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SOC Design Process

e SOC design flow
o System level design issues
« Macro design flow

ubisac

puey) uenays-uel|
SS9J0.Ic-

1 Copyright ©2003 All rights reserved



1. SOC Design Flow

 To meet challenges of SOC, design flow changes
from
— From a waterfall model to a spiral model

— From a top-down to a combination of top-down and
bottom-up
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Traditional ASIC Design Flow

 Waterfall model sy
« Recursive — Y
— “From error to where ?” —
. Verification Strategy i
— “Design is becoming COMPLEX " | symihesi
e Time-To-Market Pressure *()
« What's the problem : — '
— Handoff are rarely clean I
— Larger, deep submicron designs | vuidandest |
» co-development for HW and SW ¢

Deliver to system integration and software test

* Physical issues
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SOC Design Process

« Evolution: waterfall to spiral model

— Addressing these problems concurrently
* Functionality,
* Timing,
* Physical design and
 Verification

= — Incrementally improving as design converges
e Top-down to combination of top-down and
5 S bottom-up
92 — Bottom-up with critical low-level blocks, reuse soft or
D
5 = hard macros
o &
93:"; wn
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Spiral Model
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Goal : Maintain parallel interating design flows

SYSTEM DESIGN AND VERIFICATION

PHYSICAL; TIMING ¢ HARDWARE# SOFTWARE;
O Timing ) " Uardwara )
P

hysical Timing Hardware Software
specification: specification: specification specification
area, power, I/O timing
clock tree L clock L Algorithm L o
design -7 frequency |V V' gevelopment | T ! Application
prototype
& macro
L development
______ o _ _ _ _ _|_ _|decompsition| _ _| " _ _|
Preliminary |1 | Block timing |1 | BIoc_k L Application
— L N selection/ N prototype
floorplan specification . :
Design testing
Updated L Block L] Block L N] Application
floorplans 1 synthesis 17 verification 1| development
Updated (I (- Top-level L N] Application
floorplans o 1 HDL 1 testing
Trial Top-level Top-level Application
placement — synthesis —— / verification [ — testing
e/ N N e/

Final place and route
Tapeout
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Waterfall v.s. Spiral

o Waterfall e Sprial
— Work well up to 100K — For_large, deep submicron
gate and down .5u designs
_ Serial H/W and S/W — Parallel development of H/W &
S/W

development e :
P — Parallel verification and synthesis

— Floorplaningand P & R in

e synthesis process
— Use predesigned Macros
O (Hard/Soft)
D . :
n — Planned iteration throughput
Q
S

“H/W and S/W development
concurrently : functionality, timing,

physical design, and verification”
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Top-Down vs. Bottom-Up

e Classical top-down

— Begin with spec and decomposition

— End with integration and verification

— Assuming lowest level block, pre-designed

* Too ideal to be easily broken and cause unacceptable iteration

 Real-world design team

— Mixture of top-down and bottom-up design

— Building critical low-level blocks early

— Libraries of reusable hard and soft macros helps this
process
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“Construct by Correction”

e Construct by correction
— Made the first pass ASAP, and refine later
— Why
 allow for multiple iterations
— Used in Sun Microsystem’s UltraSPARC design methodology
* “One of the most successful in Sun Microsystem’s History”

— Take from architecture definition through P & R

o — Foresee impact of architectural decision on final design: area,
power, performance
— Target
% .
& . Ialtger, complex designs
“'El « Correction by construct
0 . .
3 — Make the first pass completely right
(=
= 8 — Target
SN « small designs
2 O
>
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Key to SOC Design Process

Iteration is an inevitable part of the design process
The problem is how large the loop is

Goal
— Minimize the overall design time
But How

— Planned for iterations
— Minimize iteration numbers

2 » especially major loops (Spec to chip)

O — Local loop is preferred

8  coding, verifying, synthesizing small blocks
5‘% — IP clearly help due to pre-verified
A - — Parameterized blocks offer more tradeoff between area,
8 3 performance and functionality
C = ] . . .
- =« Carefully designed spec is the best way to minimize the
O w0 |
> 0 00psS
)
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Specification Problems

« First part of design process
— Most crucial, challenging, lengthy phase of project
 Why It is so iImportant

— Specification is your destination

* If you know it exactly, you can spot the error path and fix it
quickly
* If not, you may not spot major errors until late

