
Tian-S
heuan

C
hang

IP
 V

erification

IP/SOC Verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved1

IP
 V

erification

Outline

• Verification challenges
• Verification process
• Verification tools
• RTL logic simulation
• RTL formal verification
• Verifiable RTL – good stuff
• Verifiable RTL – bad stuff
• Testbench design
• SOC verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved2

IP
 V

erification

Verification Challenges (1)

• Verification goals is 100% correct
– Mission impossible

• Macro-level testbenches and test suite must be
reusable
– For next redesigned macro
– For integration team

• Verified in standalone as well as in final applications
• Testbench must be compatible with the system level

verification tools

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved3

IP
 V

erification

Verification Challenge (2)

Hardware Design Productivity

0

20

40

60

80

100

120

140

160

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

Year

G
at

es
 P

er
 D

ay

• Design Productivity has risen tenfold since 1990
– Gain by synthesis tools contributed to this challenge

• Only able to verify approximately 100 gates/day

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved4

IP
 V

erification

Verification Challenge (3)

IC/ASIC Designs Having One or More Re-spins by Type of Flaw

4%

13%

17%

17%

20%

21%

23%

25%

28%

29%

67%

35%

0% 10% 20% 30% 40% 50% 60% 70%

Other

Firmware

Power

Race Condition

IR Drops

Mixed-Signal Interface

Yield

Clocking

Slow Path

Noise

Analog Circuit

Logic or Functional

Source: Collett International Research (Apr02)

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved5

IP
 V

erification

Re-spins are EXPENSIVE

0

2,000

4,000

6,000

8,000

10,000
Costs
($K)

Proto & Validation

Support SW

Physical Design

Verification

Design Planning

IP Dev and Qual

Spec

Plus a) lost revenue, b) opportunity costsPlus a) lost revenue, b) opportunity costs
Source: International Business Strategies, 2002

$10.7M$10.7M

$4.7M$4.7M

Original Re-spin

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved6

IP
 V

erification

Verification and Design Reuse

• Reuse is about trust
• The key to design reuse is gaining that trust
• Verification for Reuse

– Complete functional verification
– All possible configurations
– All possible uses

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved7

IP
 V

erification

Outline

• Verification challenges
• Verification process
• Verification tools
• RTL logic simulation
• RTL formal verification
• Verifiable RTL – good stuff
• Verifiable RTL – bad stuff
• Testbench design
• SOC verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved8

IP
 V

erification

Boosting Productivity throughout
the Verification Flow

Lint Checking

Test Bench
Simulation

with Assertion
Checking

Functional Coverage

Code Coverage

RTL Code

Functional
Specification

Assertions
Test Plan

Verified RTL Code

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved9

IP
 V

erification

Verification Plan

• Part of early design cycle
• Verification takes over 70% of development time
• Contents

– Test strategy for subblock and top level
– Simulation environment including a block diagram
– Test bench components – BFM, bus monitors
– Required verification tools
– List of specific tests for the key features
– Target code coverage
– Regression test environment and regression procedure
– Criteria when the verification process is completed

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved10

IP
 V

erification

Role of Verification Plan

• Specifying the specification
• Defining First-Time Success

– Ensures all essential features are appropriately
verified

– Which features must be exercised under what
conditions and what is the expected response

• Define features priority
• How many testbenches must be written
• How complex they need to be
• How they depend on each other

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved11

IP
 V

erification

Benefit of Verification Plan
• Force designers to think through the very time-

consuming process before performing them
• Peer review allows a pro-active assessment of the entire

scope
• Focus efforts first for area of most needed and greatest

payoff
• Minimize the redundant effort
• Tracked and managed more effectively
• Enable verification tests and testbench early
• Enable a separated verification team in parallel to reduce

design cycle

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved12

IP
 V

erification

From Specification to Feature

• Component-Level Features
– Unit, reusable, ASIC level
– Do not involve system-level interaction with other

component
• System-Level Features

– A subset of an ASIC, a few ASICs, an board design
– Minimize the features verified at this level
– Limited to connectivity, flow-control and inter-operability

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved13

IP
 V

erification

From Feature to Testcase

• Prioritize
– Must-have – verify all possible configuration & usage
– Should-have – verify basic functionality
– Nice-to-have – verify only as time allow

• Group into testcases
– Configuration, verification strategy
– Testcase: labeled, objective description(list of features)

• Design for verification
– Identify “hard-to-verify” features

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved14

IP
 V

erification

From Testcase to Testbench

• Testcase naturally fall into groups
– Configuration of the design
– Abstraction level for the stimulus and response
– Verify closely-related features

• Testbench
– One testcase per testbench
– Grouping several testcases into a single testbench

• Verifying testbenches
– Review by other verification engineer
– Simulation output log

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved15

IP
 V

erification

Verification Strategies
• Three phases

– Subblocks
• Exhaustive functionality verification
• Ensure no syntax errors in the RTL code
• Basic functionality is operational
• Method: simulation, code coverage, TB automation

– Macro
• Interface verification between subblocks
• Backward compatible (regression test suite)
• Method: simulation, code coverage, TB automation, hardware

accelerator
– Prototyping

• Real prototype runs real application software
• Method: emulator, FPGA, ASIC test chip

• Bottom up approaches
– Locality
– Easier and faster to catch bugs at the lower level

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved16

IP
 V

erification

Types of Verification Tests
• Compliance testing

– For standard based design
• Corner case testing
• Random verification

– Inputs are subjected to valid individual operations
– Prediction of the expected outputs is more complicated
– Create the condition you have not thought
– Hit corner cases

• Assertion-based verification (Property checking)
• Real code testing

– Avoid misunderstand specification
• Regression testing

– Verify that bug fixing won’t create new bugs
– Run on regular basis

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved17

IP
 V

erification

Taxonomy
• Functional Verification

– Dynamic
• Simulation based
• Require input vectors
• No 100% guarantee

– Formal/static
• Property

– Mathematical proof
– No input vectors
– 100% guarantee

• Classifications
– Equivalence checking
– Model checking

– Semi-/dynamic formal
• Simulation based
• Check assertions during

simulations

• Timing Verification
– Dynamic timing analysis

• Simulation based
• Require input vectors
• No 100% guarantee
• Used in gate-level simulation
• Useful for timing verification of

power-up sequences and
timing exception path, e.g.
asynchronous logic, multi-cycle
paths, false paths,

– Static timing analysis
• Exhaustive search
• No input vectors
• 100% guarantee
• No simulation required
• Fastest approach
• Sometimes pessimistic due to

incorrect timing exceptions

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved18

IP
 V

erification

Classification of Verification

Functional Functional
Specs.Specs. …

Levels of Design AbstractionLevels of Design Abstraction

BehavioralBehavioral RTLRTL NetlistNetlist

Catch the Catch the
Specs.Specs.

