
Appendix A

Setting Up ARMulator

The ARMulator can simulate various ARM cores and ARM development boards.
However, the default settings of the ARMulator is different from that of an In-
tegrator. Before you start doing the exercises, you have to make the ARMulator
behave like the development board you are using. You have to modify the source
code of high-level modules for the ARMulator and set a few processor core pa-
rameters. The following sections demonstrate how to set up an ARMulator
as an Integrator/CM7TDMI mounting on an Integrator/AP. If you are using
other development board or other core modules, refer to the user guides of these
components for more detailed information.

A.1 Configure Processor Parameters

1. Start AXD, and then select Options → Configure Target from menu.
Choose ARMUL as target and then press Configure button on the left.

2. Configure ARMulator as below.

• Processor: ARM7TDMI

• Clock: Emulated 10MHz1

• Floating Point Emulation: No

• Memory Map File: select a map file

The default setting for the ARMulator is to model a system with 4GB
of zero wait state 32bit memory. However, real systems are unlikely to
have such an ideal memory system. An alternative memory model can be
defined by memory-map file. The map file contains one or more entries,
each entry describes the type and speed of a memory block in the system.
Check [1] for an in-depth view about memory-map.

The syntax of memory mapping is shown in the entry below:

start size name width access read-times write-times

1Do NOT forget to include the unit “MHz” when defining the clock rate. The default unit
for clock rate is Hz, so a plain 10 means to operate at 10Hz only. Real Integrator/AP supports
operating frequency ranging from 3MHz to 50MHz with a 0.5MHz step.

1

2 APPENDIX A. SETTING UP ARMULATOR

The meaning of each column is:

start memory start address in hexadecimal

size memory size in hexadecimal in byte

name descriptive name

width data bus width in byte

access access right
(r for read only, w for write only, rw for read-write, - for no access)

read-times sequential/non-sequential read access times in nano-second

write-times sequential/non-sequential write access times in nano-second

An example memory map with 32kB SRAM followed by 32kB ROM and
256MB DRAM is listed below. The DRAM has a redced size of 0xFFF0000
since the lower 64kB is overlapped by the SRAM and ROM.

00000000 8000 SRAM 4 RW 1/1 1/1
00008000 8000 ROM 2 R 100/100 100/100
00010000 FFF0000 DRAM 2 RW 150/100 150/100

A.2 Modify High-level Modules

The high-level module is a module written in C language that can be plugged
into the ARMulator to simulate the functionality of the hardware. Since the
memory mapping of timer and interrupt controller is inconsistent between the
ARMulator and Integrator, you have to make the following modifications cor-
recting the differences. Check [2] for more details on the peripherals of Integra-
tor/AP.

1. Re-define peripheral I/O mapping in high-level model.

Edit $ADS ROOT/ARMulate/armulext/timer.c. Find the follow-
ing code segment near line 129. Originally, the base address is 0x0A000000
and the mamory mapping range is 0x40.

err = ARMulif_RBusRange(&state->coredesc, state->hostif,
ToolConf_FlatChild(config, (tag_t)"RANGE"),
&state->my_bpar,
0x0A000000,0x40,"");

Change the timer’s I/O base address and range to 0x13000000 and
0x300, respectively.

err = ARMulif_RBusRange(&state->coredesc, state->hostif,
ToolConf_FlatChild(config, (tag_t)"RANGE"),
&state->my_bpar,
0x13000000,0x300,"");

A.2. MODIFY HIGH-LEVEL MODULES 3

2. Go to line near 640. Rewrite the code calculating the offset of an access
event. The original code use bit masking to get the address offset indicat-
ing a specific event. This method requires that the masked bits of base
address to be zero. For example, the base address 0x13000100 causes an
error since 0x13000100 & 0x000003FF is an non-zero value 0x00000100.
An access to 0x13000104 will get 0x00000104 instead of its real offset
0x00000004. In addition, you have to make extra modifications to the
mask whenever the memory mapping range is changed.

unsigned long maskedAddress = addr & 0x000003FF;

The modified version use substraction to get the address offset. This
method is more flexible since the limit on base address is removed.

unsigned long maskedAddress =
((unsigned long) addr - (0x13000000));

3. Go to line near 650, where you will see a switch(maskedAddress) state-
ment. Edit each case item so the offset values match that in Table A.1.

case 0x100: /* TIMER1 Load */
*word = ts->timer1.TimerLoad & 0x0000FFFF;
break;

case 0x104: /* TIMER1 Value */
*word = ValueRegR(ts, &ts->timer1);
break;

case 0x108: /* TIMER1 Control*/
*word = ts->timer1.TimerControl;
break;

...

There are three timers on Integrator/AP, but timer.c only defines two
timers. You can selectively map the timers to any two of the three timers
on Integrator. If all three timers are needed to complete the simulation,
install an additional high-level module for the third timer. Throughout
the lab exercises, we will map the two timers to TIMER1 at 0x13000100
and TIMER2 at 0x13000200 and leave TIMER0 unmapped. The reason
to leave TIMER0 unmapped is that the µC/OS-II used in Lab RTOS
requires TIMER1 and TIMER2 but not TIMER0.

4. Re-compile and install the high-level model for timer. In command line, go
to $ADS ROOT/ARMulate/armulext/timer.b/intelrel/ and run
nmake2. Copy the compiled timer.dll to directory $ADS ROOT/Bin.

5. Edit corresponding section in $ADS ROOT/Bin/peripherals.ami and
$ADS ROOT/Bin/peripherals.dsc for timer module. It is important
to set the interrupt numbers IntOne for the first timer and IntTwo for
the second timer. The interrupt numbers are listed in Table A.3.