 Now the question

— When shall you document your specification
e Early phase in the design cost less and more valuable
» Later phase may only delays the project or be skipped
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Purpose of Specification

« Specification for Integration
— Functional/Physical/ Design requirements
— The block diagram
— Interfaces to external system
— Manufacturing test methodology
— Software model
— Software requirements

I Specification for block Design
o — Algorithm spec
8 — Interface spec
g‘,"% — Authoring guide
02 — Test Spec - lint & coverage
g 9 — Synthesis constraints
5 o — Verification environment, tools used
%:—; )
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Types of Specifications
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« Written in natural language
— Traditional, ambiguous, incompleteness, erroneous

 Formal specification

— Desired characteristic (functionality, timing, power,
area,...), iIndependent to implementation

— Not widely used, important research topic

 Executable specification
— Description of functional behavior
— Parallel with RTL Model in the TestBench
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Executable Specification

 Procedural language for behavioral modeling

— Design productivity
« Easy to model complex algorithm
« Fast execution
» Simple testbench

— Tools

= « Native C/C++ through PLI/FLI
« Extended C/C++ : SpecC, SystemC
" &« Verify it on the fly!
%c:/:g — Test vector generation
= § — Compare RTL code with behavioral model
:;3 § — Coverage test
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Using Executable Specifications

Ensure completeness of specification
— Even components(e.g. peripherals) are so complex
— Create a program that behave the same way as the system

Avoid unambiguous interpretation of the specification
— Avoids unspecified parts and inconsistencies
— |IP customer can evaluate the functionality up-front

Validate system functionality before implementation
— Early feedback from customer
— Create early model and validate system performance

Refine and test the implementation of the specification
— Test automation improves time-to-market
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Executable Spec Motivation

Customer System Verification, Customer System
Error Checking
I <—— Bottleneck -
Paper Spec Executable Spec
| <« |
HDL Design HDL Design
[ 1 | [
- Netlist CH:[?LtT?StBer;)CLr;/\I’:VEr Netlist
5 - prieriace (PLUPCESY I
7 Layout Layout
g [ T
5 Silicon Silicon
O
>
QD
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Time Spent in Design Phases

Physical
Product System Logic Design & Prototype
Planning Design Design Assembly Debug

Conventional
methodologies
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Specification Based Design
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Test Bench
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System Design

DETERMINE
hardware/software partltlonJ

IDENTITY
system
requirements

v

WRITE
preliminary
specifications

v

DEVELOP

high-level algorithmic model
C/C++/MATLAB/SES/
\_NuThena/Bones/COSSAP

v

REFINE and TEST
algorithms
C/C++/COSSAP/SPW/SDL

- N

WRITE
hardware specification
DEVELOP .EEELTES
behavioral model for
hardware

PARTITION
into macros

WRITE
preliminary specification

for macro

hardware/software
COSIMULATION

18

Characterized library
of hardware/software
macros & interface
protocols

WRITE
software specification
DEVELOP
prototype of software

DEVELOP
software
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SoC Design Characteristics

e Design Level
— RTL / Behavioral > Architectural / VC Evaluation

Design Team
— Small, Focused > Multidisciplinary> Multi-Group, Multidisciplinary
Primary Design

— Custom Logic > Blocks, Custom Interface> Interface to System /
o Bus

Design Reuse

U
8 — Opportunistic Soft, Firm and Hard > Planned Firm and Hard
—Q .
Bl < Optimization Focus
% — Synthesis, Gate-level > Floor planning, Block Architecture > System
5 O Architecture
> D
O w
2 O
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SoC Test Characteristics

e Test Architecture

— Scan/JTAG/BIST/Custom
> Hierarchical, Parallel scan/JTAG/BIST/custom

Bus Architecture
— Custom > Standardized / Multiple app-specific

Verification Level
= — Gate/RTL > Bus functional/RTL/Gate
> Mixed (ISS to RTL with H/W and S/W)

\_J
@ L
- g e Partitioning Focus
2S5 — Synthesis limitation > Functions / Communication
2
5 S
S5 0
0
=7
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SoC Layout Characteristics
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e Placement
— Flat > Flat with limited hierarchical > Hierarchical

e Routing

— Flat > Flat with limited hierarchical > Hierarchical
 TiIming

— Flat > Flat with limited hierarchical > Hierarchical

e Physical Verification
— Flat > Flat with limited hierarchical > Hierarchical
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Transition of SoC Design

e From area-driven to timing-driven design
 From block-based to platform-based design