ValidationValidation IntentIntent
VerificationVerification

EquivalenceEquivalence
VerificationVerification

EquivalenceEquivalence
VerificationVerification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved19

IP
 V

erification

Functional Verification Methodology

• RTL remains the golden model throughout the
course of functional verification

• Apply extensive functional verification on RTL
– Simulation, code coverage, functional coverage,

property checking, assertion-based checking
• Use equivalence checking to keep it golden for

successive design transformations

RTL or NetlistRTL or Netlist

Synthesis

Equivalence
Checking

Efficient and Effective Verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved20

IP
 V

erification

Outline

• Verification challenges
• Verification process
• Verification tools
• RTL logic simulation
• RTL formal verification
• Verifiable RTL – good stuff
• Verifiable RTL – bad stuff
• Testbench design
• SOC verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved21

IP
 V

erification

Verification Tools (1/2)
• Simulation

– Event driven: good debug environment
– Cycle based: fast simulation time

• Code coverage
– No. of executed lines / total lines
– Coverage on RTL structure
– Verification Navigator, CoverMeter

• Hardware verification languages
– A language providing power constructs for generating

stimulus and checking response
– Aid creating verification IP and reusable testbenches
– Vera, e, System Verilog, TestBuilder

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved22

IP
 V

erification

Verification Tools (2/2)

• Functional coverage
– Coverage on functionality

• Formal property checking
– Verplex BlackTie, 0-In Search/Confirm

• Verification IP (VIPs)
– Bus functional model (BFM) and bus monitors for

standard protocols
• Hardware modeling
• Emulation
• Prototyping

– FPGA
– ASIC test chip

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved23

IP
 V

erification

Inspection as Verification

• Fastest, cheapest and most effective to detect
and remove bugs

• How
– Design (specification, architecture) review
– Code (implementation) review

• Line-by-line fashion
• At the subblock level
• Reviewer should fully understand the implementation
• Purpose is to help drive quality and not for performance

assessment

• Lint tool help spot defects w/o simulation
– VN-Check, nLint, LEDA

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved24

IP
 V

erification

Adversarial Testing

• Designer
– Focus on proving the design is right

• Verification team
– Prove the design is broken
– Keep with the latest tools and methodologies

• The combination of the two gives the best results

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved25

IP
 V

erification

Limited Production

• Even after robust verification and prototyping, it’s
still not guaranteed to be bug free

• A limited production for new macro is necessary
– 1 to 4 customers
– Small volume
– Reduce the risk of supporting problems

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved26

IP
 V

erification

Coverage

• A metric identifies important:
– Structures in a design representation
– e.g. HDL lines, FSM states, paths in netlist

• Classes of behavior
– Transactions, event sequences

• Maximize the probability of simulating and
detecting bugs, at minimum cost (in time, labor,
and computation) [Dill ICCAD 99]

• Difficult to formally prove that a coverage metric
provides a good proxy for bugs

• Goal
– Comprehensive validation without redundant effort

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved27

IP
 V

erification

Coverage Metric Classifications

• Ad-hoc metrics
– Bug detection frequency
– Length of simulation after last bug
– Total number of simulation cycles

• Code coverage
– Line coverage
– Branch coverage
– Path coverage
– Expression Coverage
– Toggle Coverage

• Functional coverage

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved28

IP
 V

erification

Coverage (1/2)

• Hardware code coverage
– Statement, branch, condition, path, toggle, triggering, FSM
– Recommended 100% statement, branch and condition
– 100% code coverage does not mean 100% functional coverage
– Optimize regression suite runs

• Redundancy removal
• Minimize regression test suites

– Quantitative stopping criterion
– Verify more but simulate less

• Functional coverage
– A user-defined metric that reflects the degree to which functional

features have been exercised during the verification process.

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved29

IP
 V

erification

Coverage (2/2)

• The “Coverage First” Paradigm
– Identify areas that were sufficiently exercised, and

therefore need not be exercised any further
– Replace the need to write a lot of deterministic,

delicately crafted test, by showing that these scenarios
were already encountered

• Functional Coverage
– You can achieve 100% code coverage, and still miss

key areas where bugs can be hiding.
– It can eliminate the need to write many of the most time

consuming and hard to write tests.

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved30

IP
 V

erification

Code Coverage Process

Pre-
Processor

Instrumented
Model

Original
Model Testbenches

MetricsMetrics
DatabaseDatabase

ReportReport
GeneratorGenerator

Coverage
Metrics

Simulation engine

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved31

IP
 V

erification

Code Coverage Flow

Coverage Analysis

Meet ?

Testbench

RTL Code

Code Coverage
Report

Test Suite
Optimization Report

Modify Testbench

High Quality Testbench

No

Yes

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved32

IP
 V

erification

Drawbacks of Code Coverage

• No qualitative insight into functional correctness
• Limited to measuring what is controllable
• Activating an erroneous statement does not mean

the bug will manifest itself to an observable output
– Like testing problems
– Cases found where 90% line coverage only achieved

54% observability coverage [Devadas et al. ICCAD 96]

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved33

IP
 V

erification

Problems with Existing Coverage Tools

X
Enumeration

Propagation

Justification

Controllability

vs.

Observability

100% code coverage does not imply
100% functional coverage !

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved34

IP
 V

erification

Increase Observability

• Black-box testing vs. white-box testing
• Event-Monitors and Assertion Checkers

– Halt simulation (if desired)
– Simplifies Debugging
– Increases test stimuli observability
– Measure functional coverage (using a line cover tool)
– Enables formal and semi-formal techniques
– Capture and validate design assumptions and

constraints

Assertion-based Verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved35

IP
 V

erification

Power of Assertion (1/3)

• DEC Alpha 21164 project [Kantrowitz et al.,DAC 1996]

Assertion Checkers 34%
Cache Coherency Checkers 9%
Reference Model Comparison

Register File Trace Compare 8%
Memory State Compare 7%
End-of-Run State Compare 6%
PC Trace Compare 4%

Self-Checking Test 11%
Manual Inspection of Simulation Output 7%
Simulation hang 6%
Other 8%
Simulation hang 6%
Other 8%

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved36

IP
 V

erification

Power of Assertion (2/3)

• DEC Alpha 21264 project [Taylor et al.,DAC 1998]

Assertion Checker 25%
Register Miscompare 22%
Simulation "No Progress” 15%
PC Miscompare 14%
Memory State Miscompare 8%
Manual Inspection 6%
Self-Checking Test 5%
Cache Coherency Check 3%
SAVES Check 2%

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved37

IP
 V

erification

Power of Assertion (3/3)

More evidences

• 17% of bugs were identified by assertions on Cyrix
M3 (p1) project [1998]

• 50% of bugs were identified by assertions on Cyrix
M3 (p2) project [1998]

• 85% of all bugs were found using OVL assertions
on HP [2000]

• 400 bugs (Intel) were found from formal proofs of
assertions [2001]

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved38

IP
 V

erification

Assertion Types

• Invariant
– assert_never(ck,event1, expression, event2)
– assert_always(ck,event1, expression, event2)

• Liveness
– assert_eventually(...)
– assert_eventually_always(...)

• Other
– assert_one_hot(...)
– event_monitor(...)

time0

Event 1

Invariant

Event 2

P P P P P P P P

time0

Event 1

Liveness

Event 2

P

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved39

IP
 V

erification

Open Verification Library (OVL)

• Free download from www.verificationlib.org
– Verilog, VHDL and PSL flavors

assert_always
assert_change
assert_decrement
assert_delta
assert_even_parity
assert_increment
assert_handshake
assert_never
assert_no_overflow
assert_no_transition
assert_no_underflow

assert_odd_parity
assert_one_hot
assert_proposition
assert_range
assert_time
assert_transition
assert_unchange
assert_win_change
assert_win_unchange
assert_window
assert_zero_one_hot

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved40

IP
 V

erification

Assertion-based Verification
• Assertion

– Design assumption and properties
• “input should range from 0 to 240”
• “after req raises, gnt is expected within 10 clock cycles”

– Break the simulation when assertion fails
– Both the spatial and temporal relationship can be asserted
– Help designers to locate bugs at right place and time

• Approaches
– Library based

• Open verification library. www.verificationlib.org
– Language based

• PSL (Sugar), System Verilog DAS (OVA)

