SOC Design Process

® -mm@: Process
Tian-Sheuan Chang

SOC Design Process

e SOC design flow
o System level design issues
« Macro design flow

ubisac

puey) uenays-uel|
SS9J0.Ic-

1 Copyright ©2003 All rights reserved

1. SOC Design Flow

 To meet challenges of SOC, design flow changes
from
— From a waterfall model to a spiral model

— From a top-down to a combination of top-down and
bottom-up

ubisac

puey) uenays-uel|
SSo00.1-4

2 Copyright ©2003 All rights reserved

Traditional ASIC Design Flow

 Waterfall model sy
« Recursive — Y
— “From error to where ?” —
. Verification Strategy i
— “Design is becoming COMPLEX " | symihesi
e Time-To-Market Pressure *()
« What's the problem : — '
— Handoff are rarely clean I
— Larger, deep submicron designs | vuidandest |
» co-development for HW and SW ¢

Deliver to system integration and software test

* Physical issues

3 Copyright ©2003 All rights reserved

SOC Design Process

« Evolution: waterfall to spiral model

— Addressing these problems concurrently
* Functionality,
* Timing,
* Physical design and
 Verification

= — Incrementally improving as design converges
e Top-down to combination of top-down and
5 S bottom-up
92 — Bottom-up with critical low-level blocks, reuse soft or
D
5 = hard macros
o &
93:"; wn

4 Copyright ©2003 All rights reserved

Spiral Model

puey) uenays-uel|

ubisac

SS990.1d

Goal : Maintain parallel interating design flows

SYSTEM DESIGN AND VERIFICATION

PHYSICAL; TIMING ¢ HARDWARE# SOFTWARE;
O Timing) " Uardwara)
P

hysical Timing Hardware Software
specification: specification: specification specification
area, power, I/O timing
clock tree L clock L Algorithm L o
design -7 frequency |V V' gevelopment | T ! Application
prototype
& macro
L development
______ o _ _ _ _ _|_ _|decompsition| _ _| " _ _|
Preliminary |1 | Block timing |1 | BIoc_k L Application
— L N selection/ N prototype
floorplan specification . :
Design testing
Updated L Block L] Block L N] Application
floorplans 1 synthesis 17 verification 1| development
Updated (I (- Top-level L N] Application
floorplans o 1 HDL 1 testing
Trial Top-level Top-level Application
placement — synthesis —— / verification [— testing
e/ N N e/

Final place and route
Tapeout

«llllllll W IEEEEEEE

Copyright ©2003 All rights reserved

Waterfall v.s. Spiral

o Waterfall e Sprial
— Work well up to 100K — For_large, deep submicron
gate and down .5u designs
_ Serial H/W and S/W — Parallel development of H/W &
S/W

development e :
P — Parallel verification and synthesis

— Floorplaningand P & R in

e synthesis process
— Use predesigned Macros
O (Hard/Soft)
D . :
n — Planned iteration throughput
Q
S

“H/W and S/W development
concurrently : functionality, timing,

physical design, and verification”

puey) uenays-uel|
SSo00.1-4

6 Copyright ©2003 All rights reserved

Top-Down vs. Bottom-Up

e Classical top-down

— Begin with spec and decomposition

— End with integration and verification

— Assuming lowest level block, pre-designed

* Too ideal to be easily broken and cause unacceptable iteration

 Real-world design team

— Mixture of top-down and bottom-up design

— Building critical low-level blocks early

— Libraries of reusable hard and soft macros helps this
process

7 Copyright ©2003 All rights reserved

“Construct by Correction”

e Construct by correction
— Made the first pass ASAP, and refine later
— Why
 allow for multiple iterations
— Used in Sun Microsystem’s UltraSPARC design methodology
* “One of the most successful in Sun Microsystem’s History”

— Take from architecture definition through P & R

o — Foresee impact of architectural decision on final design: area,
power, performance
— Target
% .
& . Ialtger, complex designs
“'El « Correction by construct
0 . .
3 — Make the first pass completely right
(=
= 8 — Target
SN « small designs
2 O
>