N
SRAM
Flash
SRAM
O ROM sram || FIFO
. MPEG
= Logic —> ROM || serial
D _ i>
L Soft IF IP uss || MmMcIF || Logic
—1
> 3 )
4% ADD TDD BBD PBD
L
2 0O :
o 8 Design Methodology
9 7))
S
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SoC Design Methodology
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« Transition of Design Methodology
— ADD >TDD > BBD > PBD

 Reuse-the key to SoC design
— Personal > Source > Core > Virtual Component

 Integration approach
— |P-Centric vs. Integration-Centric Approach

e SoC and productivity

— Executable specification
e Test automation
« Real-world stimuli
« Higher-level algorithmic system modeling
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2. System-Level Design Issues

Key Aspects of Design Reuse

 Fundamentals
— Well-designed IP is the key to successful SOC design

o System level design guidelines

— To produce well-designed IP
— To integrate well-designed IP to an SOC design
— Driven by the needs of IP integrator and chip designer

(U
e Principles behind these guidelines

— Disciplipe |
B Co.ns.lstent good practices
=S85 — Simplicity
22 * The simpler the design, the easier to fix the bugs
& O — Locality
?) 8 » Make timing and verification problem local by careful block and
5 0 interface design
>
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Full Custom Design in Reuse

e Full custom design
— Design that are not from synthesis

 Major problems
— Performance gain is limited
— Non-portable, hard to modify designs

= — Redesign take time
o Limit full custom design for only small part of
f.ﬁ design

— Even aggressive processor designer uses full custom
only for data path
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Interface and Timing Closure

e Timing problems due to deep submicron process

— Dominated wire delay
— Imprecise wireload model due to uncertainty of wire delays

e Solution

— Tools
« Timing driven P&R, Physical synthesis
C — Tactics for fundamental good design
» Register all inputs/outputs of the macro

w
D — Unit for floorplan
) .

e * Register all outputs of the subblock of macro

5 S — Unit for synthesis

- . Excepti

3 3 xception

o 8 — Cache interface

9;3 % — Design likes PCI interface that needs glue logic at the interface

-
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Synchronous v.s. Asynchronous
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e Synchronous
— Avoid asynchronous and multi-cycle paths

— Tools work best for synchronous design
» Accelerate synthesis and simulation

— Ease static timing analysis

* Register based
— Use (positive) edge triggered DFF
— Latches shall be used only in small memory or FIFOs
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Clocking

e Clock planning
— Minimize the number of clock domains
— Isolate the interface between clock domains
— Careful synchronizer design to avoid metastability
— |solate clock generation and control logic

Document the clock scheme
— Required clock frequencies and PLL

= — Interface timing requirements to other parts of the system
« PLL

_|£ — Disabling/bypassing scheme

25 — Ease testing

2 « For hard blocks

§ 8 — Eliminate the clock. delay using a PLL

g n — Balance the clock insertion delay

>
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Reset

e Synchronous reset
— Easy to synthesize
— Requires a free-running clock

e Asynchronous reset
— Do not require a free-running clock
= — Not affect flip-flop data timing due to separated input
— Harder to implement, like clock, CTS is required

W
g
L2 — Synchronous de-assertion problem
- — Make STA and cycle-based simulation more difficult
S
2 0O
> () .
“f4 * Asynchronous reset Is preferred
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Internal Generated Reset

 Internal generated reset causes unwanted reset
during scan shift

e Solution
— Force internal generated reset signal inactive during
test

@

U

: n0ntEs
oG power-on reset FF FF D—o
QD
— I reset to all FF
0 U
5 =
S 8 test mode n
> ('D O
Qw0
s O
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Design for Verification

* Principle of locality
* Plan before design starts

e Testbenches should reflect the system
environment

e Best strategy

O
— Bottom-up verification

— Challenges: developing testbench

%)
5Q — Solution
(Z J » Macros with clean, well-designed interface
g § * High level verification languages + code coverage tool
o &
3 O
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System Interconnection

e Tri-state bus Is not good

— Bus contention problem

* Reduce reliability
* One and only one driver at a time
— Harder for deep submicron design

— Bus floating problem

= * Reduce reliability
* Bus keeper
L2 — ATPG problem
2 S -
6T — FPGA prototyping problem
B
¥« Multiplexer-based bus is better
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IP-to-IP Interface

* Direct connection (via FIFO)
— Higher bandwidth
— Redesign for different IP
— Become unmanageable when the IP number increases

— Only suitable for design connected to analog block, e.g.
PHY

« Bus-based
— Eliminate direct link
— Layered approach can offer higher bandwidth
— All IPs talk to bus only, thus only IP-to-bus problem
— The mainstream of current IP-based SOC integration

 Choose the standard bus whenever possible
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On-chip Bus (OCB)
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« ARM AMBA
— Advanced Microcontroller Bus Architecture
— Dominant player
— V 3.0 is on the road

— Availlable solution
* Synopsys DW_AMBA, ...

