On-Chip Bus Overview

Outline

- Communication in a system
- Differences between traditional bus and OCB
- Bus architecture
- Basic bus operation
- OCB's issues
- Conclusion

The SoC

Generic Wireless / Computing

Outline

- Communication in a system
- Differences between traditional bus and OCB
- Bus architecture
- Basic bus operation
- OCB's issues
- Conclusion

Communication in a System

- A list of factors that determine system speed: (microcomputer busses)
 - Efficiency and implementation of algorithm
 - Compiler and coding efficiency
 - Multitasking overhead
 - Data transfer speed
 - I/O handling speed
- Amdahl's law

Communication

- Different views of communication
 - Bus (Abstract)
 - Channel (Point-to-Point)
 - Interconnection (Primitive)
- Definition of a bus (microcomputer busses)
 - A tool designed to interconnect functional blocks of a (macro) computer in a systematic manner. It provides for standardization in *mechanical form*, *electrical specifications*, and *communication protocols* between board-level devices.

Signals in a Bus

- Data
- Address
- Control (most variable part of any given bus type)
 - Multiple masters arbitration
 - Data transfer handshake
 - Interrupt processing
 - Failure handling
- Power?

Outline

- Communication in a system
- Differences between traditional bus and OCB
- Bus architecture
- Bus operation
- OCB's issues
- Conclusion

Concept of the Bus

- A group of lines shared for interconnection of the functional modules by a standard interface
 - E.g., ARM AMBA, IBM CoreConnect
- Interconnection structure
 - Point-to-Point
 - On-chip bus
 - On-chip network

Differences Between Traditional Bus/OCB

- The root: I/O pins are limited and fixed
- The characteristics of a traditional bus
 - Shared I/O
 - Fixed interconnection scheme
 - Fixed timing requirement
 - Dedicated address decoding
- For a OCB
 - Routing resource in target device (e.g. FPGA, ASIC)
 - Bandwidth and latency are important

Shared I/O

- Three-state I/O. E.g. multiple masters, input/output
 - Slower than direct interconnection
 - Limited by bus keeper or quality of routing resource in the target device
 - Solution in OCB: multiplexer logic interconnection
 - Xilinx design guideline: We recommend using multiplexer-based buses when designing for reuse since they are technology-independent and more portable.
- Multiplexed functional I/O. E.g. address/Data.
 - Need more time to transfer the same amount of data
 - Solution in OCB: separate buses

Physical View of Shared I/O

Multiplexer-based buses

Three-state I/O

Physical Constraints

- Fixed Interconnection Scheme
 - Traditional buses usually routed across a standard backplane
 - OCB allowed a variable interconnection scheme that can be defined by the system integrator at the "tool level"
- Fixed Timing Requirement
 - Traditional buses have fixed timing requirements:
 - They are both tested as sub-assemblies
 - They have highly capacitive and inductive loads
 - They are designed for the *worst-case* operating conditions when unknown bus modules are connected together
 - OCB has a variable timing specification that
 - Can be enforced by place & route tools (tool level)
 - Usually does not specify absolute timing
 - Possibly only specifies a single timing specification (WISHBONE, Silicore)

Address Decoding

- Standard microcomputer buses usually use the full address decoding technique
 - That's because the interconnection method does not allow the creation of any new signals on the interface
- OCB can only use partial address decoding
 - Higher speed address decoder
 - Less redundant address decoding logic
 - Integrator must define part of the address decoder logic for each IP core (disadvantage)

Outline

- Communication in a system
- Differences between traditional bus and OCB
- Bus architecture
- Basic bus operation
- OCB's issues
- Conclusion: OCB's future

Bus Components

- Switch or node
 - arbitration, routing
- Converter or bridge (type converter)
 - from one protocol to another
- Size converter
 - buffering capacity

Bus Transaction

- Bus cycle
 - one bus clock period
- Bus transfer
 - read or write operation, 1 or more bus cycles
 - terminated by a completion response from the addressed slave
- Burst operation
 - one or more data transaction, initiated by a bus master

Bus Transfer

- A means to transfer data on the shared communication lines between VCs
- Protocol: guarantee the correct transfer
 - request arbiter to use bus
 - request sender to send data sender ACK send data receiver ack to receipt
 - if error, re-send
 - release bus
- Transfer modes
 - read or write
 - asynchronous or synchronous
 - transfer size 8, 16, 32, 64, 128 bits
 - transfer operations

Bus Signals

- Address and data
- Interface controls
- Arbitration
- Interrupt
- Error reporting
- System level
- Test/Boundary scan
- Others

Bus topology

- A single bus
- Multiple buses
- Crossbar switch
- No shared bus (star topology)

Bus Hierarchy

- The structure of multiple buses within a system, organized by bandwidth
- Local processor bus
 - highly processor-specific
 - processor, cache, MMU, coprocessor
- System bus (backbone)
 - RISC processor, DSP, DMA (masters)
 - Memory, high resolution LCD peripheral
- Peripheral bus
 - Components with other design considerations (power, gate count, etc.)
 - Bridge is the only bus master

Multiple buses - Hierarchical Bus (VSIA)

Characteristics of Hierarchical Bus

- Processor bus: tailored to processor's attributes and memory system
- System bus and peripheral bus

System Bus	Peripheral Bus
Multiple bus master	Single bus master
Pipelined operation	Non-pipelined operation
Burst transfers	Single transfer only
Variable transfer duration	Fixed transfer duration
Split transactions	No split transactions
Cache support	No cache support
Error codes/timeout	No timeout support
Timing analysis	Timing ensured by protocol

Multiple buses - Parallel Bus (PalmBus & MBus)

Multiple Bus - Alternative Bus (AMBA)

