

Fiew

o Proc < -
(" Swstem

Tah
(& Tab] ———
" Tab2
(" Tab 3
| Tahd

Figure 16. Specifying variables to watch.

8. Select all the lines you have entered, as shown in Figure 16, ensure that
Proc is the selected View and Tab1 the selected Tab, then click the Add
To View button and the Close button.

9. The variables you have specified are now displayed in the Watch
processor view (similar to that shown in Figure 17), and if you expand the
lines you can see both the addresses and the contents of the variables.

9.1 Point to the value displayed for the Run_Index variable and right-click
to display the pop-up menu. Select Format — Decimal so that the

value of Run_Index is displayed as a decimal number.

ARM7TDMI - Waich
Tabl |Tsb2 | Tsb3 | Tab# |

Watch Walue
EsEnun_Loc 0x07FFFFDO
=X Ox0l
bow Ox01 { Ident 2 }

E-eInt_1_Loc 0xO7FFFFD3
EeInt 3 Loc 0xO7FFFFD4
Fun_Index 750

Figure 17. Watch processor view.

10. Press F10. This is equivalent to selecting Step from the Execute menu.
The program executes a single instruction and stops. Any values that
have changed in the Watch processor view are displayed in (red)color.

11. Press F10 repeatedly. As you execute the program, one instruction at a
time, the values of several of the variables change. After you have
allowed approximately 30 program instructions to execute, the value of
Run_Index increases by 1. The program has now completed one further
execution of the Dhrystone test.

2-12 #5738 SOC 7 P! &+

Debugging and Evaluation

12. Explore the various display options available from the pop-up menu. Try
some other settings in both the Format submenu and the Default Display
Options dialog displayed when you select Properties....

13. Press F5 to allow the program to complete its execution, then close down
the Variables processor view.

Examining the contents of registers and memory

I. Examining the contents of registers

To examine the contents of registers used by the currently loaded program:
1. Select Reload Current Image

2. Select Go to reach the first breakpoint, set by default at the beginning of
function main().

3. Select Registers from the Processor Views menu (Figure 7) and
reposition or resize the window if necessary.
3.1 The registers are arranged in groups, with only the group names visible
at first. Click on the + symbol of any group name to see the registers of
that group displayed. An example is shown in Figure 18.

Registers 3]
ARMTTDMI - Eegisters
Register Value
E-Current {eva}
rl 0x0000F4ED
-rl 0x00000000
r 2 000000000
bor3 000000041
rd 0x0000000D
r 5 0x%00000043
bors 0x000002EE
_— 0x0000F4ED
- r G 0x000002F5
borg 0x0000F5A4
-r10 0x0000FADC
rll 0x00000001
ber1z O%0000F4ED
-rl3 0x00000000
-rld 0x%00000000
bpeo 0%00008635
E-"-cps:: NecwqlFt 3WC
E-FI0 g
E-IRQ fi
370 It
E-ihort {ea}
E1ndef i)
E-Debug Comms Char{...}

Figure 18. Examining contents of registers.

4.Press F10. This is equivalent to selecting Step from the Execute
menu/toolbar (Figure 12). The program executes a single instruction and

v 3% SOC B gt it 2-13

Debugging and Evaluation

stops. Any values that have changed in the Registers processor view are
displayed in red.

5.Press F10 a few more times. As you execute the program, one instruction
at a time, you can see the values of some registers change.
5.1 You soon reach the point when you are prompted, in the Console
processor view, for the number of runs to perform. A very small number
(e.g., 300) is sufficient this time.

6. Explore the format options available from the Registers processor view
pop-up menu.

6.1 If you position the mouse pointer on a selectable line, right click will
select the line. You can change the display format of the selected lines
only.

6.2 You can select multiple lines by holding down the Shift or Ctrl keys
while you click on the relevant lines, in the usual way.

6.3 If you select Add to System from the pop-up menu, the currently
selected register is added to the Registers system view window. This
is particularly useful when your target has multiple processors and
you want to examine the contents of some registers of each processor.
Collecting the registers of interest into a single Registers system view
avoids having to display many separate processor views.

6.4 You can also select Add Register from the pop-up menu of the
Registers system view. This allows you to select registers from any
processor to add to those being displayed in the Registers processor
view.

7.Press F5 to allow the program to complete its execution, then close down
the Registers processor view.

Il. Examining the contents of memory
To examine the contents of memory used by the currently loaded program:

1. Select Reload Current Image

2. Select Go to reach the first breakpoint, set by default at the beginning of
function main().

3. Select Go to continue execution.

4.When you are prompted for the number of runs to execute, enter 760.
Execution continues until it reaches the breakpoint at line 759 for the 750"
time.

5. Select Memory from the Processor Views menu (Figure 7).
5.1 Addresses and contents of variables in Figure 19 shows that addresses
of interest are in the region of 0x07FFFFDO0, so set the Start address
value to, say, 0x07FFFF00.

