SOC Design Flow

Challenges of SoC Era

- Deign complexity
 - Validation & Verification
 - Design space exploration
 - Integration
 - Timing & power
 - Testing
 - Packaging
- Time to market
- The cost

1

From Requirement to Deliverables

Five SoC Design Issues

- To manage the design complexity
 - Co-design
 - IP modeling
 - Timing closure
 - Signal Integrity
 - Interoperability

How to Conquer the Complexity

- Use a known real entity
 - A pre-designed component (reuse)
 - A platform
- Partition
 - Based on functionality
 - Hardware and software
- Modeling
 - At different level
 - Consistent and accurate

SoC Design Flow

Physical Design Flow

In VDSM

- Interconnect dominates delay
- Timing closure
- Signal integrity
- Traditional design flow
 - Two-step process
 - Physical design is performed independently after logic design
- New design flow
 - Capture real technology behaviors early in the design flow
 - Break the iteration between physical design and logic design

Making Sense of Interconnect

- At 0.35u, timing convergence started to become a problem.
- At 0.25u, it started to significantly impact the work of the designer.
- At 0.18u, if not accounted for, it actually causes designs to fail.

Source: Synopsys

Interconnect Power Consumption in DSM

DSM effects in energy dissipation: cross-coupling capacitances

Signal Integrity and Timing Closure

- Root causes of both Signal Integrity and Timing Closure
 - Inadequate interconnect modeling techniques
 - No effective design methodology
- Synthesis timing does not correlate with physical timing
 - Factors
 - Coupling capacitance increases
 - Interconnect resistance increases
 - Device noise margins decrease
 - Higher frequencies result in on-chip inductive effects
 - Problems
 - Signal electromigration
 - Antenna effects
 - Crosstalk delay
 - Crosstalk noise

Example - Crosstalk Delay

- Net-to-net coupling capacitance dominates as a percentage of total capacitance in VDSM.
- The coupling capacitance can be multiplied by the Miller Effect
 - Wire capacitance can be off by 2X if the adjacent wires are switching in the opposite direction.
 - The coupling capacitance can be much less than expected if the wires are switching in the same direction
- Both have to be considered during timing analysis to fully account for setup and hold constraints.

New Physical Design Flow Needed

- Bring physical information into the logical design
- Overview of solutions
 - Single pass methodology
 - Synthesis-driven layout
 - Layout-driven synthesis
 - All-Integrated (optimization, analysis and layout) layout

HW/SW Cosimulation Through Emulation

- Emulation in "virtual silicon"
 - Complete functional simulation of the chip at close to real time

- Run real software
- Tools to enable simulation between EDAs and emulators
 - Cycle-based simulators
 - Full-timing simulators
 - Instruction set simulators
 - E.g. Quickturn Q/Bridge
- Expensive, long learning curve and set-up time

Embedded Software Architecture for SoC Design

Software Development

- Porting software to a new processor and RTOS
 - Using a common RTOS abstraction layer
- The evolution of embedded system in the future
 - An standard RTOS

Software Performance Estimation

- Have to take the following into account
 - Instruction set
 - Bus loading
 - Memory fetching
 - Register allocation
- Example: Cadence VCC technology
 - CPU characterized as Virtual Processor Model
 - Using a Virtual Machine Instruction Set
 - SW estimation using annotation into C-Code
 - Good for early system scheduling, processor load estimation
 - Two orders of magnitude faster than ISS
 - Greater than 80% accuracy

Tester Partitioning

External Tester

Embedded Tester

External Tester

Embedded Tester

Self-Testing of Embedded Processor Cores

Logic BIST

- Based on the application of pseudo random test patterns generated by on-chip test pattern generators like LFSRs.
- Cannot always achieve very high fault coverage for processor cores.
- Instruction-based self-test techniques
 - Rely on generating and applying random instruction sequences to processor cores.
 - The approach determines the structural test needs of processor components
 - Advantage: programmability and flexibility

Platform-based Design

Design Entry

Gate level

Truth table

FSM

Waveform

1K~10K

Manage Size and Run-Time-

RTL level

10K~100k

System level modeling

100K~100M

Hardware Platform-Based Design

It is a "meet-in-the-middle" approach.

System Integrator Perspective

Platform Provider Perspective

System-Level Design

Goal

- To define the platform that satisfies the system functions with performance/cost tradeoff
- Platform design
 - Bus structure
 - IP and their function design
 - Customized instructions
 - **▶** Parallelism
 - Command parameters
 - Configurable parameters
 - **▶ IP** parameters
 - Control scheme
 - Data communication (bandwidth)

Control Scheme Model

Interrupts

Status Polling (timer)

Some Helps in System-Level Design

- Cadence VCC (Virtual Component Codesign, from Cadence Berkely Labs)
 - Performance simulation
 - Communication refinement technology
- Vast Systems Technology
 - VPM (Virtual Processor Model)
 - HW/SW codesign
- CoWare N2C (Napkin-to-chip)
 - Interface synthesis
- SystemC

Cadence's VCC

An Opportunity To Do It Right!

RTL Level

1980s

Verilog VHDL

1990s

2000s

SYSTEM C"

SystemC Heritage

SystemC Roadmap

The Intent of Different Level of Model

- Design exploration at higher level
 - Import of top-level constraint and block architecture
 - Hierarchical, complete system refinement
 - Less time for validating system requirement
 - More design space of algorithm and system architecture
- Simple and efficient verification and simulation
 - Functional verification
 - Timing simulation/verification
 - Separate internal and external (interface) verification
 - Analysis: power and timing
- Verification support

SystemC

- SystemC is a modeling platform
 - C++ extensions to add hardware modeling constructs
 - a set C++ class library
 - simulation kernel
 - supports different levels of abstraction

Good Candidate for Task Level Mapping

Level of abstraction in SystemC

SystemC Design Flow

Example

Implementing Virtual Prototypes

- Functionality partition
- Module specification
- Communication refinement

Functionality Partition

- Separating communication and computation
- Using hierarchy to group related functionality
- Choosing the granularity of the basic parts

Module Specification (1/2)

- 1. Pull out functionality into new created process
- 2. Replace function call with inter-process communcation.
- 3. Instantiate new process and define channels to connect them.

Module Specification (2/2)

- Abstraction Levels
 - Untimed Functional Level
 - Processes execute in zero time but in order
 - Timed Functional Level
 - Bus-Cycle Accurate Level
 - Transaction on bus are modeled cycle accurate
- Cycle Accurate Level
 - Behavior is clock cycle accurate

Communication Refinement

Key
Guarantee consistency of communication during refinement

Software Performance Estimation

- Have to take the following into account
 - Instruction set
 - Bus loading
 - Memory fetching
 - Register allocation
- Example: Cadence VCC technology
 - CPU characterized as Virtual Processor Model
 - Using a Virtual Machine Instruction Set
 - SW estimation using annotation into C-Code
 - Good for early system scheduling, processor load estimation
 - Two orders of magnitude faster than ISS
 - Greater than 80% accuracy

Discussion: Commonality and Differentia

- Differentiae
 - Processor core (e.g., customized inst. set)
 - IP parameterized
 - IP add/move
- Design methodology of platform
 - System-level
 - Platform-level design methodology
 - Design flow
 - Models
 - Tools (EDA venders, 3rd party or home-made)

Summary

- Platform-based design
 - From board design to SoC design
 - From executable spec., i.e., C/C++, to SystemC
- Modeling
 - Performance evaluation
 - Task mapping
 - Communication refinement