• On average, 1 line in assertion language = 50 lines in Verilog
• Concept extended to functional monitors and functional

coverage

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved41

IP
 V

erification

Improving Verification with
Assertions

• New Designs:
– Capture requirements and assumptions while writing

HDL
– Use assertions to validate signal assumptions

throughout the design process, e.g., block -> system
transition

• IP / Design Reuse
– Assertions validate correct stimulation of IP within

system
• Travel with IP
• Provide immediate feedback to IP users
• Reduce support calls to IP vendors
• Document behavior and expectations

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved42

IP
 V

erification

Benefits of Assertion-Based
Verification

• Reduces debugging time
– Assertions can continuously monitor internal signals in

the design, catching violations early in the design
process

• Documents design
– Assertions can be used to capture designer’s intent

• Monitors I/O
– Assertions can be used to verify protocols

• Improves design quality
– Enables comparing the design specification with the circuit -

throughout the design process
– Assertions can be thought of as a “partial specification” for your

design

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved43

IP
 V

erification

Outline

• Verification challenges
• Verification process
• Verification tools
• RTL logic simulation
• RTL formal verification
• Verifiable RTL – good stuff
• Verifiable RTL – bad stuff
• Testbench design
• SOC verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved44

IP
 V

erification

Fast Simulation

• How to make simulation more productive ?
– Make simulation more efficient

• Coding style, faster workstation, hardware accelerator

– Make simulation more effective
• Code coverage, functional coverage, ABV

Fast Simulation Principle
A design project must include tailored RTL to

achieve the fastest simulation possible.

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved45

IP
 V

erification

RTL Logic Simulation

• Noble goal - eliminate all design errors before silicon
• Realistic goal - achieve self test on first silicon

• Debugging
– Full accessibility, fast turnaround time

• Performance profiling
– To accelerate the simulation

•Log files over networking, large log files
•Bad memory allocated policy

• Regression
– Efficiency is the king

•Cycle-based, 2-state simulation

• Recreating hardware problems
– Simulation debug & regression

Project simulation phases

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved46

IP
 V

erification

Choosing Simulation Tools

Subblock 1 Subblock 2

Macro 1

Macro 1 Macro 2

CHIP

Testbench/
Real Software CHIP

Subblock module test stage
● Interpreted, event-driven simulator

(VSS, Verilog-XL, VCS)

Block-level Integration stage
● Compiled, event-driven simulator or

cycle-based simulator

Chip-level Integration stage
● Cycle-based simulator start
● Modules can migrate to emulation

when relatively bug-free
● Testbench migrates to emulation last

Software testing stage
● Emulation
● Chip and testbench are in the emulator

for max performance

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved47

IP
 V

erification

Difference in Different Modes

Debugging Regression
Phase Phase

Verilog Std Vendor Cycle-based
Compilation Model Model

Signal Full Limited
Accessibility

Waveform Frequent Seldom
Viewing

Logging Full Limited
Output

PLI Debug Debug
C/C++ mode ON mode OFF

DebuggingDebugging RegressionRegression
PhasePhase PhasePhase

VerilogVerilog Std Vendor Cycle-based
CompilationCompilation Model Model

SignalSignal Full Limited
AccessibilityAccessibility

WaveformWaveform Frequent Seldom
ViewingViewing

LoggingLogging Full Limited
OutputOutput

PLIPLI Debug Debug
C/C++C/C++ mode ON mode OFF

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved48

IP
 V

erification

Visit Minimization
• Visit buses instead of bits
• Bypass evaluation visits to intermediate logic not in an

active path
– Use condition like if()

• Eliminate event visits by using cycle-based evaluation

Visit Minimization Principle
For best simulation (and any EDA tool) performance,

minimize the frequency and minimize granularity of visits.

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved49

IP
 V

erification

2-State Simulation

2-state methods in place of X
• Zero-initialization finds bugs that X can’t

– Due to X-state optimism
– For more robust power-up verification

• Random initialization should do better
– Capability to regenerate the specific random sequence
– Keep the random seed

• Transform Z’s at tri-state boundaries to random
2-state values

• 2-state simulates faster than 4 state

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved50

IP
 V

erification

Outline

• Verification challenges
• Verification process
• Verification tools
• RTL logic simulation
• RTL formal verification
• Verifiable RTL – good stuff
• Verifiable RTL – bad stuff
• Testbench design
• SOC verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved51

IP
 V

erification

RTL Formal Verification

• Increasingly complex systems require more time
to verify functionality

• Process of verifying design transformations
should be automated

• Orthogonal Verification Principle
– Separate verification of circuit equality vs. circuit

functionality
• Coding techniques to facilitate formal verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved52

IP
 V

erification

Equivalence Checking

• Checking after
– Synthesis
– Scan chain insertion
– Clock-tree synthesis
– Manual modification
– Place and route
– ECO

• Equivalence checking for large designs
– Tough due to exponential-of-input size nature
– Logic cone partitioning is required

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved53

IP
 V

erification

Cutpoint

• Internal cross-design signal equivalence pairs are
referred as cutpoint

• Partition large cones of logic into smaller cones
for the proof

Cutpoints

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved54

IP
 V

erification

Functional complexity Isolation

Cutpoint Identification Principle
A single design decision pertaining to functional complexity
must be isolated and localized within a module to facilitate

equivalence checking cutpoint identification

// Not so good Cutpoints

assign c_indx = (((coord_x * coord_y) & indx_mask) + indx_offset);

// Better Cutpoints

mult_16x15 mult1 (coord_x, coord_y, mult_prod);

assign c_indx = ((mult1_prod & indx_mask) + indx_offset);

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved55

IP
 V

erification

Test Expression Observability (1/2)

Test Expression Observability Principle
Complex test expressions within a Verilog case or if

statement must be factored into a variable assignment.

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved56

IP
 V

erification

Test Expression Observability (2/2)

// Not so good
case ((a & b | c ^ d) || mem[idx])
4'b0100: c_nxt_st = r_nxt_st << 1;
4'b1000: c_nxt_st = r_nxt_st >> 1;
default: c_nxt_st = r_nxt_st;

endcase;

//Good
c_nxt_st_test = (a & b | c ^ d) || mem[idx];
case (c_nxt_st_test)
4'b0100: c_nxt_st = r_nxt_st << 1;
4'b1000: c_nxt_st = r_nxt_st >> 1;
default: c_nxt_st = r_nxt_st;

endcase;

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved57

IP
 V

erification

Outline

• Verification challenges
• Verification process
• Verification tools
• RTL logic simulation
• RTL formal verification
• Verifiable RTL – good stuff
• Verifiable RTL – bad stuff
• Testbench design
• SOC verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved58

IP
 V

erification

Why Verifiable RTL

• A lot of guideline for reuse and synthesis exists
• Lack of RTL coding guidelines to optimize the

verification process
• This vacuum becomes a problem as:

– Design complexity increases
– Advance verification processes are considered

• Cycle-based simulation, 2-state simulation, property checking,
equivalence checking, emulation

• Verifiable RTL style consists of
– A verifiable subset of Verilog
– A set of RTL coding guidelines
– A set of fundamental principles

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved59

IP
 V

erification

RT-Level X-State Optimism (1/2)

• Optimism – State Machine

• If d == 2’bXX, case statement always takes the
default branch!

• Alternate branches never test during startup!

case (d)
2'b00 : e = 2'b01;
2'b01 : e = 2'b11;
2'b10 : e = 2'b10;
default : e = 2'b00;

endcase

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved60

IP
 V

erification

RT-Level X-State Optimism (2/2)

• Accuracy Impractical

case (d)
2'b00 : e = 2'b01;
2'b0X : e = 2'bX1;
2'b01 : e = 2'b11;
2’bX0 : e = 2’bXX;
2'bX1 : e = 2'bXX;
2'b11 : e = 2'b00;
2'b1X : e = 2'bX0;
2'b10 : e = 2'b10;
2'bXX : e = 2'bXX;

endcase

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved61

IP
 V

erification

X? In Real World

module mux (a,b,s,q);

output q;
reg a, b, q;
reg [1:0] s;

always @(a or b or s)
begin

case (s)//synopsys full_case
2’b11: q = 1'bz;
2’b01: q = a;
2’b10: q = b;

endcase
end
endmodule

a

b

s[1]

s[0]

q

There are no X’s
in the real circuit!