2-14 #5738 SOC 7 P! &+

Debugging and Evaluation

Memory e m
ARM7TOMI - Memory Start address [Do7f£600 :|

Tabl - Hex - No prefix] Tsb2 - Hex - Wo prefix | Tab3 - Hexc- No pretix | Tabd - Hes:- No pretix |

Address o 1 2 5] 4 5 [7 3 9 a b c d i2 £ ASCIT ~

0x07FFFFO0 ES 1C ol ulu] 95 AE ulu] ulu] ulu] ulu] ulu] ulu] EO F4 ulu] D08 emecsec ooz
0x07FFFFLO F& nz ulu] oo oC F4 ulu] ulu] ulu] ulu] ulu] oo FO gF ulu] D08 cmiecaec ooz
0x07FFFFZ0 10 ulu] FF E7 ulu] ulu] ulu] ulu] 94 9B ulu] oo ol ulu] ulu] D08 cmiecaec ooz
0x07FFFF30 FF FF FF FF FF FF FF FF ulu] ulu] ulu] ulu] oC F4 ulu] D08 s e

0x07FFFF40 3C AD ulu] oo 0g AD ulu] ulu]] FF FF a7 ulu] ulu] ulu] ulu] | o—) R
0x07FFFFS0 FF FF FF F 14 AD ulu] ulu] Fg 1o ol oo 0 g3 ulu] 008 e moreceona ..

0x07FFFFG0 03 ulu] ulu] oo 43 ulu] ulu] ulu] ED nz ulu] oo D4 g6 ulu] ulu] D iy MU TE PRV
0x07FFFF70 00 ulu] ulu] oo z0 zZa FS 40 ulu] ulu] ulu] oo ulu] SE Fz 40 | IR [
0x07FFFFS0 00 ulu] g0 4C F z7 34 4z ulu] ulu] ulu] AD Fg nz ulu] ulu] S il | - TR

0x07FFFF0 44 45 5E 58 53 54 4F 4AE 45 z0 50 5E 4F 47 5a 41 DHEYSTONE PROGEA
0x07FFFFAD 4D zZC z0 3e 7 4AE 44 z0 53 54 5E 44 4AE 47 ulu] ulu] M, &'ND STRING..
0x07FFFFED 44 45 5E 58 53 54 4F 4AE 45 z0 50 5E 4F 47 5a 41 DHEYSTONE PROGEA
0x07FFFFCO 4D zZC z0 3l 7 53 54 z0 53 54 5E 44 4AE 47 ulu] ulu] M, 1'3T STRING..
0x07FFFFDO 01 FF FF a7 o7 ulu] ulu] ulu] 05 ulu] ulu] oo E& 1C ol D08 cmiecaec ooz
0x07FFFFEOD 98 AE ulu] oo ulu] ulu] ulu] ulu] ulu] ulu] ulu] oo ulu] ulu] ulu] D08 cmiecaec ooz
Ox07FFFFFD Ad F5 ulu] oo oC F4 ulu] ulu] ulu] ulu] ulu] oo A0 AE ulu] D08 cmiecaec ooz
0x05000000 10 ulu] FF E7 oo Es ulu] Eg 10 ulu] FF E7 ulu] Es ulu] A0 A R PP o

Figure 19. Examining contents of memory.

6.Press F10 (or Step from the Execute menu). The program executes a
single instruction and stops. Any values that have changed in the Memory
processor view are displayed in red.

7. Press F10 a few more times. As you execute the program, one instruction
at a time, you can see the values stored in several of the memory
addresses change.

8. Explore the format options available in the Memory processor view pop-
up menu. Size settings appear both on the pop-up menu and in the dialog
displayed when you select Properties... from the pop-up menu.

lll. Locating and changing values and verifying changes
To locate a value (of a variable or string, for example) in memory and change it:

1. Select Reload Current Image

2. Select Go to reach the first breakpoint, set by default at the beginning of
function main().

3. Select Memory from the Search menu (Figure 1). A window shown in

Figure 20 appears.

3.1 Enter 2°ND in the Search for field, set the In range and to addresses
to 0x0 and OxFFFF,

3.2 Select ASCII for the Search string type, and click the Find button. A
Memory processor view opens and shows the contents of an area of
memory, with the string you specified highlighted. Reposition, resize
and/or adjust the resolution of the window if necessary.

To see a display similar to that in Figure 21, You might have to right-
click in the window to display the pop-up menu and set Size to 8 bit
and Format to Hex - No prefix.

3.3 Click Cancel to close Search Memory Window.

v 3% SOC B gt it 2-15

Debugging and Evaluation

Search Memory

Processor: |ARM7TDMI | Find |
Searchfor; |2ND | _

Inrange |00 to [O:FFFF [t |

S e _ Comcel |
(o ARCII (" Hexadecimal Help

Figure 20. Search for a string in memory.