8 Copyright ©2003 All rights reserved

Key to SOC Design Process

Iteration is an inevitable part of the design process
The problem is how large the loop is

Goal
— Minimize the overall design time
But How

— Planned for iterations
— Minimize iteration numbers

2 » especially major loops (Spec to chip)

O — Local loop is preferred

8 coding, verifying, synthesizing small blocks
5‘% — IP clearly help due to pre-verified
A - — Parameterized blocks offer more tradeoff between area,
8 3 performance and functionality
C =] . . .
- =« Carefully designed spec is the best way to minimize the
O w0 |
> 0 00psS
)

9 Copyright ©2003 All rights reserved

Specification Problems

« First part of design process
— Most crucial, challenging, lengthy phase of project
 Why It is so iImportant

— Specification is your destination

* If you know it exactly, you can spot the error path and fix it
quickly
* If not, you may not spot major errors until late

 Now the question

— When shall you document your specification
e Early phase in the design cost less and more valuable
» Later phase may only delays the project or be skipped

10 Copyright ©2003 All rights reserved

Purpose of Specification

« Specification for Integration
— Functional/Physical/ Design requirements
— The block diagram
— Interfaces to external system
— Manufacturing test methodology
— Software model
— Software requirements

I Specification for block Design
o — Algorithm spec
8 — Interface spec
g‘,"% — Authoring guide
02 — Test Spec - lint & coverage
g 9 — Synthesis constraints
5 o — Verification environment, tools used
%:—;)

11 Copyright ©2003 All rights reserved

Types of Specifications

puey) uenays-uel|

ubisa

SS990.1d

« Written in natural language
— Traditional, ambiguous, incompleteness, erroneous

 Formal specification

— Desired characteristic (functionality, timing, power,
area,...), iIndependent to implementation

— Not widely used, important research topic

 Executable specification
— Description of functional behavior
— Parallel with RTL Model in the TestBench

12 Copyright ©2003 All rights reserved

Executable Specification

 Procedural language for behavioral modeling

— Design productivity
« Easy to model complex algorithm
« Fast execution
» Simple testbench

— Tools

= « Native C/C++ through PLI/FLI
« Extended C/C++ : SpecC, SystemC
" &« Verify it on the fly!
%c:/:g — Test vector generation
= § — Compare RTL code with behavioral model
:;3 § — Coverage test

13 Copyright ©2003 All rights reserved

Using Executable Specifications

Ensure completeness of specification
— Even components(e.g. peripherals) are so complex
— Create a program that behave the same way as the system

Avoid unambiguous interpretation of the specification
— Avoids unspecified parts and inconsistencies
— |IP customer can evaluate the functionality up-front

Validate system functionality before implementation
— Early feedback from customer
— Create early model and validate system performance

Refine and test the implementation of the specification
— Test automation improves time-to-market

14 Copyright ©2003 All rights reserved

Executable Spec Motivation

Customer System Verification, Customer System
Error Checking
I <—— Bottleneck -
Paper Spec Executable Spec
| <« |
HDL Design HDL Design
[1 | [
- Netlist CH:[?LtT?StBer;)CLr;/\I’:VEr Netlist
5 - prieriace (PLUPCESY I
7 Layout Layout
g [T
5 Silicon Silicon
O
>
QD

15 Copyright ©2003 All rights reserved

Time Spent in Design Phases

Physical
Product System Logic Design & Prototype
Planning Design Design Assembly Debug

Conventional
methodologies

ws?®
)
(L
.
(L
.
un®
s
LA
s
s
[L
s
(L
.
(L
““““
s
wst®
)
wst®
)
us®
)
us®
Y
wst®
.
s
wst®
)
wst®
)

N
Q
3
S
5 |

Time Spent
: <)
Debugging
Product Specification incorrectly Incorrect
n Requirements Translated or ambiguous Login in Design
E_;l@ Mis-communicated
> > By customer
c:_/? O
@ -
= O
)
-~ @ Source: Toshiba/Collet/STOC
Qw0
s O