If s[1] = 0 and s[2] = 0

we might be SMOKING!

Semantic Mismatch

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved62

IP
 V

erification

How Slow Can Your Simulation Go?

for (i=0; i<64; i=i+1) begin
bit5 = (i > 31);
bit4 = (i > 15) && (i < 32) || (i > 47);
bit3 = (i > 7) && (i < 16) || (i > 23) && (i < 32) || (i > 39) && (i < 48) || (i > 55);
bit2 = (i > 3) && (i < 8) || (i > 11) && (i < 16) || (i > 19) && (i < 24) || (i > 27) && (i < 32) ||

(i > 35) && (i < 40) || (i > 43) && (i < 48) || (i > 51) && (i < 56) || (i > 59);
bit1 = (i == 2) || (i == 3) || (i == 6) || (i == 7) || (i == 10) || (i == 11) || (i == 14) || (i == 15) ||

(i == 18) || (i == 19) || (i == 22) || (i == 23) || (i == 26) || (i == 27) || (i == 30) ||
(i == 31) || (i == 34) || (i == 35) || (i == 38) || (i == 39) || (i == 42) || (i == 43) ||
(i == 46) || (i == 47) || (i == 50) || (i == 51) || (i == 54) || (i == 55) || (i == 58) ||
(i == 59) || (i == 62) || (i == 63);

bit0 = (i == 1) || (i == 3) || (i == 5) || (i == 7) || (i == 9) || (i == 11) || (i == 13) || (i == 15) ||
(i == 17) || (i == 19) || (i == 21) || (i == 23) || (i == 25) || (i == 27) || (i == 29) ||
(i == 31) || (i == 33) || (i == 35) || (i == 37) || (i == 39) || (i == 41) || (i == 43) ||
(i == 45) || (i == 47) || (i == 49) || (i == 51) || (i == 53) || (i == 55) || (i == 57) ||
(i == 59) || (i == 61) || (i == 63);

tmp [i] = pd [i] && (bit5 ~^ cell[5]) && (bit4 ~^ cell[4]) && (bit3 ~^ cell[3]) && (bit2 ~^
cell[2]) && (bit1 ~^ cell[1]) && (bit0 ~^ cell[0]);

end // for
hit = | tmp ;

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved63

IP
 V

erification

Better Ways for Speed

tmp= pd & (~(64'hffffffff00000000 ^ {64{cell[5]}}))
& (~(64'hffff0000ffff0000 ^ {64{cell[4]}}))
& (~(64'hff00ff00ff00ff00 ^ {64{cell[3]}}))
& (~(64'hf0f0f0f0f0f0f0f0 ^ {64{cell[2]}}))
& (~(64'hcccccccccccccccc ^ {64{cell[1]}}))
& (~(64'haaaaaaaaaaaaaaaa ^ {64{cell[0]}}));

hit = | tmp;

hit = pd[cell];

parallel mask fashion for more parallelism -- 1000x faster

bit-indexing for more and more parallelism -- 3000x faster

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved64

IP
 V

erification

Verifiable Subset
• Two ways of constructed a design

– to make it so simple that there are obviously no deficiencies
– to make it so complicated that there are no obvious deficiencies

• However, synthesizer vendors tend to enlarge the synthesizable
subset

• Where there are 2/3/4 ways to express the same thing in RTL
– PICK Simple ONE, Simple wins in verification

Verifiable Subset Principle
A design project must select a simple HDL verifiable subset,

which serves all verification tools within the design flow as well as
providing an uncomplicated mechanism for conveying clear

functional intent between designers

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved65

IP
 V

erification

Verifiable Verilog Keyword
• Verifiable subset is a subset of synthesizable subset
• 27 out of the 102 Verilog-1995 keywords
• “for” looping construct could be used for extra exception

always else initial parameter
assign end inout posedge
begin endcase input reg
case endfunction module tri
casex endmodule negedge tri0
default function or tri1

if output wire

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved66

IP
 V

erification

operator example function
- -a unary minus
* a * b multiply
/ a / b divide
= = = a = = = b equality (0/1/X/Z)
! = = a ! = = b inequality (0/1/X/Z)

Unsupported Operators

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved67

IP
 V

erification

Asynchronous Principle

• Asynchronous - not addressed by RTL verification. Requires:
– Protocol verification - Petri net modeling
– Failure rate analysis - Circuit analysis

Asynchronous Principle
A design project must minimize and isolate resynchronization

logic between asynchronous clock domains.

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved68

IP
 V

erification

Combinational Feedback Principle

• Forms of Feedback
– Design errors
– False path
– Apparent

Combinational Feedback Principle
Designers must not use any form of combinational logic

feedback (real, false-path, apparent)
in their Verilog.

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved69

IP
 V

erification

False Path

module m (s, a, b, y, z);

input s;
input a, b;
output y, z;
wire s, a, b;
wire y, z;
assign y = s ? a : z;
assign z = s ? y : b;

endmodule

y

s

b

a

z

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved70

IP
 V

erification

module m (a, d);
input a;
output d;
reg b, c, d;

always @(a)
begin

b = a;
c = b;
d = c;

end
endmodule
//order dependent

Fix 1

module m (a, d);
input a;
output d;
reg b, d;
wire c;

always @(a or c)
begin

b = a;
d = c;

end
assign c = b;

endmodule

module m (a, d);
input a;
output d;
wire b, c, d;
assign b = a;
assign d = c;
assign c = b;

Endmodule
//order
//independent

Fix 2

Apparent Feedback

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved71

IP
 V

erification

Verifiable case/casex

• case/casex practices supporting verifiable RTL
– Fully specified case/casex statements
– Consistent test signal and constant widths

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved72

IP
 V

erification

Fully specified case/casex

• Pros
– Faster boolean equivalence checking

• No don’t care conditions
– RTL - Gate-level simulation alignment
– Improved RTL simulation:

• Performance (no X state)
• Verification - startup state, fault simulation

– RTL Manufacturing test simulation
• Cons

– Worse synthesis result (not always true)
• Alternative solution exists

– Loss of simplicity
• Alterative solution has more complicated coding style

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved73

IP
 V

erification

module one_hot(c_hot,c_code);
input [7:0] c_hot;
output [2:0] c_code;
reg [2:0] c_code;

always @ (c_hot) begin
case (c_hot) // synthesis full_case, for synthesis?

