
Tian-S
heuan

C
hang

R
eusablR

TL C
oding G

uideline

Reusable IP Coding Guidelines

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved1

R
eusablR

TL C
oding G

uideline

Basic Principles of Reusable RTL
Coding Guidelines

• Readability
• Simplicity
• Locality
• Portability
• Reusability
• Reconfigurability
• General recommendations

– Simple constructs, simple clocking scheme
– Consistent coding style, naming conventions and structure
– Regular partitioning with registered output
– Make RTL code easy to understand by comments, meaningful

names

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved2

R
eusablR

TL C
oding G

uideline

Naming conventions
• Consistent naming convention for the design
• Lowercase for signal names

– e.g. ram_addr
• Upper case for constants

– e.g. WIDTH

• clk prefix for clocks, e.g. clk1, clk2
• rst prefix for resets, e.g. rst_n
• Suffix

– _n: active low, _z: tristate, _nxt: data before being registered, _a:
asynchronous

• _cs for current state, _ns for next state
• Same or similar names for connected ports and signals
• Consistent ordering for multibit signals, recommended
[x:0]

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved3

R
eusablR

TL C
oding G

uideline

File Header
// +FHDR--
// Copyright (c) 2003, ABC Corporation.
// ABC's Proprietary/Confidential
//
// ---
// FILE :
// TYPE : Verilog Module
// AUTHOR :
// ---
// Revision History
// VERSION DATE AUTHOR DESCRIPTION
// 1.0 6 Jan 2003 Name First release
// ---
// KEYWORDS : for file searching
// ---
// PURPOSE : Short description of functionality
// ---
// PARAMETERS
// PARAM_NAME RANGE : DESCRIPTION : DEFAULT
// DATA_WIDTH [32:16]: width of data : 32
// ---
// REUSE ISSUES
// Reset Strategy : rst_n
// Clock Domains : clk
// Critical Timing :
// Test Features :
// Asynchronous I/F :
// Scan Methodology :
// Instantiations :
// Other :
// +FHDR--

•Included for all source files
•Corporation-wide standard template

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved4

R
eusablR

TL C
oding G

uideline

Comments and Formats

• Appropriate comments
– For processes, functions, ports, signals …
– Describe the intent behind the section of code
– Insert comments before a process for readability

• Keep commands on separate lines
• Line length <= 72 characters
• Coding in a tabular manner
• Indentation

– 2 spaces
– Avoid using tabs

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved5

R
eusablR

TL C
oding G

uideline

Ports

• Port ordering
– One port per line with a comment
– Declare in a logical order

• Inputs: clocks, resets, enables, other control signals, data and
address signals

• Outputs: clocks, resets, enables, other control signals, data

– Comments for group of ports
• Port mapping

– Explicit name mapping instead of positional mapping
• BAD: bad u_bad(4’h2, a, b, c);
• Good: good u_good(.x(4’h2), .a(a), .b(b), .c(c));

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved6

R
eusablR

TL C
oding G

uideline

Coding Practices (1/2)

• Little-endian for multi-bit bus
– [31:0] instead of [0:31]

• Operand size should match
– BAD: reg [32:0] a; reg [31:0] b; a = b;

• Expression in condition should be an 1-bit value
– if(abc != 16’h0) instead of if(abc)

• Use () in complex statements
• No X assignment

– Avoid X-state propagation
• Reset all storage elements

– Avoid X-state propagation

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved7

R
eusablR

TL C
oding G

uideline

Coding Practices (2/2)

• Use function for common combo logic
– Avoid repeat the same code

• Use local variables
• Use for loop judiciously

– Improve readability
– Increase simulation and synthesis compilation time
– Use arrays whenever possible

• Use meaningful labels for debug
always @ (a or b)

begin: p_test

end

foo u_foo1(..);

foo u_foo2(..);

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved8

R
eusablR

TL C
oding G

uideline

Coding for Portability
• Do not use HDL reserved words for naming

– Designs should be bilingual for automatic translation
• Avoid embedded synthesis commands
• Use constant definition files
• Do not use hard-coded numeric values
• Use technology independent libraries

– Avoid instantiating logic gates, isolate them if needed
– use DesignWare components

Recommended coding style

`define MY_BUS_SIZE 8
wire [MY_BUS_SIZE-1 :0] my_in_bus;
reg [MY_BUS_SIZE-1 :0] my_out_bus;

Poor coding style

wire [7:0] my_in_bus;
reg [7:0] my_out_bus;

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved9

R
eusablR

TL C
oding G

uideline

Clocks and Resets
• Simple clocking is easier to understand, analyze, and

maintain
• Avoid using both edges of the clock

– Duty-cycle sensitive
– Difficult DFT process

• Do not buffer clock and reset networks
• Avoid gated clock except for low power design
• Avoid internally generated clocks and resets

– Limited testability
– Isolate clock/reset control module if needed

• Use single-bit synchronizers instead of multiple-bit
synchronizers for transfer between clock domains
– Possible skew in bits results in error sampling value