16 Copyright ©2003 All rights reserved

Specification Based Design

conversion

Test Bench

refine

o
D
0

Q
>

U
L
@)
Q
D
)
%)

puey) uenays-uel |

17 Copyright ©2003 All rights reserved

—
o
=
0
>
@
c
©
5
@)
>
o
5
@,

System Design

DETERMINE
hardware/software partltlonJ

IDENTITY
system
requirements

v

WRITE
preliminary
specifications

v

DEVELOP

high-level algorithmic model
C/C++/MATLAB/SES/
_NuThena/Bones/COSSAP

v

REFINE and TEST
algorithms
C/C++/COSSAP/SPW/SDL

- N

WRITE
hardware specification
DEVELOP .EEELTES
behavioral model for
hardware

PARTITION
into macros

WRITE
preliminary specification

for macro

hardware/software
COSIMULATION

18

Characterized library
of hardware/software
macros & interface
protocols

WRITE
software specification
DEVELOP
prototype of software

DEVELOP
software

Copyright ©2003 All rights reserved

SoC Design Characteristics

e Design Level
— RTL / Behavioral > Architectural / VC Evaluation

Design Team
— Small, Focused > Multidisciplinary> Multi-Group, Multidisciplinary
Primary Design

— Custom Logic > Blocks, Custom Interface> Interface to System /
o Bus

Design Reuse

U
8 — Opportunistic Soft, Firm and Hard > Planned Firm and Hard
—Q .
Bl < Optimization Focus
% — Synthesis, Gate-level > Floor planning, Block Architecture > System
5 O Architecture
> D
O w
2 O

19 Copyright ©2003 All rights reserved

SoC Test Characteristics

e Test Architecture

— Scan/JTAG/BIST/Custom
> Hierarchical, Parallel scan/JTAG/BIST/custom

Bus Architecture
— Custom > Standardized / Multiple app-specific

Verification Level
= — Gate/RTL > Bus functional/RTL/Gate
> Mixed (ISS to RTL with H/W and S/W)

_J
@ L
- g e Partitioning Focus
2S5 — Synthesis limitation > Functions / Communication
2
5 S
S5 0
0
=7

20 Copyright ©2003 All rights reserved

SoC Layout Characteristics

ubisac

puey) uenays-uel|
SSo00.1-4

e Placement
— Flat > Flat with limited hierarchical > Hierarchical

e Routing

— Flat > Flat with limited hierarchical > Hierarchical
 TiIming

— Flat > Flat with limited hierarchical > Hierarchical

e Physical Verification
— Flat > Flat with limited hierarchical > Hierarchical

21 Copyright ©2003 All rights reserved

Transition of SoC Design

e From area-driven to timing-driven design
 From block-based to platform-based design

N
SRAM
Flash
SRAM
O ROM sram || FIFO
. MPEG
= Logic —> ROM || serial
D _ i>
L Soft IF IP uss || MmMcIF || Logic
—1
> 3)
4% ADD TDD BBD PBD
L
2 0O :
o 8 Design Methodology
9 7))
S

22 Copyright ©2003 All rights reserved

SoC Design Methodology

ubisa

puey) uenays-uel|
SSo00.1-4

« Transition of Design Methodology
— ADD >TDD > BBD > PBD

 Reuse-the key to SoC design
— Personal > Source > Core > Virtual Component

 Integration approach
— |P-Centric vs. Integration-Centric Approach

e SoC and productivity

— Executable specification
e Test automation
« Real-world stimuli
« Higher-level algorithmic system modeling

23 Copyright ©2003 All rights reserved

2. System-Level Design Issues

Key Aspects of Design Reuse

 Fundamentals
— Well-designed IP is the key to successful SOC design

o System level design guidelines

— To produce well-designed IP
— To integrate well-designed IP to an SOC design
— Driven by the needs of IP integrator and chip designer

(U
e Principles behind these guidelines

— Disciplipe |
B Co.ns.lstent good practices
=S85 — Simplicity
22 * The simpler the design, the easier to fix the bugs
& O — Locality
?) 8 » Make timing and verification problem local by careful block and
5 0 interface design
>