8’b10000000: c_code = 3’b000;
8’b01000000: c_code = 3’b001;
8’b00100000: c_code = 3’b010;
8’b00010000: c_code = 3’b011;
8’b00001000: c_code = 3’b100;
8’b00000100: c_code = 3’b101;
8’b00000010: c_code = 3’b110;
8’b00000001: c_code = 3’b111;
default: c_code = 3’b000; // or for verification
endcase

end // always (c_hot)
endmodule // one_hot

If default case is used, 3X gates are generated

case/casex – Verification vs
Synthesis

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved74

IP
 V

erification

Partially-Specified to Fully-
Specified

• For smaller case statements
– minimization savings not worth loss of verifiability

• For larger case statements –
– use alternative (fully specified) coding style

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved75

IP
 V

erification

case/casex – Alternative for One-
Hot

module one_hot(c_hot,c_code);
input [7:0] c_hot;
output [2:0] c_code;
reg [2:0] c_code;
reg [2:0] c_code0,c_code1,c_code2,c_code3;
reg [2:0] c_code4,c_code5,c_code6;

always @ (c_hot) begin
c_code6 = (c_hot [6]) ? 3’b001 : 3’b000;
c_code5 = (c_hot [5]) ? 3’b010 : 3’b000;
c_code4 = (c_hot [4]) ? 3’b011 : 3’b000;
c_code3 = (c_hot [3]) ? 3’b100 : 3’b000;
c_code2 = (c_hot [2]) ? 3’b101 : 3’b000;
c_code1 = (c_hot [1]) ? 3’b110 : 3’b000;
c_code0 = (c_hot [0]) ? 3’b111 : 3’b000;
c_code = c_code0 | c_code1 | c_code2 | c_code3 |

c_code4 | c_code5 | c_code6;
end // always (c_hot)
endmodule // one_hot

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved76

IP
 V

erification

Outline

• Verification challenges
• Verification process
• Verification tools
• RTL logic simulation
• RTL formal verification
• Verifiable RTL – good stuff
• Verifiable RTL – bad stuff
• Testbench design
• SOC verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved77

IP
 V

erification

X-state Pessimism

X-state Pessimism - arithmetic

reg [15:0] a,b,c;
…
begin

b = 16’b0000000000000000;
c = 16’b000000000000X000;
a = b + c;
$display(" a = %b",a);

end

a = 16’bXXXXXXXXXXXXXXXX

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved78

IP
 V

erification

X-state Optimism - case Statement
reg [1:0] d,e;
…
begin

case (d)
2’b00 : e = 2’b01;
2’b01 : e = 2’b11;
2’b10 : e = 2’b10;
default : e = 2’b00;

endcase
$display(" e = %b",e);

end

• If d contains an X then e = 2’b00
• RTL simulation will miss verifying alternate branches

(especially at the start-up sequences)

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved79

IP
 V

erification

Accuracy impractical

• Simulation performance.
• Labor content.

– Added X-state tests
– branch to boolean conversion

• Complex verification
• Completeness
• Synthesis

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved80

IP
 V

erification

Prohibit X for “don’t care’s”

...
case (select)
2’b01 : mux = b;
2’b10 : mux = c;
default : mux = 2’bX;

endcase

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved81

IP
 V

erification

X in “don’t care’s”

• Mask errors which can’t be found at RT-level
simulation

• Slows RT-level simulation
• Slows RTL-to-gate equivalence checking
• Causes semantic mismatches between RTL and

gate-level simulation.

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved82

IP
 V

erification

Visit Minimization

• Criminals to degrade simulation performance
– referencing bits instead of buses
– Run-time configuration tests
– loops.

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved83

IP
 V

erification

Bits v.s. Bus

c_ecc_out_1 = c_in [10] ^
c_in[11] ^ c_in[12] ^
c_in[13] ^ c_in[14] ^
c_in[15] ^ c_in[16] ^
c_in[17] ^ c_in[18] ^
c_in[19] ^ c_in[20] ^
c_in[21] ^ c_in[22] ^
c_in[23] ^ c_in[24] ^
c_in[25] ^ c_in[26] ^
c_in[27]^ c_in[28] ^
c_in[32] ^ c_in[35] ^
c_in[38] ^ c_in[39];

BAD: Explicit bit visits

c_ecc_out_1 =
^ (c_in & 40’h003ffff893);

GOOD: Parallel
value evaluation

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved84

IP
 V

erification

Run-Time Configuration

module fifo(
...
parameter WIDTH = 13;
parameter DEPTH = 32;
parameter ENCODE = 0;
...
function [31:0] encoder;
input [WIDTH-1:0] indata;

begin
if (ENCODE != 0) begin

< calculate encode value based on indata >
end

else
encoder = indata;

End

Use conditional compilation directives `if, `else, `elseif,
`endif instead

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved85

IP
 V

erification

For-Loops

input [‘N-1:0] a;
output [‘N-1:0] b;
integer i;
reg [‘N-1:0] b;
always @ (a) begin
for (i=0; i<=‘N-1; i=i+1)

b[i] = ~a[i];
end

BAD: Individual bit
visits, loop overhead

input [‘N-1:0] a;
output [‘N-1:0] b;
assign b = ~a;

GOOD: Parallel
value evaluation

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved86

IP
 V

erification

For-Loop: Bus Reversal

input [15:0] a;
output [15:0] b;
integer i;
reg [15:0] b;
always @ (a) begin
for (i=0; i<=15;

i=i+1)
b[15 - i]] =
~a[i];

end

BAD:
For-loop

input [15:0] a;
output [0:15] b;
assign b = { a[0], a[1],
a[2], a[3], a[4], a[5],
a[6], a[7], a[8], a[9],
a[10], a[11], a[12],
a[13], a[14], a[15] };

Better:
Concatenation

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved87

IP
 V

erification

For Loop

• Simulate slow
– from 10X to > 1000X slower than non-for loop versions.

• Synthesizes slow
• Memory clear

– only legitimate for loop use in chip design.
• Avoid using the for loop whenever possible

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved88

IP
 V

erification

Faithful Semantics

• Bad coding style - unequal design information
– HDL simulator information not used in synthesis
– Synthesis switches not used by simulator.

• X state

Faithful Semantics Principle
An RTL coding style and set of tool directives must be
selected that insures semantic consistency between
simulation, synthesis and formal verification tools.

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved89

IP
 V

erification

Full_case & Parallel_case

• Fully-specify case/casex
– Do not use full_case and parallel_case

• Eliminate case-item constant overlaps
• Find alternative coding if necessary
• Implement RTL priority encoder as multiplexer

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved90

IP
 V

erification

Verilog Initial Blocks

• Explicitly creates RTL-gate differences.
• Better - place in testbench
• Best - encapsulate within storage element (FF’s

memories) library modules

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved91

IP
 V

erification

Careless Coding

• Incomplete sensitivity list
• Latch inference
• Incorrect procedural statement ordering

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved92

IP
 V

erification

Timing Problems

• Project-wide policy
• #0; delays
• Non-blocking assignment delay
• Testbench delays

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved93

IP
 V

erification

Race Condition

• Race
//file a.v
always @(posedge ck)
begin

b = a;
end

//file b.v
always @(posedge ck)
begin

c = b;
end

• No race
//file a.v
always @(posedge ck)
begin

b <= a;
end

//file b.v
always @(posedge ck)
begin

c <= b;
end

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved94

IP
 V

erification

Testbench Delays

• Testbench designers insert delays to offset timing
with respect to clock edges for:
– inserting control states
– observing states

• Testbench timing often less disciplined than chip
timing

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved95

IP
 V

erification

User-Defined Primitive (UDP)

• Not RTL!
• Often preclude use of new RTL verification tools
• Sequential UDP’s present special challenges

Just say no

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved96

IP
 V

erification

Summary

• Code your RTL for synthesis and verification as
well

• Verifiable RTL coding styles
– Prevent you from pitfalls in the verification process
– Make you curse verification-related tools less
– Increase the verification performance
– Provide better verification outcome
– Give you more robust design

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved97

IP
 V

erification

Outline

• Verification challenges
• Verification process
• Verification tools
• RTL logic simulation
• RTL formal verification
• Verifiable RTL – good stuff
• Verifiable RTL – bad stuff
• Testbench design
• SOC verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved98

IP
 V

erification

Testbench Design (1)