Memory =
ARM7TDMI - Memory Start address |IEeE] <+
Tsb1 - Hexc- Mo prefix | Tab - Hexc- Mo pretixc | Tab3 - Hexc- No profi | Tabd - Hex- Na prefix |

Address < = = - 5 e - [A3CI ~
oxoooosspo 45 20 5o sz 4F 47 sz 41 40z 20 EENIEEEEE 14 el EPRDGRMI

0x000059E0 53 54 52 43 4E 47 oo o 44 43 52 5% 53 54 4F 4E STRING. .DHEYITON
0x000059F0 45 20 50 52 4F 47 52 41 4D ZC 20 33 27 52 44 zZ0 E PROGRAM, 3'ED
0x00005A00 53 54 52 45 4E 47 oo oo 45 78 65 63 75 74 68 &F STRING. .Executio
MvnNnRLIn AF 20 A5 AR RA TR ni o 4s Ra AT Al AC 7N TR Al n oends Final wa O

Figure 21. Search for string in memory (2°’ND).

4.In Memory processor view, the four hexadecimal values highlighted are
32 27 4E 44.
4.1 An example of entering a hexadecimal value: Double-click on the
value 32 and type 0x4E and press Enter. The corresponding change in
ASCII column will be “2’ND” = “N°ND”.

4.2 An example of entering an ASCII value: Double-click on the value 27
and type "o (a double quote followed by a lowercase letter o) and
press Enter. The corresponding change in ASCII column will be “N’ND”
= “NoND’.

4.3 An example of entering a decimal value: Double-click on the value 4E
(the one before 44) and type 46 and press Enter. The corresponding
change in ASCII column will be “NoND” = “No.D’.

4.4 An example of entering an octal value: Double-click on the value 44
and type 062 and press Enter. The corresponding change in ASCII
column will be “No.D” =» “No.2".

5. Press F5 (or Go) to continue execution, and enter a value of, say, 700 when
you are prompted in the Console processor view for the number of runs to
perform.

When the program displays its messages in the Console Window after
completing its tests you can see that one of the lines that in earlier examples
included the text 2’ND STRING now has No.2 STRING instead because of
the change you made.

6. Close AXD and CodeWarrior

2-16 #5738 SOC 7 P! &+

Debugging and Evaluation

2.2.2. Software Quality Measurement

Memory requirement of the program

1. Double click on dhryansi.mcp, and then Make dhryansi.mcp
1.1 A compiling and linking status window would appear to indicate making
progress.
1.2 After finishing compiling and linking, the Errors and Warnings
window would appear, as shown in Figure 22.

i@ Errors & Warnings E@&]
Errors and warndngs for 8 horans mep

Image COnponent sizes

Code RO Data RV Data ZI Data Debug

3788 &0 o 10244 12604 Object Totals
25260 762 o 304 9480 Library Totals
Code RO Data RV Data ZI Data Debugy

29048 822 o 10548 22084 Grand Totals
Total RO §ize(Code + RO Data) 29870 [29.17E)
Total BW §ize(RW Data + ZI Data) 10548 | 10.30%E)
Total ROM $ize(Code + RO Data + BV Data) 29870 [29.17E)

ie)

4
-

-h'{.}vnvv @ - Path:

ol
&
m|

Ling 1 Coll [4] | [

Figure 22. Show Code and Data Size by using -info totals.

2. Select DebugRel Settings from Project Window
2.1 Change the ARM Linker option from —info totals to -info sizes in
Equivalent Command Line, as shown in Figure 23.
2.2 Make the project again and then check the Errors and Warnings
window. A much more detailed memory requirement for each object
file and library file is listed.

v 3% SOC B gt it 2-17

Debugging and Evaluation

im DebugRel Sethngs

[Tareet Setiings Fansls [T ARH Linker
= Target - = e
. Target Settings —| Cuiput]Oph.on.s] Layout] megs] Eatraz]
« Mceess Paths i~ Linktype | Simple dmage)
. Enild Estras (" Partial RO Base EW Base I~ Ropi [Relocatsble
< Runtime Settings (v Simple |0=8000 | I~ Rwpi
- File Mappings | Seattered [~ Split Tmege
- Bource Trees) ' a
-~ ARM Ta.rgfat Scatter description file | Choose...J
= Language Jettings L | Choass
. ARM hsembler Ewmbol definitions
- ARM C Compiler 5 it | Choozs ..
~nbol editing
o ARM Ct++ Compiler
- Thomb C Compiler — Equivalent Command Line
- Thumb C++ Compi... -info sizes @——
= Linker
. ARM fromELF
= Editor =
Fartory Settings Fewert Import Panel... I Export Panel... |
ok | Comel | poy |

Figure 23. DebugRel Settings for ARM Link output

Profiling

1. After making the project, launch AXD Debugger. Then
1.1 Select File®»Load Image to load image file from
C:\ARMSoC\Lab_02\dhryansi_Data\DebugRel\dhryansi.axf.
1.2 Check the Profile checkbox, as shown in Figure 24.