Re-define timer in peripherals.ami:

2You must have Visual C++ installed and environment variables correctly set.

4 APPENDIX A. SETTING UP ARMULATOR

{Default_Timer=Timer
Waits=0
Range:Base=0x13000000
CLK=20000000
IntOne=6
IntTwo=7

}

Re-define timer in peripherals.dsc:

{Timer
meta_sordi_dll=Timer
META_GUI_INTERFACE=Timer
Waits=0
Range:Base=0x13000000
CLK=20000000
TicMCCfg=2
IntOne=6
IntTwo=7

}
{No_Timer=Nothing

META_GUI_INTERFACE=Timer
}

6. Repeat step 1–5 for interrupt controller

Edit $ADS ROOT/ARMulate/armulext/intc.c, the source file of in-
terrupt controller. The intc.c only defines one interrupt controller while
Integrator/AP has four. Map the only interrupt controller to 0x14000000
for IRQ0 according to Table A.2. Unlike the timer, you must map the in-
terrupt controller to IRQ0 since it is associated with the first Core Module
mounted on the development board. IRQ1 to IRQ3 are associated with
the second to fourth Core Modules on the development board.

7. Finally, restart AXD so the changes take effect.

A.2. MODIFY HIGH-LEVEL MODULES 5

Address Name Type Size Function

0x1300 0000 TIMER0 LOAD RW 16 Timer0 load
0x1300 0004 TIMER0 VALUE R 16 Timer0 current value
0x1300 0008 TIMER0 CTRL RW 16 Timer0 control
0x1300 000C TIMER0 CLR W 1 Timer0 clear

0x1300 0100 TIMER1 LOAD RW 16 Timer1 load
0x1300 0104 TIMER1 VALUE R 16 Timer1 current value
0x1300 0108 TIMER1 CTRL RW 16 Timer1 control
0x1300 010C TIMER1 CLR W 1 Timer1 clear

0x1300 0200 TIMER2 LOAD RW 16 Timer2 load
0x1300 0204 TIMER2 VALUE R 16 Timer2 current value
0x1300 0208 TIMER2 CTRL RW 16 Timer2 control
0x1300 020C TIMER2 CLR W 1 Timer2 clear

Table A.1: Memory map table for timers on Integrator/AP

Address Name Type Size Function

0x1400 0000 IRQ0 STATUS R 22 IntCtrl0 status
0x1400 0004 IRQ0 RAWSTAT R 22 IntCtrl0 raw status
0x1400 0008 IRQ0 ENABLESET RW 22 IntCtrl0 enable set
0x1400 000C IRQ0 ENABLECLR W 22 IntCtrl0 enable clear

0x1400 0040 IRQ1 STATUS R 22 IntCtrl1 status
0x1400 0044 IRQ1 RAWSTAT R 22 IntCtrl1 raw status
0x1400 0048 IRQ1 ENABLESET RW 22 IntCtrl1 enable set
0x1400 004C IRQ1 ENABLECLR W 22 IntCtrl1 enable clear

0x1400 0080 IRQ2 STATUS R 22 IntCtrl2 status
0x1400 0084 IRQ2 RAWSTAT R 22 IntCtrl2 raw status
0x1400 0088 IRQ2 ENABLESET RW 22 IntCtrl2 enable set
0x1400 008C IRQ2 ENABLECLR W 22 IntCtrl2 enable clear

0x1400 00C0 IRQ3 STATUS R 22 IntCtrl3 status
0x1400 00C4 IRQ3 RAWSTAT R 22 IntCtrl3 raw status
0x1400 00C8 IRQ3 ENABLESET RW 22 IntCtrl3 enable set
0x1400 00CC IRQ3 ENABLECLR W 22 IntCtrl3 enable clear

Table A.2: Memory map table for interrupt controller on Integrator/AP

6 APPENDIX A. SETTING UP ARMULATOR

Bit Name Function

0 SOFTINT Software interrupt
1 UARTINT0 UART 0 interrupt
2 UARTINT1 UART 1 interrupt
3 KBDINT Keyboard interrupt
4 MOUSEINT Mouse interrupt
5 TIMERINT0 Counter-timer 0 interrupt
6 TIMERINT1 Counter-timer 1 interrupt
7 TIMERINT2 Counter-timer 2 interrupt
8 RTCINT Real time clock interrupt
9 EXPINT0 Logic module 0 interrupt
10 EXPINT1 Logic module 1 interrupt
11 EXPINT2 Logic module 2 interrupt
12 EXPINT3 Logic module 3 interrupt
13 PCIINT0 PCI bus (INTA#)
14 PCIINT1 PCI bus (INTB#)
15 PCIINT2 PCI bus (INTC#)
16 PCIINT3 PCI bus (INTD#)
17 LINT V3 PCI brige interrupt
18 DEGINT CompactPCI auxiliary interrupt (DEG#)
19 ENUMINT CompactPCI auxiliary interrupt (ENUM#)
20 PCILBINT PCI local bus fault interrupt
21 APCINT External interrupt reserved for AutoPC (8 sources)

Table A.3: IRQ register bit assignments

Bibliography

[1] ARM Limited, editor. ARM Development Suite Debug Target Guide, chapter
4.13. ARM Limited, November 2000. ARM DUI 0058C.

[2] ARM Limited, editor. ARM Integrator/AP User Guide, chapter 4.4, 4.6.
ARM Limited, September 1999. ARM DUI 0098A.

7