• The testbench design differs depending on the
function of the macro

– microprocessor macro, test program,
– bus-interface macro, use bus functional models and

bus monitors
• Subblock testbench

Input
Transaction
Generator

Output
Transaction

Checker

Input Interface
O

ut
pu

t I
nt

er
fa

ce

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved99

IP
 V

erification

Testbench Design (2)
• Transaction-based stimulus generation and response

checking
– Legal set of input
– Corner case and random test

• Auto or semi-auto stimulus generation is preferred
• Automatic response checking is a must

– Self-checking is recommended
– Detect problems as early as possible

• Reusable testbench

stimulus
Automatic
response
checking

Devce under test

Referene model
(C/C++,HDL/HVL,

Hardware modeler)

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved100

IP
 V

erification

Testbench Authoring

• An effective testbench
– Concurrency
– Encapsulation and abstraction
– Self-checking
– Automatic test stimulus generation
– Reusable components

• Testbench authoring tools
– Partitioning the responsibility among TVMs and tests
– Specifying cause and effect relationships among transactions
– Specifying complex concurrency using inter-transaction

synchronization
– Specifying localized constraints in the attributes of transaction

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved101

IP
 V

erification

Macro Testbench

PCI Bus
Functional Model PCI Macro

Application
Software

Drivers

Translator

Application Bus
Functional Model

PCI Bus
Monitor

Application
Bus

Monitor

HW/SW cosim
Environment

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved102

IP
 V

erification

Bus Functional Model

Definition: Simulation model
allowing designers to verify
compliance to a particular
specification prior to prototyping:
1. Model the bus transactions on the

bus, each read and write
transaction is specified by the test
developer

2. Monitors bus activity for protocol
compliance

Design
Under Test

Bus Functional Model

PCI
AGP
USB
IEEE1394
Ethernet
SCSI-2
EISA
VME
?

Rest of the system bus monitor

System Bus

CPU
RAM

Bus Interface
Logic

Random
Logic

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved103

IP
 V

erification

Benefits

• Test for interoperability during simulation
• Verify compliance prior to fabrication
• Generate test vectors more efficiently
• Learn a new bus faster
• BFM is written in RTL, C/C++, or testbench

automation tools
– Flexibility
– Visibility into model operation

Test of the system bus monitor

System Bus

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved104

IP
 V

erification

Verification Suite Design

• Once built the testbench , we can develop a set of
tests to verify the correct behavior of the macro

• Test sets
– functional testing
– corner case testing
– code coverage
– random testing

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved105

IP
 V

erification

Transaction-based Verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved106

IP
 V

erification

Efficient Simulating Debug (1)

• Transaction viewing
– The abstract information about a transaction is

displayed.
• Cause and effect

– The relationships among transactions are displayed.
• Error transactions

– An error detected during simulation is recorded.
• Concurrency

– Out-of-order/pipelined transactions are displayed

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved107

IP
 V

erification

Efficient Simulating Debug (2)

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved108

IP
 V

erification

Behavioral Models
• Describe the black-box functionality of a design, required

for all IPs
• Benefits

– Audit of the specification
– Development and debug of testbench in parallel with RTL coding
– System verification can start earlier
– It can be used as an secure evaluation and integration tool by your

customer
– Faster to write, debug, simulate and time-to-market

• Cost
– Require additional resource to write the behavior model
– Maintenance requires additional efforts

• BFM is required particularly for interface Ips
• ISA Model is required for processor IPs
• Commercial available for standard based IP

– Verification IP, e.g. PCI, IEEE 1394, USB

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved109

IP
 V

erification

Verification IP

• A package including well-designed and well
verified BFM/monitor for a specific
protocol/interface
– AMBA, Ethernet, SONET, UTOPIA, PCI, USB, UART,

CAN, ..
– Avoid re-invent-the-wheel
– Accelerate the verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved110

IP
 V

erification

Verify AMBA System

AHB Master 1 AHB Master 2

AHB Slave 1 AHB Slave 2

Bridge

APB Slave 1

APB Slave 2

AHB Master
Protocol Checker

AHB Master
Coverage Mointor

AHB Slave
Protocol Checker

AHB Slave
Coverage Mointor

AHB Master
Protocol Checker

AHB Master
Coverage Mointor

AHB Slave
Protocol Checker

AHB Slave
Coverage Mointor

APB Slave
Coverage Mointor

APB Slave
Coverage Mointor

hclk
htrans NSEQ SEQ SEQ SEQ
haddr A A+4 A+8 A+8
hwrite

hwdata DA DA+4 DA+4 DA+8
hresp OKAY OKAY OKAY OKAY
hready

AHB Master Protocol
violation:
Address was changed
while in transfer
extension (hready low).
Ref. Spec. section 3.4

Transfer Response Summary

Response Type | Count

OKAY | 104
ERROR | 0
RETRY | 5
SPLIT | 13

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved111

IP
 V

erification

Verification Support

• Protocol Checker
– Monitor the transactions on an interface and check for

any invalid operation
• Embedded in the test bench
• Embedded in the design

– Error and/or warning messing of bus protocol
• Expected results checker

– Embedded in the test bench
– Checks the results of a simulation against a previously

specified, expected response file.
• Performance monitor

– Number of transfers, idle cycles...

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved112

IP
 V

erification

Simulation Management

• Pass or Fail ?
– Produce a message that the simulation was terminated

normally
• SDF Back-Annotation

– Very time-consuming
– Invoke the simulation once for multiple testcases

• Output File Management
– A copy of output message: verilog.log
– Dump waveform only for needed
– Run multiple simulations in parallel

• Use “-l” option to change the name of the output log file
• Use script to help manage the configuration of a simulation and

the name of output file

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved113

IP
 V

erification

Regression

• A regression suite ensures that modifications to a
design remain backward compatible with
previously verified functionality

• Regressions are run at regular intervals
• Provide a fast mode
• Regression Management

– Simulation never terminate
– Put a time bomb in all simulations to prevent simulation

running forever
– Success or failure of each testcase should be checked

after regression test

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved114

IP
 V

erification

Outline

• Verification challenges
• Verification process
• Verification tools
• RTL logic simulation
• RTL formal verification
• Verifiable RTL – good stuff
• Verifiable RTL – bad stuff
• Testbench design
• IP Modeling
• SOC verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved115

IP
 V

erification

The Intent of Different Level of IP Model

• Design exploration at higher level
– Import of top-level constraint and block architecture
– Hierarchical, complete system refinement
– Less time for validating system requirement
– More design space of algorithm and system

architecture
• Simple and efficient verification and simulation

– Functional verification
– Timing simulation/verification
– Separate internal and external (interface) verification
– Analysis: power and timing

• Verification support: e.g., monitor, checker...