L-oad Image

BB D | DebugRel | e ek E-
|5 ObjectCade
! B dhuvans

BREH: [dhomns Ea L= o]
RN [AXF Image (*aod) -] i

Processors

: v Prafile >l"“ Call graph profiling Interval: {100 [microzeconds)

+ Flat profiling

Figure 24. Load image with Profiling functionality.

1.3 Select Options = Profiling =» Toggle Profiling if necessary to
ensure that Toggle Profiling is checked in the Profiling submenu of the
Options menu.

1.3.1 Select call graph profiling or flat profiling as your need.

2-18 #5738 SOC 7 P! &+

Debugging and Evaluation

1.4 Select Options=2»Profiling=»Clear Collected to clear previous
profiling data if necessary.

1.5 Execute your program (Hit the Go button). Find your source file if

asked, and then Hit Go button again.

Type 8000 in the Console Window when be asked.

When the program terminates, select Options = Profiling = Write to

File.

1.7 A Save dialog appears. Enter a file name (e.g., dhryansi) and specify
a directory if necessary. Click the Save button.

1.8 Lunch DOS command line window and change to the directory you
specified in last directory. Type armprof dhryansi.prf under the DOS
command line to view the profiling information. Save the information. It
will be used later.

—_
(o) e))

Note
* You cannot display profiling information in AXD. Use the Profiling
functions on the Options menu to capture profiling information, then use
the armprof command-line tool.
* If you want to save the profiling information. Type armprof filename.prf >
filename.log in command line. Profiling information will save into the
filename.log

To collect information on a specific part of the execution:

1.Load (or reload) the program with profiling enabled.

2.0pen the Source Window (Ctrl+S, and then choose dhry _1.c). Set a
breakpoint at the beginning of the region of interest (e.g., start of for loop at
line number 7155), and another at the end (e.g., the end of for loop at line
number 799, then a breakpoint icon will be shown at line number 213).

3. Execute the program and type 8000 in the Console Window when be
asked in Console.

4. Execute the program as far as the beginning of the region of interest. Clear
any profiling information already collected by selecting Options =
Profiling = Clear Collected, and ensure that Toggle Profiling is checked.

5. Execute the program as far as the breakpoint at the end of the region of
interest.

6. Select Options = Profiling = Write to File and specify the name of a file
in which to save the profiling information.

7. Compare this result with the one you saved before.

Performance benchmarking

This section is based on ARM Application Note 93: Benchmarking with
ARMulator, March 2002.

I. Cycle counting example: Dhrystone using the ARM7TDMI

1.I1f necessary, select File=*Load Image to load image file from
C:\ARMSoC\Lab_02\dhryansi_Data\DebugRel\dhryansi.axf.

2. Within AXD select Options = Configure Target...

v 3% SOC B gt it 2-19

Debugging and Evaluation

2.1 Select ARMUL as the target and click on the Configure button.

2.2 Select the ARM7TDMI as the processor variant, select the debug
endian as start target endian, and ensure that the check box for
Floating Point Emulation is cleared, then click OK.

2.3 Choose OK in the configuration dialog.

2.4 Click Yes when asked to reload the last image

3. Select Processor Views = Low Level Symbols and locate Proc_6 in the
Low Level Symbols window.
3.1 Right-click on it and select Locate Disassembly.
3.2 Place a breakpoint on this line (Proc_6) in the Disassembly window.

4. Click on the Go button (or press F5) to begin execution, the program will
run to main.
4.1 Click on Go again, the program will run, when prompted, request at
least two runs through Dhrystone. The program will then run to the
breakpoint at Proc_6 and stop.

5. Select System Views= Debugger Internals and click on the Statistics
tab in the Debugger Internals window.

5.1 Right-click in the Statistics pane and select Add New Reference Point.

5.2 Enter a suitable name (e.g., Proc_6_cycle) when prompted and click
on OK.

6. Click on the Go button.

6.1 When the breakpoint at Proc_6 is reached again, the contents of the
reference point are updated to reflect the number of instructions and
cycles consumed for one iteration of the loop.

6.2 The result shown in Console window also reveals some information
about running the benchmark program

Il. Estimate the execution time
1. Clear all breakpoints. (Alt+K = Delete All)

2. Select Options =®*Configure Target...then click on the Configure button.

3.In ARMulator Configuration window, mark the clock as Emulated and set
Speed as 10MHz

4. Reload the executable image
5. Click on the Go button.
6. When prompted, request 30000 (don’t use 30,000) runs through Dhrystone.
7.Check the result on Console window.
The information reveals the Microseconds for one run through

Dhrystone (the smaller the better) and Dhrystones per Second (the larger
the better). Record these values.

2-20 #5738 SOC 7 P! &+

Debugging and Evaluation

8.Check internal variable $sys clock, which records the number of
centiseconds since the simulation started.
8.1 To display this value, select System Views =»Debugger
Internals ®»Internal Variables)
8.2 You may change the format of $sys_clock to decimal. Record this
value, said sys_time.