24 Copyright ©2003 All rights reserved

Full Custom Design in Reuse

e Full custom design
— Design that are not from synthesis

 Major problems
— Performance gain is limited
— Non-portable, hard to modify designs

= — Redesign take time
o Limit full custom design for only small part of
f.ﬁ design

— Even aggressive processor designer uses full custom
only for data path

puey) uenays-uel|
SSo00.1-4

25 Copyright ©2003 All rights reserved

Interface and Timing Closure

e Timing problems due to deep submicron process

— Dominated wire delay
— Imprecise wireload model due to uncertainty of wire delays

e Solution

— Tools
« Timing driven P&R, Physical synthesis
C — Tactics for fundamental good design
» Register all inputs/outputs of the macro

w
D — Unit for floorplan
) .

e * Register all outputs of the subblock of macro

5 S — Unit for synthesis

- . Excepti

3 3 xception

o 8 — Cache interface

9;3 % — Design likes PCI interface that needs glue logic at the interface

-

26 Copyright ©2003 All rights reserved

Synchronous v.s. Asynchronous

ubisa

puey) uenays-uel|
SSo00.1-4

e Synchronous
— Avoid asynchronous and multi-cycle paths

— Tools work best for synchronous design
» Accelerate synthesis and simulation

— Ease static timing analysis

* Register based
— Use (positive) edge triggered DFF
— Latches shall be used only in small memory or FIFOs

27 Copyright ©2003 All rights reserved

Clocking

e Clock planning
— Minimize the number of clock domains
— Isolate the interface between clock domains
— Careful synchronizer design to avoid metastability
— |solate clock generation and control logic

Document the clock scheme
— Required clock frequencies and PLL

= — Interface timing requirements to other parts of the system
« PLL

_|£ — Disabling/bypassing scheme

25 — Ease testing

2 « For hard blocks

§ 8 — Eliminate the clock. delay using a PLL

g n — Balance the clock insertion delay

>

28 Copyright ©2003 All rights reserved

Reset

e Synchronous reset
— Easy to synthesize
— Requires a free-running clock

e Asynchronous reset
— Do not require a free-running clock
= — Not affect flip-flop data timing due to separated input
— Harder to implement, like clock, CTS is required

W
g
L2 — Synchronous de-assertion problem
- — Make STA and cycle-based simulation more difficult
S
2 0O
> () .
“f4 * Asynchronous reset Is preferred

29 Copyright ©2003 All rights reserved

Internal Generated Reset

 Internal generated reset causes unwanted reset
during scan shift

e Solution
— Force internal generated reset signal inactive during
test

@

U

: n0ntEs
oG power-on reset FF FF D—o
QD
— I reset to all FF
0 U
5 =
S 8 test mode n
> ('D O
Qw0
s O

30 Copyright ©2003 All rights reserved

Design for Verification

* Principle of locality
* Plan before design starts

e Testbenches should reflect the system
environment

e Best strategy

O
— Bottom-up verification

— Challenges: developing testbench

%)
5Q — Solution
(Z J » Macros with clean, well-designed interface
g § * High level verification languages + code coverage tool
o &
3 O

31 Copyright ©2003 All rights reserved

System Interconnection

e Tri-state bus Is not good

— Bus contention problem

* Reduce reliability
* One and only one driver at a time
— Harder for deep submicron design

— Bus floating problem

= * Reduce reliability
* Bus keeper
L2 — ATPG problem
2 S -
6T — FPGA prototyping problem
B
¥« Multiplexer-based bus is better

32 Copyright ©2003 All rights reserved

IP-to-IP Interface

* Direct connection (via FIFO)
— Higher bandwidth
— Redesign for different IP
— Become unmanageable when the IP number increases

— Only suitable for design connected to analog block, e.g.
PHY

« Bus-based
— Eliminate direct link
— Layered approach can offer higher bandwidth
— All IPs talk to bus only, thus only IP-to-bus problem
— The mainstream of current IP-based SOC integration

 Choose the standard bus whenever possible

33 Copyright ©2003 All rights reserved

On-chip Bus (OCB)

puey) uenays-uel|

ubisac

SS990.1d

« ARM AMBA
— Advanced Microcontroller Bus Architecture
— Dominant player
— V 3.0 is on the road

— Availlable solution
* Synopsys DW_AMBA, ...