 Sonics OCP

« VSIAOCB 2.1
 WishBone Silicore
 |BM CoreConnect

34
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AMBA Bus System
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High-performance

High-bandwidth

ARM processor on-chip RAM
B UART Timer
R
High-bandwidth AHB | APB I I
Memory Interface D I I
G
E Keypad PIO
DMA bus
master AHB to APB Bridge
AMBA Advanced High-performance Bus (AHB) AMBA Advanced Peripheral Bus (APB)
* High performance * Low power

* Pipelined operation
* Burst transfers

* Multiple bus masters

* Split transactions

* Latched address and control
* Simple interface
* Suitable for many peripherals
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Design for Debug: On-chip Debug

 EXperienced teams assume chip won’t work when
first power up and plan accordingly.

e Challenges for IP test
— IPs are deeply embedded within the SOC design
— Disaster to the system and S/W engineers

s * Solution
— Principle: increase controllability and observability
5% — Add debug support logic to the hardware
2 > . :
& T — MUX bus to existing I/O pins
2 o
L 0O
- (@
O O
5 O

36 Copyright ©2003 All rights reserved



Low Power (1/3)

P=> aCV*f
o : switching activity, C : capacitance, V : supply voltage, f : frequency

 Reduce the supply voltage
— Process improvement

 Reduce capacitance
— Low power cell and 1/O library

= — Less logic for the same performance
« Reduce switching activity

g'-tg — Architecture and RTL exploration

4 — Power-driven synthesis

30 — Gate-level power optimization

¥

QD
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Low Power (2/3)

e Memory
— Dominated power consumption
— Low-power memory circuit design
— Partition a large memory into several small blocks
— Gray-coded address interface

U - ~ g A
32KB

L2 64KB S <
g' S 4 )
%)
g 32KB
- 0 N Y,
o \ J
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Low Power (3/3)

e Clock gating
— 50% - 70% power consumed in clock network reported

— gating the clock to an entire block - N [ Slock A )
. ] > oC
— gating the clock to a register Clock
o gegeratllon .
\an gating ! Block B
o always @(posedge clk) . y
if(en) —
U = :
8 g <= g_nxt; = D Q
:|(5 en
0 U
C:D- 8 )
® — P9
O wm en —
5 0 ok D
O )
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Design for Test
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e Memory test
— Memory BIST is recommended

e Processor test

— Chip level test controller (including scan chain controller
and JTAG controller)

— Use shadow registers to facilitate full-scan testing of
boundary logic

e Other macros
— Full scan iIs strongly recommended

e Logic BIST
— Embedded stimulus generator and response checker
— Not popular yet
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3. Macro Design Process

e Top-level macro design
e Subblocks design

* Integrate subblocks

e Macro productization
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Problem in SoC Era

* Productivity gap
* Time-to-market pressure

* |ncreasing design complexity
— HW/SW co-development
— System-level verification

@ : . :
— Integration on various levels and areas of expertise
— Timing closure due to deep submicron
s
5 5 . : .
0 Solution: Platform-based design with reusable IPs
®
5O
- (@
O w0
%T; 7y
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Design for Reuse IPs

e Design to maximize the flexibility
— configurable, parameterizable

« Design for use in multiple technologies
— synthesis script with a variety of libraries
— portable for new technologies

« Design with complete verification process
— robust and verified

e Design verified to a high level of confidence
— physical prototype, demo system

e Design with complete document set
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Parameterized IP Design

 Why to parameterize IP?
— Provide flexibility in interface and functionality
— Facilitate verification

« Parameterizable types
— Logic/Constant functionality

— Structural functionality

« Bit-width depth of FIFO regulation and selection of sub-
module

— Design process functionality (mainly in test bench)
 Test events
« Events report (what, when and where)
« Automatic check event

— Others™ (Hardware component Modeling, 1996)

= Authors: Vicktor Preis and Sabine Marz-Rossel, Modeling Highly Flexible and Self-generating Parameterizable Components In VHDL . .
Collected in book "Hardware component Modeling”. 1996. by Jean-Michel Berge. 044 .evia and Jacques Rouillard Copyright ©2003 All rights reserved



IP Generator/Compiler

o User specifies
— Power dissipation, code size, application performance,
die size
— Types, numbers and sizes of functional unit, including
processor

— User-defined instructions.