9. Check the total cycle count .Total shown in the Statistics tab .
9.1 The execution time = Cycle count / Cycle Frequency. As we set the
bus frequency to 10MHz, we can calculate the total execution time =
(total cycle count/ (10x10°)) in second. Then (sys_time/100) should
approximate to cyc_time.

10. Reload the executable image, repeat the steps 5~7 except that request
40000 runs through Dhrystone. The results shown on Console window
should be the same that in step 6.

11. Reload the executable image, repeat the steps 2~7 except that set the
Emulated Speed as 20MHz.
11.1 What message is shown on Console window?

12. Repeat the actions at step 11 except that request 60000 runs through
Dhrystone.
12.1 What is the difference between this result and the result at step 77

Note

* If the system clock is set to Real-time, then $sys_clock will return actual
time using the host computer’s real-time clock rather than simulated
execution time. This will benchmark the performance of the host
computer!

* Note that entering a speed without specifying units assumes for example
50 assumes 50Hz rather than 50MHz. Speeds given in kHz and GHz are
also acceptable.

lll. Performance estimation using different Memory models

The default setting for the ARMulator is to model a system with 4GB of zero
wait state 32bit memory. However, real systems are unlikely to have such an
ideal memory system! Hence an alternative memory model called mapfile can
be used. The mapfile memory model reads a memory description file called a
map file which describes the type and speed of memory in a simulated system.

Note
* ARMulator accepts a map file of any name. The file must have the
extension .map or .txt for the browse facility to recognize it; however, any
extension may be used if you are entering the path and filename explicitly
in the map file text entry field.

v 3% SOC B gt it 2-21

Debugging and Evaluation

To calculate the number of wait states for each possible type of memory
access, the ARMulator uses the values supplied in the map file and the
clock frequency specified to the model.

For cached cores, the clock frequency specified is the core clock frequency.
The bus clock frequency = core clock frequency / MCCFG. The derived
bus clock frequency is used to calculate wait states in cached cores.

Note
* ARMulator constant - MCCFG is specified in install _directory\Bin*.ami. If
there is no other processor specified, Default.ami will be used. use The
default setting in default.amiis MCCFG=3. See ARM® Developer Suite
Debug Target Guide for more information.

In the following steps, we will use armsd.map located at C:\Program
Files\ARM\ADSv1_2\Examples\dhry\ as the map file. This map file describes
a system

00000000 80000000 RAM 4 RW 135/85 135/85

Memory section: start at address 0x0, length 0x80000000 bytes
labeled as RAM, has a 4-byte(32-bit) bus

read and write access

read access times of 135ns nonsequential and 85ns sequential
write access times of 135ns nonsequential and 85ns sequential
1. Clear all breakpoints

2. Select Options =®*Configure Target...then click on the Configure button.
2.1 Mark the clock as Emulated and set Speed as 10MHz
2.2 Specify the Map File through browsing to C:\Program
Files\ARM\ADSv1_2\Examples\dhry\armsd.map

4. Press OK’s and then Reload the executable image.

5. Click on the Go button.

6. When prompted, request 30,000 runs through Dhrystone.

7.Check the result on Console window.
The information reveals the Microseconds for one run through
Dhrystone (the smaller the better) and Dhrystones per Second (the larger

the better). Record these values and compare with those values you
recorded at step 7 in Section Il. Estimate the execution time.

8. Check internal variable $sys_clock and compare with that you got at step 8
in Section Il. Estimate the execution time. Remember the data format
should be the same, i.e., decimal. The performance should be worse.

9. Read the memory statistics

2-22 #5738 SOC 7 P! &+

Debugging and Evaluation

9.1 Open Command Line Interface Window (ALT+L)

9.2 Enter command di (short form of dbginternal), and press any key (e.g.,
enter) until $memstates are displayed. In this case, only single
memory is used and therefore $memstates[0] is displayed. You can
also read memory statistics in Debugger Internals.

IV. Benchmarking cached cores

1. Edit default.ami located at C:\Program Files\ARM\ADSv1_2\Bin\
1.1 If MCCFG=3, set MCCFG=3, quit AXD and launch it again.

2. Select Options =®*Configure Target...then click on the Configure button.
2.1 Select Processor variant as ARM940T
2.2 Mark the clock as Emulated and set Speed as 10MHz
2.3 Specify the memory file through browsing to C:\Program
Files\ARM\ADSv1_2\Examples\dhry\armsd.map

3. After the step 2, check the message shown in ARMulator startup banner:
System Output Monitor - RDI Log. An example result is displayed in
Figure 25.

Output o —1
Sarstem Otpot Mondtor
EDI Log 1 Debug Log]
Log file:

For support please contact support-swi@arm, com.
Software supplied by: &RM Ltd
ARMI40T, KB |-cache, 4KB D-cache, 10.00MHz FCLE, [Phyzical memory, BIL],
Little endian, Semihosting, Debug Commz Channel, 3.3MHz, 4GB, Mapfile, Timer,
Prafiler, Tube, Millizecond [33332.33 cycles_per_milizecond)], Pagetables, [ntChrl,
Tracer, RDI Codesequences
ARM RO 151 -» A5YNC RDI Protocol Converter A0S v1.2 [Build number 842]. Copyright [c] AR Limited 2007,
kemorny map:
00000000, FECEEEE, 32-Bit, wr, wait states: AM=0"WHN=0 RS=0"'WS5=0RI15=0]5=0
£ [>

Figure 25. ARMulator startup Message.