AMBA AHB

- * High performance
- * Pipelined operation
- * Multiple bus masters
- * Burst transfers
- * Split transactions

AMBA ASB

- * High performance
- * Pipelined operation
- * Multiple bus masters

AMBA APB

- * Low power
- * Latched address and control
- Simple interface
- * Suitable for many peripherals

Multiple Bus - Extra Control Bus (IBM CoreConect)

- Device Control Bus (DCR)
 - Provides fully synchronous movement of GPR data between CPU and slave logic

High performance, well documented

Automated Bandwidth Allocation Bus System - SiliconBackplane of Sonics

Tool Based Bus - WISHBONE of Silicore

- Define an interface specification rather than a bus specification
 - Simple handshaking protocol
- A single timing specification
 - Time delay between a positive clock edge on [CLK_I] to the setup on a stage further down the logical signal path
 - Timing is guaranteed by place & route tool

- Model-Year Architecture (MYA)
 - Lockheed Martin Advanced Technology Laboratories
 - Specify interface protocol (Standard Virtual Interface Approach)
- General purpose Bus (G-bus) Toshiba
 - Three levels of internal busses: X bus, G bus and IM bus
 - Like VSIA's hierarchical bus
 - Adds one external bus interface on G bus for external memory

- PCI as an On-Chip Bus (Virtual Chips Products)
 - Phoenix Technologies Ltd. (Insilicon)
 - Advantage:
 - Widely used
 - Power management features
 - BIOS, O/S and driver support
 - Well supported by simulation models, verification suites and test methods
 - Royalties free
 - Disadvantage:
 - Relatively high power requirements
 - Gate count (7-15K gates)
 - Multiplexed, tri-state address and data lines,
 - Splitting the tri-states is trivial

FISP bus (GF-FISP bus) - Mentor Graphics

- PIBUS Standard SGS-Thomson
 - Features
 - Existing open standard (licensing agreement)
 - Several PIBUS Implementations (Sparc, MIPS, ST20)
 - AMBA and PIBUS are largely equivalent at transaction level
 - Commercial Issues
 - Lack of control over standard
 - Uncertainty over PIBUS support
 - Conclusion in the present
 - Define a set of virtual component Interfaces
 - Protocols independent of bus
 - Timing guidelines

Hitachi Super H Bus Interface

Summary - OCB Architecture

- How to extract other OCBs' features?
- Core interface: bus-centric or core-centric?
 - Bus-centric: AMBA, FISP bus, ...
 - Core-centric: VCI, OCP, WISHBONE
- Design methodology
 - Manual design (bus view)
 - Automated busing system (channel view)
 - Tool based bus (interconnection view)

Outline

- Communication in a system
- Differences between traditional bus and OCB
- Bus architecture
- Basic bus operation
- OCB's issues
- Conclusion

Bus Transfer - Data Format

- Endianness
 - Big-endian: The most significant byte is first.
 - (msb)()()(lsb) for 32 bits
 - Little-endian: The least significant byte is first.
 - (lsb)()()(msb) for 32 bits
- Data bus width and data cell width
 - Controlled by byte enable/mask
- Others
 - address width, data width

Bus Transfer - Addressing Mode

Basic Control Protocol: Handshake

Asynchronous ACK

ACK late by 2 cycles

Basic Transfer Cycle - Single READ/WRITES

Basic Transfer Cycle - Single READ/WRITE with Default Ack

Basic Transfer Cycle - Burst Mode

Other Bus Transfer Cycles

- Data cycle
 - (Multiple) Split transactions
 - DMA transfers
 - Locked transfer
 - Broadcast transfer
 - Cache line transfers
 - Packet chain transfer
 - Transfer with retry
- Arbitration cycle
 - Overlapped arbitration

Outline

- Communication in a system
- Differences between traditional bus and OCB
- Bus architecture
- Basic bus operation
- OCB's issues
- Conclusion

OCB's issues

- The development of OCB
 - Topology
 - Control mechanism: bus protocol, arbitration
 - Core interface: open standards or other in-house spec.
 - Bus interrupt/error handling
 - Test-bus architecture
 - Buffer
- Target device (FPGA or ASIC) Routing resource
- Supported tools and methodology

Bus Related Standard

- Core protocol standard
 - OCB 2 1.0, Virtual Component Interface (VCI) Standard,
 Released March 2000
 - OCP
 - WISHBONE
- Bus protocol standard (show the table)
- Other standard
 - OCB 1 1.0, On-Chip Bus Attributes, Released August 1998
 - SLD 1 1.0, System-Level Interface Behavioral
 Documentation Standard, Released March 2000
 - OCB 2 Appendix, specification of the Transaction Language (will be included in Ver. 2.0)

OCB for Testability - Isolate the Core

OCB for Testability During Simulation

How to Design/Integrate a System?

Generic Wireless / Computing

- •How to select a core's interface?
- •How to select a bus architecture?
- •How to determine each elements in a bus
 - arbiter
 - buffer

How to test?

Integrate IP Without AMBA Interface

- Wrapper design guide
 - Separate core function and interface design

Processor Interface Wrapper

- DMA data channel transfer large block of data
- Data communication channel transfer single word data efficiently

FIFO Interface Wrapper

Verify AMBA System

Outline

- Communication in a system
- Differences between traditional bus and OCB
- Bus architecture
- Basic bus operation
- OCB's issues
- Conclusion

Conclusion

- From buses to network
 - Get rid of idiosyncrasies such as buses and just move data from one point to another
 - Cost reduced due to the decreasing cost per gate
- Bus Protocols limits design of IP
 - Capture all of a core's communication requirements
 - Parameterizable Interface to tailor function and cost
- Chip-level test
 - Monitoring: from processor's task to hardware monitor