* Tool generates
— RTL code, diagnostics and test reference bench
— Synthesis, P&R scripts

— Instruction set simulator, C/C++ compiler, assembler,
linker, debugger, profiler, initialization and self-test code
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Logic/Constant Functionality

e Logic Functionality e Constant Functionality
always @ (posedge clock) begin assign tRC_limit=
if (reset=="ResetLevel) begin (RC_CYC>(RCD_CYC + burst_len)) ?
"RC_CYC-(RCD_CYC + burst_len) : 0;
end
A else begin
always #('T _CLK/2) clock = ~clock;
end
n initial begin
oG end )
S = #('T _CLK) event 1,
>
0 T #(T CLK) event_2;
Mo
i .
o & en
Sl
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Reusable Design - Test Suite

 Testevents
— Automatically adjusted when IP design is changed

— Partition test events to reduce redundant cases when test for all
allowable parameter sets at a time

 Debug mode
— Test for the specific parameter set at a time
— Test for all allowable parameter sets at a time
— Test for the specific functionality
— Step control after the specific time point
* Display mode of automatic checking
— display[0]: event current under test
— display[1]: the time error occurs
— display[2]: expected value and actual value
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Reusable Design - Test Bench
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« Use Global Connector to configure desired test

bench

— E.g.: bus topology of IEEE 1394

Device O

Device 1

Device 3

Device 2

—

48

Device 0

Device 3
Device 1 2
\/\ Device 2
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Characteristics of Good IP
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e Configurability
o Standard interface
 Compliance to defensive design practices

 Complete set of deliverables
— Synthesizable RTL
— Verification suite
— Related scripts of EDA tools
— Documentations
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IP Core Macro Design Process
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Block specification >

v
DEVELOP functional specification
.................................................................... T e,
. :  Completed behavioral
DEVELOP behavioral model || DEVELOP testbench | model for HW/SW
\ / ™ cosimulation and test

TEST behavioral model

development

.........................................

...................................................................................................................

PARTITION design into subblocks

‘ JE—

WRITE functional specification
v

WRITE technical specification
y Perform these steps

DEVELOP timing constraints WRITE RTL DEVELOP testbench for each subblock
RUN Lint
SYNTHESIS / SIMULATE
v v

PERFORM power analysis MEASURE test coverage

Meets timing, power, & area requirements | { Coverage tool passes

PASSES - READY FOR INTEGRATION

v
25 Sowgee: Michael Keating and Pierrr Bricaud, Reuse Meghodploty 82008 201 ¢doh?8%eserved



Macro Integration Process
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Subblock 1 Subblock 1 Subblock 1

A 4 A 4 A 4

|

DETERMINE configuration and
GENERATE top-level HDL

Top-level HDL ! ! p y .
e N )
FUNCTIONAL RUN lint GENERATE
VERIEICATION X synthesis scripts )
L with reference simulator ) . v .
! SYNTHESIZE
é ) X with reference library )
DEVELOP and RUN
multiple configuration tests a : . )
9 ) Scan insertion, ATPG,
! X fault simulation )
4 N\
MEASURE r ¥ — \
\ J X and power analysis )
\ 4 \ 4 +
READY FOR PRODUCTION

v
PRODUCTIZE as soft macro

L 4
PRODUCTIZE as hard macro
&5 Sowgqe: Michael Keating and Pierrr Bricaud, Reuse Meghoedploty 82008 201 ¢doh?8%eserved




Four Major Phases
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» Design top-level macro
— macro specification; behavior model
— macro partition

* Design each subblock
— specification and design
— testbench; timing, power check

 Integration subblocks
e Macro productization

52
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Specification at Every Level

 Overview

e Functional requirements
* Physical requirements

e Design requirements

e Block diagram

< o Interface to external system
« Manufacturing test methodology
n

L e Software model

&+ Software requirement

5]+ Deliverables

4+ Verification
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Top-Level Macro Design Flow