4. Load C:\ARMSoC\Lab_02\dhryansi_Data\DebugRel\dhryansi.axf.
5. Click on the Go button.
6. When prompted, request 40000 runs through Dhrystone.

7. When the program is terminated, open Command Line Interface Window
and enter print $statistics. An example result is displayed in Figure 25.

5 IR SOC # B 44 2-23

Debugging and Evaluation

Command Line Interface ; 3]
Comumand Line Interface
Debug >print §statistics h
§statistics FtEucture
.Instructions unsigned 0x0000000000ESEDAS
.Core_Cycles unsigned 0x0000000001731634
.Instr Cache Hitz unsigmed 0x0000000001389CED
.Instr Cache_Mizzes unsigned Ox0000000000000601
.Inztr Cache_Fills unsigned Ox0000000000000601
.D'ata Cache_Read Hits unsigned 0x000000000036D 375
.Data Cache PRead Mizszez unsigned Ox00000000000000FD
.Data Cache_Write Hits unsigned 0x000000000024431E
.Data Cache Write Mizzes unsigned Ox00000000000468E9
.Data Cache_Fills unsigned 0x00000000000000FD
JE_Gtalls unsigned 0x0000000000001228
Jumber of Core Clocks unsigned 0x0000000001L73B15%E
. 3_Cycles unsigned 0x000000000004730D
. N _Cycles unsigned Ox0000000000000000
. A Cycles unsigned 0x000000000077 720D
.C_Cwcles unsigmed Ox00000000Q00000000
WMait_States unsigned 0x0000000000000000
.Total unsigned 0x00000000007EESEA 8

8. Edit default.ami

Figure 26. Brief statistics.

8.1 For ADS 1.2, set Counters=True after the line setting MCCFG=3;
for ADS 1.1, add Counters=True after the line setting MCCFG.

Choose 8.2a or 8.2b step:

8.2a Select Options=2»Configure Target...then click on the Configure

button. Select OK
8.2b Quit AXD and then restart

it.

9.0pen Command Line Interface Window and enter print $statistics.
Additional statistics for cached core is displayed, as one example displayed
in Figure 27. Because we do not start the execution of the program, all

values are zero.

Command Line Interface c — B
Corumand Line Interface
.Instructions unsigned Ox0000000000000000 e
.Core_Cycles unsigned Ox0000000000a00000
.Instr Cache Hitz unsigned O0x0000000000000000
.Instr Cache Misses unsimmed 0x0000000000000000
.Instr Cache_Fills unsigned 0x0000000000000000
.Data Cache_Read Hits unzigned 0=0000000000000000
.Data Cache_ Read Misses unsigned 0x0000000000000000
.Data Cache_UWrite_Hits unsigned 0x0000000000000000
.Data Cache Write Misses unsigned Ox0000000000000000
.Data Cache_Fills unsigned 0x0000000000000000
LB _3talls unsigned Ox0000000000000000
Mumber of Core Clocks unsigned 0x0000000000000257
. 3_Cycles unsigned 0x0000000000000000
. W_Cycles unsigned 0x000000000000000a0
. & Cycles unsigned 0x0000000000000000
.C_Cycle= ursigned Ox0000000000000000
WMait_States unsigned 0x0000000000000000
.Total unsigned Ox0000000000000000
Presz Esc to abort output; Any key for next page. 3
Debug >| w

Figure 27. Cached core additional statistics.

2-24

¥ v % SOC m g %1t

Debugging and Evaluation

10. Click on the Go button.
10.1 Set a breakpoint on the line 758 of the source file, the Proc_5().
10.2 Select System Views =»Debugger Internals D Statisticss.

11. Click on the Go button.
11.1When prompted, check the values at Statistics tab.
11.2Right Click on Statistics tab and select Add New Reference Point.
Enter iter_1 in the pop-up window. The new reference point will
appear with zero values.
11.2 Request 40000 runs through Dhrystone in the Console Window.

12. When the debugger halts at the breakpoint, check the values of iter_1
and record Total cycle count.
12.1 Add another new reference point, named as iter_2.
12.2 Resume the program.

13. When the debugger halts at the breakpoint, check the values of iter_2
and record Total cycle count.
12.1 Add another new reference point, named as iter_3.
13.2 Resume the program.

14. When the debugger halts at the breakpoint, check the values of iter_3
and record Total cycle count.
14.1Clear or disable the breakpoint on the line 158 and resume the
program.