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved116

IP
 V

erification

General Modeling Concepts

• Interface model
– Synonym: bus functional, interface behavioral

• Behavioral model
– Behavior = function with timing
– Abstract behavioral model
– Detailed behavioral model

• Structural model

Behavioral
Model

out=AxB

In
te

rf
ac

e

Structural
Model

In
te

rf
ac

eB

B

B

B

S

Clock

M-Bus

Abstract
Behavioral

Model

out=AxB

In
te

rf
ac

e

Detailed
Behavioral

Model

out=AxB

In
te

rf
ac

e

Data_Bus

Addr_Bus
Clock

16

20 W_En
CS

Interface
Model

In
te

rf
ac

e

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved117

IP
 V

erification

Issues of IP Modeling

• Attributes
– What is the sufficient set of model attributes?
– How are these model attributes validated?
– How is the proper application of an abstract model

specified?
• Two important dimensions of time

– Model development time is labor intensive: model
reusability

– Simulation time depends upon strategy chosen for
mixed domain simulations

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved118

IP
 V

erification

From Requirement to Delivery

Customer
Needs

Product
Deliver

Abstract Real

System Function

Hierarchy
Refinemenet

Hierarchy
Validaton

System Function

Fab

Mask WaferLayout
Logical Netlist Logical Device

RTL

Behavioral

Architecture

Behavioral

Architecture

Test
Patern

Verification

System Vaildation "Pattern"

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved119

IP
 V

erification

Example: Hierarchical Design
Refinement

F1 F2 F3

F4 F5 F6

CPU MEM Co-P

In 1 In 2 Out 1

CPU MEM Co-P

In 1 In 2 Out 1

Vertical refinement Horizontal refinement: Partition

F1 F2 F3

F4 F5 F6

F1 F2 F3

F4 F5 F6

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved120

IP
 V

erification

Example: Manage Size and Run-
Time

RTL Coding RTL Test Synthesis

Integration Test

RTL Coding RTL Test Synthesis

Behavioral Level Coding

Behavioral Level Test

P&R

P&R

Integration Test

Start at RTL

Start at behavioral level

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved121

IP
 V

erification

IP Modeling

System Models
Executable Specification
Mathematical-Equation
Model
Algorithm Model

Architecture Models
Token-based Performance Model

Abstract-Behavioral Model

Data Flow Graph (DFG) Task Primitive

Instruction Set Architecture (ISA) Model

Hardware Models
Detailed-Behavioral Model

Register Transfer Level (RTL) Model

Logic-Level Model

Circuit-Level Model

Switch-Level Model

Gate-Level Model

Software Models
Pseudo-Code

High Level Language (HLL)

Assembly code

Object Code

Micro-Code

General Modeling Concept

Primary Model Classes:

Behavioral Model

Functional Model

Structural Model

Specialized Model Classes:

Performance Model

Interface Model

Hybrid Model

Computational Model Classes:

Data Flow Graph Model

Other Models

Precision Axis
 Temporal Precision Axis
 Data Precision Axis
 Functional Precision Axis
 Structural Precision Axis
 Software Programming Precision Axis

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved122

IP
 V

erification

CPU Model
• CPU model enable

– Estimate software performance
– Analyze system trade offs

• CPU model
– Bus functional model

– Instruction set simulator (ISS)
• Instruction accurate
• Cycle accurate

– Virtual processor model (Cadence VCC technology)

Application code Compile to
host processor

Bus functional
model

Hardware
simulator

I/O
transactions

Bus
Events

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved123

IP
 V

erification

ARM Modeling (1/4)

Concept

Silicon

Instruction set simulators (ISS)
Co-verification model

Gate Level netlist model

Hardware modeling

System model

Design signoff models
Behavioral/RTL model
Bus Interface model

Accuracy

Efficiency

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved124

IP
 V

erification

ARM Modeling (2/4)
• System Model

– Provision of customized
Software Debugger/ARMulator
packages, suitable for dataflow
simulation environments.

– Cadence Signal Processing
Worksystem (SPW) and
Synopsys COSSAP Stream
Driven Simulator

• Co-verification model
– Each ARM processor core

contains a co-verification
simulator component and a
bus interface model
component

– Co-verification simulator:
combines the properties of
an advanced ISS with the
bus cycle accurate pin
information capability
required to drive a hardware
simulator

– CoWare N2C Design
System, Synopsys Eaglei, to
name a few.

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved125

IP
 V

erification

ARM Modeling (3/4)

• Bus interface models (BIM)
– Run a list of bus transactions

to stimulate simulated
hardware under test

– Allowing the designer to
concentrate on the hardware
design without waiting for the
ARM control software to be
developed.

– Generated using ModelGen

• Design signoff models
– Full architectural

functionality and full timing
accurate simulation

– Accept process specific
timing and back annotated
timing

– Used to ‘sign off’’ design
before committing silicon

– Be compiled 'C' code which
enables protection of the
inherent IP and superior
simulation execution speed
over pure HDL models

– Generated using ModelGen

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved126

IP
 V

erification

ARM Modeling (4/4)

• Hardware Modeling
– Real chip-based products,

based on real silicon
– For logic and fault

simulation
– Synopsys ModelSource

hardware modeling systems

• Fault grading netlist
– Full custom marcocells

yields models suitable for
hardware accelerated fault
grading, system simulation
and emulation

– Emulator: IKOS, Mentor
Graphics and Quickturn;
Simulation: IKOS

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved127

IP
 V

erification

Intent of ModelGen

• Key requirements for ARM’s modeling
environment:
– Deliver highly secure models
– Minimize time spent creating, porting and re-verifying

models
– Support mixed-source languages—HDL, C and full

custom modeling
– Support multiple design and verification environments
– Enable efficient simulation
– Provide a timing annotation solution that does not

compromise IP security

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved128

IP
 V

erification

“ModelGen” Timing Shell

• Overview:
– Black-box model

• Obscured IP

– User supplied timing
(SDF)

– Single model
• Easily verifiable

– Exported State
– Programmer model

• Nine-value Logic/Full

– Supports checkpointing

ModelGen Source
(MGS)

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved129

IP
 V

erification

Example of Model Generation Flow

Synopsys VMC/VhMC based model generation flow

VMC: Verilog Model Compiler, VhMC: VHDL Model Compiler

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved130

IP
 V

erification

Behavioral Model for A/MS

• Describes the functionality and performance of a VC block
without providing actual detailed implementation.

• Needed for system designers to determine the possibility
of implementing the system architecture

• It is a kind of abstract behavioral model

Signal

Frequency

Signal

Frequency

Actual behavioral
Bounds of actual behavioral

Behavioral Model Block Detail Model

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved131

IP
 V

erification

Functional/Timing Digital Simulation
Model

• Used to tie in functional verification and timing simulation
with other parts of the system

• Describes the functionality and timing behavior of the
entire A/MS VC between its input and output pins.

• Pin accurate not meant to be synthesizable
• It is a kind of detailed-behavioral model
• Example of PLL: represent the timing relationship of

reference clock input vs. generate output clock.
– Model it by actually representing the structure of the PLL, or
– Model it as just a delay value based on a simple calculation from

some parameters.

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved132

IP
 V

erification

Interface Model

• Describes the operation of a component with respect to its
surrounding environment.

• The external connective points (e.g ports or parameters),
functional and timing details of the interface are provided
to show how the component exchanges information with
its environment.

• Also named as bus functional model and interface
behavioral model

• For A/MS VC
– Only the digital interface is described
– Analog inputs and outputs are not considered

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved133

IP
 V

erification

Peripheral Interconnect Model

• Specifies the interconnection RCs for the peripheral
interconnect between the physical I/O ports and the
internal gates of the VC

• Used to accurately calculate the interconnect delays and
output cell delays associated with the VC

• Used only for the digital interface of the A/MS VC

Block
Internal
Model

VCVC

VC

Peripheral
Interconnection

Peripheral
Interconnection

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved134

IP
 V

erification

Power Model

• Defines the power specification of the VC
• Should be capable of representing both dynamic

power and static power
– Dynamic power may be due to capacitive loading or

short-circuit currents
– Static power may be due to state-dependent static

currents
• Required for all types of power analysis: average,

peak, RMS, etc.
• Abstract level

– Black/gray box, RTL source code and cell level

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved135

IP
 V

erification

Basic Power Analysis
Requirements

• Any power analysis should include effects caused
by the following conditions and events:
– Switching activity on input ports, output ports, and

internal nodes
– State conditions on I/O ports and optionally internal

nodes
– Modes of operations
– Environmental conditions such as supply voltage and

external capacitive or resistive loading.