 Sonics OCP

« VSIAOCB 2.1
 WishBone Silicore
 |BM CoreConnect

34

Copyright ©2003 All rights reserved

AMBA Bus System

puey) uenays-uel|

ubisac

SS990.1d

High-performance

High-bandwidth

ARM processor on-chip RAM
B UART Timer
R
High-bandwidth AHB | APB I I
Memory Interface D I I
G
E Keypad PIO
DMA bus
master AHB to APB Bridge
AMBA Advanced High-performance Bus (AHB) AMBA Advanced Peripheral Bus (APB)
* High performance * Low power

* Pipelined operation
* Burst transfers

* Multiple bus masters

* Split transactions

* Latched address and control
* Simple interface
* Suitable for many peripherals

35 Copyright ©2003 All rights reserved

Design for Debug: On-chip Debug

 EXperienced teams assume chip won’t work when
first power up and plan accordingly.

e Challenges for IP test
— IPs are deeply embedded within the SOC design
— Disaster to the system and S/W engineers

s * Solution
— Principle: increase controllability and observability
5% — Add debug support logic to the hardware
2 > . :
& T — MUX bus to existing I/O pins
2 o
L 0O
- (@
O O
5 O

36 Copyright ©2003 All rights reserved

Low Power (1/3)

P=> aCV*f
o : switching activity, C : capacitance, V : supply voltage, f : frequency

 Reduce the supply voltage
— Process improvement

 Reduce capacitance
— Low power cell and 1/O library

= — Less logic for the same performance
« Reduce switching activity

g'-tg — Architecture and RTL exploration

4 — Power-driven synthesis

30 — Gate-level power optimization

¥

QD

37 Copyright ©2003 All rights reserved

Low Power (2/3)

e Memory
— Dominated power consumption
— Low-power memory circuit design
— Partition a large memory into several small blocks
— Gray-coded address interface

U - ~ g A
32KB

L2 64KB S <
g' S 4)
%)
g 32KB
- 0 N Y,
o \ J

38 Copyright ©2003 All rights reserved

Low Power (3/3)

e Clock gating
— 50% - 70% power consumed in clock network reported

— gating the clock to an entire block - N [Slock A)
.] > oC
— gating the clock to a register Clock
o gegeratllon .
\an gating ! Block B
o always @(posedge clk) . y
if(en) —
U = :
8 g <= g_nxt; = D Q
:|(5 en
0 U
C:D- 8)
® — P9
O wm en —
5 0 ok D
O)

39 Copyright ©2003 All rights reserved

Design for Test

puey) uenays-uel|

ubisa

SS990.1d

e Memory test
— Memory BIST is recommended

e Processor test

— Chip level test controller (including scan chain controller
and JTAG controller)

— Use shadow registers to facilitate full-scan testing of
boundary logic

e Other macros
— Full scan iIs strongly recommended

e Logic BIST
— Embedded stimulus generator and response checker
— Not popular yet

40 Copyright ©2003 All rights reserved

3. Macro Design Process

e Top-level macro design
e Subblocks design

* Integrate subblocks

e Macro productization

ubisac

puey) uenays-uel|
SS9J0.Ic-

41 Copyright ©2003 All rights reserved

Problem in SoC Era

* Productivity gap
* Time-to-market pressure

* |ncreasing design complexity
— HW/SW co-development
— System-level verification

@ : . :
— Integration on various levels and areas of expertise
— Timing closure due to deep submicron
s
5 5 . : .
0 Solution: Platform-based design with reusable IPs
®
5O
- (@
O w0
%T; 7y

42 Copyright ©2003 All rights reserved

Design for Reuse IPs

e Design to maximize the flexibility
— configurable, parameterizable

« Design for use in multiple technologies
— synthesis script with a variety of libraries
— portable for new technologies