The change of the total cycle of iter_1, iter_2 and iter_3 could be 10281 =
849 = 317. For the first iteration of the loop, the loop instructions and data
would not be held in the cache memory, hence there are many cache misses
and the total cycle is large. After several iterations, the Dhrystone loop will be
held in cache memory and therefore the total cycle for each iteration is
reduced.

Efficient C programming

1.Edit a copy of loop.c shown in Figure 28. Build it by using ARM
Executable Image Project template and then record its memory
requirement.

v 3% SOC B gt it 2-25

Debugging and Evaluation

1 #include <stdio.h>

2

3 int acc(int n) {

4 int i; //loop index
5

6

7

8

int sum=0;

for (i=1; i<=n ;i++)

sum+=i;

9 return sum;
10
11 1}
12
13
14 int main(void) {
15 int acc_val;
16
17 acc_val=acc(10);
18 printf ("$d\n",acc_val);
19
20 return 0;
21
22 '}

Figure 28. loop.c

2. Load the executable image of loop.c into AXD.
2.1 Open Processor Register View and extend the Current Register.
2.2 Select Options 2*Configure Target...then click on the Configure
button.
2.3 Select Processor variant as ARM7TDMI
2.4 Mark the Clock as Real-time
2.5 Specify the Memory Map File as No Map File

3. Stepping Mode in Strong Source

3.1 Right click on Disassembly window and set Stepping Mode in
Strong Source.

3.2 Set the format of r0 as Decimal.

3.3 Step in through the program, check how the argument is passed to
acc(). (rO is changed to 10)

3.4 During the execution of acc(), which registers are used?

3.5 Check which register is used to pass result back to main(). (sum is
passed through r0)

4. Click Go button to finish the rest of the program.

5 Reload the image.
5.1 Set two breakpoints, one on for (i=0; i<=n ;i++) and the other on
return sum;
5.2 Click Go button. When the program halt at breakpoint on for (i=0; i<=n;
i++), add a new reference point, named as /oop_time.
5.3 Click Go button again. Record the Total cycle count as loop_time
when the program halt at breakpoint on refurn sum.

2-26 #5738 SOC 7 P! &+

Debugging and Evaluation

5.4 Click Go button to finish the rest of the program. Record the Total
cycle count of &statistics.

6. Copy loop.c to a new file named as loop_opt.c
6.1 Change the statement for (i=1; i<=n ;i++) to for (i=n; i!=0 ;i--)
6.2 Build it and compare its memory requirement with /oop.c

7.Load the executable image of loop_opt.c into AXD.
7.1 Repeat step 3 and 4. Compare the results with those of loop.c.
7.2 Repeat step 5. Compare the result with that of /oop.c.

2.3. Exercises

Analyze the Dhrystone benchmark according to following lab requests
(Dhrystone program: dhry_1.c, dhry_2.c, dhry.h)

1. Compile the Dhrystone benchmark program using ARM and Thumb
instructions according to the setting below. Record the information of code
size and performance.

Code size : ROM size

Performance: instruction count, Core_Cycles, Total_Cycles,

$sys_clock, Dhrystones per Second

e Setting:
- Default target : Release
- ARMulator processor: ARM 7TDMI
- ARMulator clock : Emulated (10MHz, 50MHz, 100MHz)
- Memory map file : armsd.map
— Number of run : 100000 times

Please compare the code size and performance of using ARM/Thumb
instructions, and explain the result.

2. Compile the Dhrystone benchmark program to different ARM core and
different emulated speed using ARM and Thumb instructions according to
the setting below. Record the information of code size and performance.
Code size : ROM size
Performance: $sys_clock, Core_Cycles, Total_Cycles,
Cache Efficiency, Instructions count, Instr Cache_Misses,
Data Cache Read_ Misses, Data Cache Write Misses

e Setting:
- Default target : Release
- ARMulator processor: ARM940T
- ARMulator clock : Emulated (10MHz, 50MHz, 100MHz)
- Memory map file : armsd.map
- Number of run : 50000, 100000, 200000 times

v 3% SOC B gt it 2-27

Debugging and Evaluation

Please compare the code size and performance of using ARM/Thumb
instructions, and explain the result.

3. According to the setting below, minimize the code size and enhance the
performance using skills of interworking and coding style to optimize the
Dhrystone benchmark program, and record the result of code size and
performance.
Code size : ROM size
Performance: $sys_clock, Core_Cycles, Total_Cycles,
Cache Efficiency, Instructions count, Instr Cache_Misses,
Data Cache Read Misses, Data Cache_Write_Misses,

e Setting:
- Default target : Release
- ARMulator processor: ARM940T
- ARMulator clock : Emulated (10MHz, 50MHz, 100MHz)
- Memory map file : armsd.map
-~ Number of run : 50000, 100000, 200000 times

Report the skills to optimize the code and the comparison of performance
and code size between optimized code and original one. Try to explain the
effect of the skills.

2.4. Reference

« DUIO151A Debugging skills: ADS Debugger Guide, “ADS Compiler,
Linker, and Utilities Guide”.