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved10

R
eusablR

TL C
oding G

uideline

DFT for Gated Clock

• Use scan enable or test mode as control point for
better fault coverage

• Latch GN stuck-at-0 fault is untestable

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved11

R
eusablR

TL C
oding G

uideline

Coding for Synchronous Design

• Infer technology independent registers
– No initial statement to initialize the signal to avoid

mismatch
• Avoid latches intentionally or unintentionally

– Exception: low power design
– Latch infer

• Incomplete assignment in case statements
• Incomplete if-then-else

– Isolate them if needed
• Avoid combinational feedback

– STA and ATPG problem

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved12

R
eusablR

TL C
oding G

uideline

Combinational and Sequential Blocks

• Combinational blocks
– Use block assignments (=)
– Complete but not redundant

sensitivity lists
– In topological order

always @(a or b or c)
begin
x = a & b;
y = x | c;

end

• Sequential blocks
– Use non-block assignments

(<=)
– Avoid race in simulation
– Separate combinational and

Sequential blocks

always @(posedge clk)
begin

x_r <= x;
y_r <= y;

end

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved13

R
eusablR

TL C
oding G

uideline

Blocking v.s. Nonblocking

• Blocking & nonblocking assignments
– Always use nonblocking assignments in always @
(posedge clk) blocks

always @ (posedge clk)
begin

b = a;
a = b;

end

always @ (posedge clk)
begin

b <= a;
a <= b;

end

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved14

R
eusablR

TL C
oding G

uideline

if-then-else v.s. case
• if-then-else often infers a cascaded encoder

– Suitable for signals with different arrival time
• case infers a single-level MUX

– case is better if priority is not required
– case is generally simulated faster then if-then-else
– MUX is a faster circuit

• Conditional assignment (?:)
– Infers a MUX or priority encoder
– Slower simulation performance
– Better avoided

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved15

R
eusablR

TL C
oding G

uideline

Coding for FSM

• Keep FSM and non-FSM separate
– Ease synthesis

• Partition into combinational and sequential part
– Two always style (Mealy style)
– Three always style (Moore style)

• Use parameters to define state vector
– Readability

• Use default (reset) state

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved16

R
eusablR

TL C
oding G

uideline

Coding for Synthesis

• No #delay statements
– Mismatch between pre- and post-layout
– Delay only for

• Mixed RTL and gate-level simulation

• Avoid full_case and parallel_case
– Mismatch between pre- and post- simulation

• Avoid expressions in port connections
– Bad for debug
– e.g. test u_test (.a (x & y), …);

• Coding critical signals
– Late arriving signals closest to the output

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved17

R
eusablR

TL C
oding G

uideline

Partition for Synthesis (1/3)

• Register all outputs of subblocks
– Predictable output drive strengths and input delay
– Ease timing budget

• Locate related combinational logic in a module
– Improve synthesis quality

• Separate modules that have different design
goals

• Avoid asynchronous logic
– Technology dependent
– Hard to ensure correct functionality and timing
– Isolate if needed and keep it as small as possible

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved18

R
eusablR

TL C
oding G

uideline

Partition for Synthesis (2/3)

• Resource sharing
– Keep sharable resource in one always block

• Partition for synthesis runtime
– Avoid over constraints

• Avoid timing exceptions
– Hard to analyze, slow down design tools
– Isolate point-to-point exception in one module

• Eliminate glue logic at the top level

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved19

R
eusablR

TL C
oding G

uideline

Partition for Synthesis (3/3)

• Chip level partitioning
– Level 1: I/O pade ring only
– Level 2: clock generator, analog, memory, JTAG
– Level 3: digital core

Pad Top

Clock
Generation

Core
Logic

MIDDLE

JTAG

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved20

R
eusablR

TL C
oding G

uideline

Design with Memories

• Synchronous memory is preferred
– Asynchronous RAM suffers write enable pulse problem

Asynchronous memory
with synchronous interfaceSynchronous memory interface

addr

ronous SRAM

Data in Data out

W rite
enable

Asynch

clock

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved21

R
eusablR

TL C
oding G

uideline

Coding for DFT

• Avoid tri-state buses
– bus contention, bus floating

• Avoid internally generated clocks and resets
• Scan support logic for gated clocks
• Clock and set/reset should be fully externally

controllable under the test mode

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved22

R
eusablR

TL C
oding G

uideline

Code Profiling

• Indicate how much time each module takes during
simulation
– 20-80 rule
– Profiler looks only at the line execution frequency

instead of machine cycles
• Help optimize simulation performance

– Necessary for large designs

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved23

R
eusablR

TL C
oding G

uideline

Linter

• Static RTL code checker
– Fast, without simulation

• Category
– RTL purification

• Syntax, semantics, simulation
– Testability checks
– Reusability checks
– Timing checks

• Shorten design cycle by avoiding lengthy iterations

Tian-S
heuan

C
hang

Copyright ©2003 All rights reserved24

R
eusablR

TL C
oding G

uideline

More Guidelines

• Verilog HDL Coding – Motorola’s SRS
• Design Style Guide – Japan STARC
• FPGA Reuse Field Guide – Xilinx

	Reusable IP Coding Guidelines
	Basic Principles of Reusable RTL Coding Guidelines
	Naming conventions
	File Header
	Comments and Formats
	Ports
	Coding Practices (1/2)
	Coding Practices (2/2)
	Coding for Portability
	Clocks and Resets
	DFT for Gated Clock
	Coding for Synchronous Design
	Combinational and Sequential Blocks
	Blocking v.s. Nonblocking
	if-then-else v.s. case
	Coding for FSM
	Coding for Synthesis
	Partition for Synthesis (1/3)
	Partition for Synthesis (2/3)
	Partition for Synthesis (3/3)
	Design with Memories
	Coding for DFT
	Code Profiling
	Linter
	More Guidelines