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved136

IP
 V

erification

Physical Modeling
• Physical block implementation of hard, soft and firm VCs.
• Two models for hard VCs

– Detailed model
• Description of the physical implementation of the VC at the polygon

level
• The preferred data format is GDSII 6.0.0

– Abstract model
• Contains enough information to enable floorplanning, placement, and

routing of the system level chip
– Footprint
– Interface pin/port list, shape(s), and usage
– Routing obstructions within the VC
– Power and ground connections
– Signature

• The preferred data format is the MACRO section of VC LEF 5.1

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved137

IP
 V

erification

Outline

• Verification challenges
• Verification process
• Verification tools
• RTL logic simulation
• RTL formal verification
• Verifiable RTL – good stuff
• Verifiable RTL – bad stuff
• Testbench design
• SOC verification

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved138

IP
 V

erification

System Verification

• It begins during system specification.
• Develop system-level behavioral model.
• Successful System-Level Verification

– Quality of the test plan
– Quality and abstraction level of the models and

testbenches used
– Quality and performance of the verification tools
– Robustness of the individual predesigned blocks

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved139

IP
 V

erification

IP Modeling

System Models
Executable Specification
Mathematical-Equation
Model
Algorithm Model

Architecture Models
Token-based Performance Model

Abstract-Behavioral Model

Data Flow Graph (DFG) Task Primitive

Instruction Set Architecture (ISA) Model

Hardware Models
Detailed-Behavioral Model

Register Transfer Level (RTL) Model

Logic-Level Model

Circuit-Level Model

Switch-Level Model

Gate-Level Model

Software Models
Pseudo-Code

High Level Language (HLL)

Assembly code

Object Code

Micro-Code

General Modeling Concept

Primary Model Classes:

Behavioral Model

Functional Model

Structural Model

Specialized Model Classes:

Performance Model

Interface Model

Hybrid Model

Computational Model Classes:

Data Flow Graph Model

Other Models

Precision Axis
 Temporal Precision Axis
 Data Precision Axis
 Functional Precision Axis
 Structural Precision Axis
 Software Programming Precision Axis

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved140

IP
 V

erification

SOC Verification

• System
– Validate through

• Prototype, real chip or FPGA
– Methodology

• High level model execution
• Hardware/software co-simulation
• Prototype or run software on sample chip

– Rapid prototyping is necessary for verification
• since RTL or gate-level simulation is the bottleneck when

developing a derivative design
– The most appropriated rapid-prototyping device for

platform design consists of
• A hardwire hardware kernel (real chip)
• Slots of FPGA on the hardware kernel’s bus for configurations

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved141

IP
 V

erification

The Test Plan

• System-level verification strategy uses divide-and-
conquer approach based on the system hierarchy.
– Verify the leaf nodes.
– Verify the interfaces between blocks that are

functionally correct.
– Run a set of increasingly complex applications on the

full chips.
– Prototype the full chip and run a full set of application

software for final verification.
– Decide when it is appropriate to release the chip to

production.

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved142

IP
 V

erification

Interface Verification

• Interface: address/data bus. Protocols
– permitted sequence of control and data signals
– use a bus transaction monitor to check the transaction

Bus
Transaction

Monitor

Block 4

Block 4 RTL
Interface

Block 3

Block 3 RTL
Interface

Block 2

Block 2 RTL
Interface

Block 1

Block 1 RTL
Interface

• Use BFM to check the data read and write

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved143

IP
 V

erification

System Verification
using Interface Testing (1)

• Chip with Point-to-Point Interfaces

Block2
RTL

Interface

Block2
RTL

Interface
Block2

Block1
RTL

Interface

Block1
RTL

Interface
Block1

Block4
RTL

Interface

Block4
RTL

Interface
Block4

Block3
RTL

Interface

Block3
RTL

Interface
Block3

Simple Simple
TransactionTransaction

CheckingChecking

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved144

IP
 V

erification

System Verification
using Interface Testing (2)

• Chip with an On-Chip-Bus

Bus Bus
Functional Functional

Models Models
(BFMs)(BFMs)

Block 1 RTL
Interface

Block 1

Block 2 RTL
Interface

Block 2

Block 3

Block 3 RTL
Interface

Block 4

Block 4 RTL
Interface

Bus
Transaction

Monitor

InsertInsert
CheckersCheckers

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved145

IP
 V

erification

Functional Verification (1/2)

• Two basic approaches
– increase level of abstraction so that software simulators

running on workstations faster
– use specialized hardware for performing verification,

such as emulator or rapid prototyping
• Canonical SoC abstraction

– Full RTL model for IP cores
– behavior or ISA model for memory and processor
– bus functional model and monitor to generate and

check the transactions between IPs
– generate real application code for the processor and

run it on the simulation model

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved146

IP
 V

erification

Functional Verification (2)

• A canonical SOC design
PeripheralsPeripherals

ProcessorProcessor MemoryMemory
ControllerController MemoryMemory

I/OI/O
InterfaceInterface

DataData
TransformationTransformation

I/OI/O
InterfaceInterface

System BusSystem Bus

Tian-S
heuan

C
hang

147

IP
 V

erification

Functional Verification (3)

Processor
C/C++

RTL Interface

Monitor
(RTL)

Application Software/
drivers/RTOS Compiler

Memory Controller
C/C++

RTL Interface

Memory
C/C++

Other
Peripheral

(RTL)

I/O Interface
(RTL)

Data
Transformation

(RTL)

I/O Interface
(RTL)

Communication
Bus Functional

Model (RTL)

Sequence
Generator /

Analyzer

Communication
Bus Functional

Model (RTL)

CHIPCHIP

ISAISA Behavioral Behavioral
ModelModel

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved148

IP
 V

erification

Application-Based Verification

• Run actual applications on the system (a full
functional model).
– Major Challenge

• RTL Simulation is the bottleneck.

– Two approaches to address this problem
• Increase the level of abstraction of design.
• Use specialized hardware for performance verification

– Emulation
– Rapid Prototyping

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved149

IP
 V

erification

Gate-Level Verification

• Correct functionality and timing
• Sign-Off Simulation
• Formal Verification
• Gate-Level simulation with Unit-Delay Timing
• Gate Level Simulation with Full Timing

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved150

IP
 V

erification

Sign-Off Simulation
• Gate-level simulation, parallel test vectors, full scan

methodology
• RTL sign-off problems

– Simulation speed is too slow
– Parallel vectors with very low fault coverage
– Parallel vectors do not exercise all the critical timing paths

• Traditional addressed problems
– Verification that synthesis has generated a correct netlist
– Verification that the chip, when fabricated, will meet timing
– A manufacturing test

• Different Approaches
– Formal Verification
– Static Timing Analysis
– Some Gate-level Simulation
– Full Scan plus BIST

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved151

IP
 V

erification

Rapid Prototyping

• FPGA prototyping
– Aptix (FPGAs + programmable routing chips

• Emulation-based testing
– FPGA-based or processor-based
– QuickTurn and Mentor Graphics

• Real silicon prototyping
– faster and easier to build an actual chip and debug it
– design features in the real silicon chip

• good debug structure
• ability to selectively reset the individual IP blocks
• ability to selectively disable various IP blocks to prevent bugs

from affecting operations of the system

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved152

IP
 V

erification

Specialized Hardware
for System Verification

• System simulation through specialized hardware
systems for verification.
– Zycad, IKOS

• These accelerators map the standard, event-driven software
simulation algorithm onto specialized hardware.

• Parallel execution on multiple processors.

– Emulation Systems
• Non-synthesizable code, especially testbenches, must run the

host machine.
• The partitioning of the circuits among numerous FPGAs.
• The use of FPGA makes controlling and observing individual

nodes in the circuit difficult.