* Profiling: “Application Note 93: Benchmarking with ARMulator”

» Efficient C programming: “Application Note 34: Writing Efficient C for
ARM”

* http://twins.ee.nctu.edu.tw/courses/ip_core 02/index.html

e http://twins.ee.nctu.edu.tw/courses/ip_core_01/index.html

[11 IEEE standard specifications for the implementations of 8x8 inverse
discrete cosine transform, IEEE Std 1180-1990, March 1991

[2] Tadashi Sakamoto and Tomohiro Hase, “Software JPEG for a 32-bit
MCU with dual issue,” IEEE Transactions on Consumer Electronics, Vol.
44 Issue: 4, Nov. 1998, pp. 1334 -1341.

[3] Alan Lewis and Paul Carpenter, “Optimizing digital video codecs in ARM
cores,” EE Times, Sep. 20, 2001.

[4] http://www.nondot.org/sabre/graphpro/line3.html#What

2-28 7 #% SOC B B! 14

Debugging and Evaluation
2.5. Appendix

The MIPS figures which ARM (and most of the industry) quotes are
"Dhrystone VAX MIPs". The idea behind this measure is to compare the
performance of a machine (in our case, an ARM system) against the
performance of a reference machine. The industry adopted the VAX 11/780
as the reference 1 MIP machine. The benchmark is calculated by measuring
the number of Dhrystones per second for the system, and then dividing that
figure by the number of Dhrystones per second achieved by the reference
machine. So "80 MIPS" means "80 Dhrystone VAX MIPS", which means 80
times faster than a VAX 11/780. The reason for comparing against a
reference machine is that it avoids the need to argue about differences in
instruction sets. RISC processors tend to have lots of simple instructions.
CISC machines like x86 and VAX tend to have more complex instructions. If
you just counted the number of instructions per second of a machine directly,
then machines with simple instructions would get higher instructions-per-
second results, even though it would not be telling you whether it gets the job
done any faster. By comparing how fast a machine gets a given piece of work
done against how fast other machines get that piece of work done, the
question of the different instruction sets is avoided.

There are two different versions of the Dhrystone benchmark commonly
quoted:

* Dhrystone 1.1

e Dhrystone 2.1

ARM quotes Dhrystone 2.1 figures. The VAX 11/780 achieves 1757
Dhrystones per second. The maximum performance of the ARM7 family is 0.9
Dhrystone VAX MIPS per MHz. The maximum performance of the ARM9
family is 1.1 Dhrystone VAX MIPS per MHz. These figures assume ARM code
running from 32-bit wide, zero wait-state memory. If there are wait-states, or
(for cores with caches) the caches are disabled, then the performance figures
will be lower. To estimate how many ARM instructions are executed per
second then simply divide the frequency by the average CPI (Cycles Per
Instruction) for the core. For example:

The average CPI for the ARM7 family is about 1.9 cycles per instruction.

The average CPI for the ARM9 family is about 1.5 cycles per instruction.

What is fixed point?

Fixed Point numbers are a simple way to store floating point information in
an integer number. They are a very useful with limited computing resource.
They only store a set number of decimal places, and are therefore slightly
inaccurate. But they can reduce so many computing power and time. Some
describe as follow.

The first example are in base 10. This is an easy base for humans to deal
with, but is very cumbersome with computers. Therefore, in real applications
we use base 2.

5 3% SOC 7 B #cH4 2-29

Debugging and Evaluation

- Example 1:
Suppose you have the following number : 180.4527

Because you are working with performance intensive applications, you
need good performance. Naturally, you try to us integer math. Unfortunately,
you find that the ".4527" is an important part of the information. So you do the

following:

IntX = 1804527,

You could see that the number above is that same number as the one
farther above, it is just "shifted" four places to the left. This leaves you with a
(bigger) integer number. But how do you print it out?

WRITELN('This number was stored in an integer: ', IntX / (10%));

{ "Shifted" four places }

What is great about this system is that you can add numbers very easily:

IntX := 1804527; {180.4527 }

IntY := 0005473; { 0.5473}

IntZ := IntX+IntY; {IntZ now = 1810000 }

RealZ := IntZ / (10%); { RealZ = 181.0 }

You can multiply two numbers with integer routines.

- Example2:
Suppose you have the following number: 0.125

In reality, we will be using base 2 fixed point numbers. So you can see the
following:

IntX = 1

And shifted 3 place

WRITELN ('This number was stored in an integer: ', IntX / (2%));

{ "Shifted" three places } «J

You can describe numbers very easily, and without floating point:

IntX = 1; {0.125 (1 /2%, 0.5 (1/2), and so on}

IntY = 3; {0.375 (3/2%), 0.1875 (1/2*), and so on}

IntZ = 5; {0.15625 (5/2°), 0.3125 (1/2%), and so on}

This means that we will use this for divide and multiply.

this is a huge improvement over using floating point. It also lets people
without a coprocessor create and use high performance routines (ex: FFT,
DCT).

2-30 7 #% SOC B B! 14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