Macro specification

A 4

DEVELOP detailed
technical specification

CODE behavioral model CODE testbench :
C/Verilog/VHDL C/Verilog/VHDL/Vera/Specman {  Completed behavioral
O i » model for HW/SW
: \ / i cosimulation and test
development
\ [ TEST behavioral model ] :
T :
—1 (O CERETE BEHAVIROAL MODEL
O — T a
T
g ' \ 4
® g PARTITION
D O the block into subblocks
- D
9 n
5 N
>

25 Sowsge: Michael Keating and Pierrr Bricaud, Reuse Meghodpioty o008 201 ¢doh18%eserved



Top-Level Macro Design
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« Updated macro hardware specification
— document
* EXxecutable specification
— language description
— external signals, timing
— Internal functions, timing
 Behavioral model
— SystemC, HDL

e Testbench

— test vector generation, model for under test unit,
monitoring and report

e Block partition
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Subblock Design Flow

~\

J

[WRITE functional specification

A 4

N\

[WRITE technical specification

J/

DEVELOP timing constraints WRITE RTL DEVELOP testbench

RUN Lint

J

) SYNTHESIS SIMULATE ]

® Design Compiler Verilog/VHDL

2.
:'. (Q \ 4 A 4
2 5 PERFORM power analysis MEASURE testbench coverage
0 T PowerCompiler/QuickPower VHDLCover/VeriSure/CoverMeter
= —
®
QCJ 8 Meets timing, power, & area requirements | { Coverage tool passes
?3 8 PASSES - READY FOR INTEGRATION
5 O
-

25 Sowgge: Michael Keating and Pierrr Bricaud, Reuse Meghoeploty &82008 201 ¢doh?8%eserved



Subblock Design
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e Design elements
— Specification
— Synthesis script
— Testbench
— Verification suite
— RTL that pass lint and synthesis

57
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Linter

e Fast static RTL code checker
— preprocessor of the synthesizer

— RTL purification
e syntax, semantics, simulation

— timing check

o — testability checks

— — reusability checks
Hg « Shorten design cycle by avoiding lengthy iterations
25
& |
B
S O
o &
5 O
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Subblock Integration Flow

Subblock 1 Subblock 1 Subblock 1
v v v
DETERMINE configuration and
GENERATE top-level HDL

Top-level HDL v ¥ Y N
FUNCTIONAL RUN lint oo ?ENEt'EAT.E -
VERIFICATION Verilint, (_Op-level syn . SIS scripts
Verilog/VHDL simulator VHDLIInt - N
. SYNTHESIZE
ModelSim, VSS, VCS with reference library
\ Design Compiler y
‘ v 0 +
( Scan insertion, ATPG, )
DEVELOP and RUN coverage analysis
O multlple conflgurgtlon tests Test Compiler, DFTAdvisor,
D Verilog/VHDL simulator \_ FastScan/FlexTest Y,
n ModelSim, VSS, VCS . Y \
—1 PERFORM analysis
% > QuickPower, Power Compiler)
(:? U v v v
g 8 READY FOR PRODUCTION
% (@) v
Q 8 PRODUCTIZE gs soft macro
s 9 @
= PRODUCTIZE as hard macro
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Subblock Integration

 Integration process Is complete when
— top-level RTL, synthesis script, testbench complete

— macro RTL passes all tests

— macro synthesizes with reference library and meets all
timing, power and area criteria

o — macro RTL passes lint and manufacturing test
coverage
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Macro Productization

< From block integration K
— ¥ ¥ >

[ DEVELOP specification | TRANSLATE SYNTHESIS to
| for prototype chip Verilog < VHDL multiple technologies CREATE
! user documents: e.g.,
: user guide
DESIGN chip v Yy Verification guide
v REGRESSION TEST RUN Pre-sim |ntegrati0n guide
SYNTHESIS chip on translated code on one technology Test guide /
[ Scan insertion, ATPG Y  —
and coverage analysis RUN TESTS Formal Verification
@ ”|on multiple simulators RTL vs. gates
o FLOORPLAN
M v
D PLACE and ROUTE
—1©Q
% D) v
0 T VERIFY timing
8 3
c
o O FABRICATE
- @D
C__? m \ 4 \ 4 \ 4 \ 4
S n TEST chip in demo board > Release
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Soft Macro Production

* Produce the following components
— Verilog version of the code, testbenches, and tests

— Supporting scripts for the design
* installation script
» synthesis script

— Documentation
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