« Design with complete verification process
— robust and verified

e Design verified to a high level of confidence
— physical prototype, demo system

e Design with complete document set

43 Copyright ©2003 All rights reserved

Parameterized IP Design

 Why to parameterize IP?
— Provide flexibility in interface and functionality
— Facilitate verification

« Parameterizable types
— Logic/Constant functionality

— Structural functionality

« Bit-width depth of FIFO regulation and selection of sub-
module

— Design process functionality (mainly in test bench)
 Test events
« Events report (what, when and where)
« Automatic check event

— Others™ (Hardware component Modeling, 1996)

= Authors: Vicktor Preis and Sabine Marz-Rossel, Modeling Highly Flexible and Self-generating Parameterizable Components In VHDL . .
Collected in book "Hardware component Modeling”. 1996. by Jean-Michel Berge. 044 .evia and Jacques Rouillard Copyright ©2003 All rights reserved

IP Generator/Compiler

o User specifies
— Power dissipation, code size, application performance,
die size
— Types, numbers and sizes of functional unit, including
processor

— User-defined instructions.

* Tool generates
— RTL code, diagnostics and test reference bench
— Synthesis, P&R scripts

— Instruction set simulator, C/C++ compiler, assembler,
linker, debugger, profiler, initialization and self-test code

45 Copyright ©2003 All rights reserved

Logic/Constant Functionality

e Logic Functionality e Constant Functionality
always @ (posedge clock) begin assign tRC_limit=
if (reset=="ResetLevel) begin (RC_CYC>(RCD_CYC + burst_len)) ?
"RC_CYC-(RCD_CYC + burst_len) : 0;
end
A else begin
always #('T _CLK/2) clock = ~clock;
end
n initial begin
oG end)
S = #('T _CLK) event 1,
>
0 T #(T CLK) event_2;
Mo
i .
o & en
Sl

46 Copyright ©2003 All rights reserved

Reusable Design - Test Suite

 Testevents
— Automatically adjusted when IP design is changed

— Partition test events to reduce redundant cases when test for all
allowable parameter sets at a time

 Debug mode
— Test for the specific parameter set at a time
— Test for all allowable parameter sets at a time
— Test for the specific functionality
— Step control after the specific time point
* Display mode of automatic checking
— display[0]: event current under test
— display[1]: the time error occurs
— display[2]: expected value and actual value

47 Copyright ©2003 All rights reserved

Reusable Design - Test Bench

ubisac

puey) uenays-uel|
SSo00.1-4

« Use Global Connector to configure desired test

bench

— E.g.: bus topology of IEEE 1394

Device O

Device 1

Device 3

Device 2

—

48

Device 0

Device 3
Device 1 2
\/\ Device 2

Copyright ©2003 All rights reserved

Characteristics of Good IP

puey) uenays-uel|

ubisa

SS990.1d

e Configurability
o Standard interface
 Compliance to defensive design practices

 Complete set of deliverables
— Synthesizable RTL
— Verification suite
— Related scripts of EDA tools
— Documentations

49 Copyright ©2003 All rights reserved

IP Core Macro Design Process

puey) uenays-uel|

ubisac

SS990.1d

Block specification >

v
DEVELOP functional specification
.. T e,
. : Completed behavioral
DEVELOP behavioral model || DEVELOP testbench | model for HW/SW
\ / ™ cosimulation and test

TEST behavioral model

development

...

...

PARTITION design into subblocks

‘ JE—

WRITE functional specification
v

WRITE technical specification
y Perform these steps

DEVELOP timing constraints WRITE RTL DEVELOP testbench for each subblock
RUN Lint
SYNTHESIS / SIMULATE
v v

PERFORM power analysis MEASURE test coverage

Meets timing, power, & area requirements | { Coverage tool passes

PASSES - READY FOR INTEGRATION

v
25 Sowgee: Michael Keating and Pierrr Bricaud, Reuse Meghodploty 82008 201 ¢doh?8%eserved

Macro Integration Process

puey) uenays-uel|

ubisac

SS990.1d

Subblock 1 Subblock 1 Subblock 1

A 4 A 4 A 4

|

DETERMINE configuration and
GENERATE top-level HDL

Top-level HDL ! ! p y .
e N)
FUNCTIONAL RUN lint GENERATE
VERIEICATION X synthesis scripts)
L with reference simulator) . v .
! SYNTHESIZE
é) X with reference library)
DEVELOP and RUN
multiple configuration tests a : .)
9) Scan insertion, ATPG,
! X fault simulation)
4 N\
MEASURE r ¥ — \
\ J X and power analysis)
\ 4 \ 4 +
READY FOR PRODUCTION

v
PRODUCTIZE as soft macro

L 4
PRODUCTIZE as hard macro
&5 Sowgqe: Michael Keating and Pierrr Bricaud, Reuse Meghoedploty 82008 201 ¢doh?8%eserved

Four Major Phases

puey) uenays-uel|

ubisa

SS990.1d

» Design top-level macro
— macro specification; behavior model
— macro partition

* Design each subblock
— specification and design
— testbench; timing, power check

 Integration subblocks
e Macro productization

52

Copyright ©2003 All rights reserved

Specification at Every Level

 Overview

e Functional requirements
* Physical requirements

e Design requirements

e Block diagram

< o Interface to external system
« Manufacturing test methodology
n

L e Software model

&+ Software requirement

5]+ Deliverables

4+ Verification

53 Copyright ©2003 All rights reserved

Top-Level Macro Design Flow

Macro specification

A 4

DEVELOP detailed
technical specification

CODE behavioral model CODE testbench :
C/Verilog/VHDL C/Verilog/VHDL/Vera/Specman { Completed behavioral
O i » model for HW/SW
: \ / i cosimulation and test
development
\ [TEST behavioral model] :
T :
—1 (O CERETE BEHAVIROAL MODEL
O — T a
T
g ' \ 4
® g PARTITION
D O the block into subblocks
- D
9 n
5 N
>

25 Sowsge: Michael Keating and Pierrr Bricaud, Reuse Meghodpioty o008 201 ¢doh18%eserved

Top-Level Macro Design

puey) uenays-uel|

ubisa

SS990.1d

« Updated macro hardware specification
— document
* EXxecutable specification
— language description
— external signals, timing
— Internal functions, timing
 Behavioral model
— SystemC, HDL

e Testbench

— test vector generation, model for under test unit,
monitoring and report

e Block partition

55 Copyright ©2003 All rights reserved

Subblock Design Flow

~\

J

[WRITE functional specification

A 4

N\

[WRITE technical specification

J/

DEVELOP timing constraints WRITE RTL DEVELOP testbench

RUN Lint

J

) SYNTHESIS SIMULATE]

® Design Compiler Verilog/VHDL

2.
:'. (Q \ 4 A 4
2 5 PERFORM power analysis MEASURE testbench coverage
0 T PowerCompiler/QuickPower VHDLCover/VeriSure/CoverMeter
= —
®
QCJ 8 Meets timing, power, & area requirements | { Coverage tool passes
?3 8 PASSES - READY FOR INTEGRATION
5 O
-

25 Sowgge: Michael Keating and Pierrr Bricaud, Reuse Meghoeploty &82008 201 ¢doh?8%eserved

Subblock Design

puey) uenays-uel|

ubisac

SS990.1d

e Design elements
— Specification
— Synthesis script
— Testbench
— Verification suite
— RTL that pass lint and synthesis

57

Copyright ©2003 All rights reserved

Linter

e Fast static RTL code checker
— preprocessor of the synthesizer

— RTL purification
e syntax, semantics, simulation

— timing check

o — testability checks

— — reusability checks
Hg « Shorten design cycle by avoiding lengthy iterations
25
& |
B
S O
o &
5 O

58 Copyright ©2003 All rights reserved

Subblock Integration Flow

Subblock 1 Subblock 1 Subblock 1
v v v
DETERMINE configuration and
GENERATE top-level HDL

Top-level HDL v ¥ Y N
FUNCTIONAL RUN lint oo ?ENEt'EAT.E -
VERIFICATION Verilint, (_Op-level syn . SIS scripts
Verilog/VHDL simulator VHDLIInt - N
. SYNTHESIZE
ModelSim, VSS, VCS with reference library
\ Design Compiler y
‘ v 0 +
(Scan insertion, ATPG,)
DEVELOP and RUN coverage analysis
O multlple conflgurgtlon tests Test Compiler, DFTAdvisor,
D Verilog/VHDL simulator _ FastScan/FlexTest Y,
n ModelSim, VSS, VCS . Y \
—1 PERFORM analysis
% > QuickPower, Power Compiler)
(:? U v v v
g 8 READY FOR PRODUCTION
% (@) v
Q 8 PRODUCTIZE gs soft macro
s 9 @
= PRODUCTIZE as hard macro

59 Copyright ©2003 All rights reserved

Subblock Integration

 Integration process Is complete when
— top-level RTL, synthesis script, testbench complete

— macro RTL passes all tests

— macro synthesizes with reference library and meets all
timing, power and area criteria

o — macro RTL passes lint and manufacturing test
coverage
U
M
2.
=@
D5
0w T
5 3
5 O
- D
O wm
5 O

60 Copyright ©2003 All rights reserved

Macro Productization

< From block integration K
— ¥ ¥ >

[DEVELOP specification | TRANSLATE SYNTHESIS to
| for prototype chip Verilog < VHDL multiple technologies CREATE
! user documents: e.g.,
: user guide
DESIGN chip v Yy Verification guide
v REGRESSION TEST RUN Pre-sim |ntegrati0n guide
SYNTHESIS chip on translated code on one technology Test guide /
[Scan insertion, ATPG Y —
and coverage analysis RUN TESTS Formal Verification
@ ”|on multiple simulators RTL vs. gates
o FLOORPLAN
M v
D PLACE and ROUTE
—1©Q
% D) v
0 T VERIFY timing
8 3
c
o O FABRICATE
- @D
C__? m \ 4 \ 4 \ 4 \ 4
S n TEST chip in demo board > Release

61 Copyright ©2003 All rights reserved

Soft Macro Production

* Produce the following components
— Verilog version of the code, testbenches, and tests

— Supporting scripts for the design
* installation script
» synthesis script

— Documentation

ubisac

puey) uenays-uel|
SSo00.1-4

62 Copyright ©2003 All rights reserved

	SOC Design Process
	SOC Design Process
	1. SOC Design Flow
	Traditional ASIC Design Flow
	SOC Design Process
	Spiral Model
	Waterfall v.s. Spiral
	Top-Down vs. Bottom-Up
	“Construct by Correction”
	Key to SOC Design Process
	Specification Problems
	Purpose of Specification
	Types of Specifications
	Executable Specification
	Using Executable Specifications
	Executable Spec Motivation
	Time Spent in Design Phases
	Specification Based Design
	System Design Process
	SoC Design Characteristics
	SoC Test Characteristics
	SoC Layout Characteristics
	Transition of SoC Design Methodology
	SoC Design Methodology
	2. System-Level Design Issues
	Full Custom Design in Reuse
	Interface and Timing Closure
	Synchronous v.s. Asynchronous
	Clocking
	Reset
	Internal Generated Reset
	Design for Verification
	System Interconnection
	IP-to-IP Interface
	On-chip Bus (OCB)
	AMBA Bus System
	Design for Debug: On-chip Debug
	Low Power (1/3)
	Low Power (2/3)
	Low Power (3/3)
	Design for Test
	3. Macro Design Process
	Problem in SoC Era
	Design for Reuse IPs
	Parameterized IP Design
	IP Generator/Compiler
	Logic/Constant Functionality
	Reusable Design - Test Suite
	Reusable Design - Test Bench
	Characteristics of Good IP
	IP Core Macro Design Process
	Macro Integration Process
	Four Major Phases
	Specification at Every Level
	Top-Level Macro Design Flow
	Top-Level Macro Design
	Subblock Design Flow
	Subblock Design
	Linter
	Subblock Integration Flow
	Subblock Integration
	Macro Productization
	Soft Macro Production

