
SOC Consortium Course Material

ARM Processor ArchitectureARM Processor Architecture

Adopted from National Chiao-Tung University
IP Core Design

2SOC Consortium Course Material

Outline

ARM Processor Core
Memory Hierarchy
Software Development
Summary

3SOC Consortium Course Material

ARM Processor Core

4SOC Consortium Course Material

3-Stage Pipeline ARM Organization

Register Bank
– 2 read ports, 1 write ports, access

any register
– 1 additional read port, 1 additional

write port for r15 (PC)

Barrel Shifter
– Shift or rotate the operand by any

number of bits

ALU
Address register and
incrementer
Data Registers
– Hold data passing to and from

memory

Instruction Decoder and
Control

multiply

data out register

instruction

decode

&

control

incrementer

register
bank

address register

barrel
shifter

A[31:0]

D[31:0]

data in register

ALU

control

P
C

PC

A
L
U

b
u
s

A

b
u
s

B

b
u
s

register

5SOC Consortium Course Material

3-Stage Pipeline (1/2)

Fetch
– The instruction is fetched from memory and placed in the instruction pipeline

Decode
– The instruction is decoded and the datapath control signals prepared for the

next cycle

Execute
– The register bank is read, an operand shifted, the ALU result generated and

written back into destination register

6SOC Consortium Course Material

3-Stage Pipeline (2/2)

At any time slice, 3 different instructions may
occupy each of these stages, so the hardware in
each stage has to be capable of independent
operations
When the processor is executing data processing
instructions , the latency = 3 cycles and the
throughput = 1 instruction/cycle

7SOC Consortium Course Material

Multi-Cycle Instruction

Memory access (fetch, data transfer) in every cycle
Datapath used in every cycle (execute, address calculation,
data transfer)
Decode logic generates the control signals for the data path
use in next cycle (decode, address calculation)

8SOC Consortium Course Material

Data Processing Instruction

All operations take place in a single clock cycle

address register

increment

registers
Rd

Rn

PC

Rm

as ins.

as instruction

mult

data out data in i. pipe

(a) register - register operations

address register

increment

registers
Rd

Rn

PC

as ins.

as instruction

mult

data out data in i. pipe

[7:0]

(b) register - immediate operations

9SOC Consortium Course Material

Data Transfer Instructions

Computes a memory address similar to a data processing instruction
Load instruction follows a similar pattern except that the data from
memory only gets as far as the ‘data in’ register on the 2nd cycle and a
3rd cycle is needed to transfer the data from there to the destination
register

address register

increment

registers
Rn

PC

lsl #0

= A / A + B / A - B

mult

data out data in i. pipe

[11:0]

(a) 1st cycle - compute address

address register

increment

registers
Rn

Rd

shifter

= A + B / A - B

mult

PC

byte? data in i. pipe

(b) 2nd cycle - store data & auto-index

10SOC Consortium Course Material

Branch Instructions

The third cycle, which is required to complete the pipeline refilling, is also
used to mark the small correction to the value stored in the link register
in order that is points directly at the instruction which follows the branch

address register

increment

registers
PC

lsl #2

= A + B

mult

data out data in i. pipe

[23:0]

(a) 1st cycle - compute branch target

address register

increment

registers
R14

PC

shifter

= A

mult

data out data in i. pipe

(b) 2nd cycle - save return address

11SOC Consortium Course Material

Branch Pipeline Example

Breaking the pipeline
Note that the core is executing in the ARM
state

12SOC Consortium Course Material

5-Stage Pipeline ARM Organization

Tprog = Ninst * CPI / fclk
– Tprog: the time that executes a given program
– Ninst: the number of ARM instructions executed in the

program => compiler dependent
– CPI: average number of clock cycles per instructions =>

hazard causes pipeline stalls
– fclk: frequency

Separate instruction and data memories => 5 stage
pipeline
Used in ARM9TDMI

13SOC Consortium Course Material

5-Stage Pipeline Organization (1/2)

Fetch
– The instruction is fetched from

memory and placed in the instruction
pipeline

Decode
– The instruction is decoded and

register operands read from the
register files. There are 3 operand
read ports in the register file so most
ARM instructions can source all their
operands in one cycle

Execute
– An operand is shifted and the ALU

result generated. If the instruction is
a load or store, the memory address
is computed in the ALU

I-cache

rot/sgn ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

execute

buffer/
data

write-back

forwarding
paths

immediate
fields

next
pc

reg
shift

load/store
address

LDR pc

SUBS pc

post-
index

pre-index

LDM/
STM

register write

r15

pc + 8

pc + 4

+4

mux

shift

mul

B, BL
MOV pc

14SOC Consortium Course Material

5-Stage Pipeline Organization (2/2)

Buffer/Data
– Data memory is accessed if required.

Otherwise the ALU result is simply
buffered for one cycle

Write back
– The result generated by the

instruction are written back to the
register file, including any data
loaded from memory

I-cache

rot/sgn ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

execute

buffer/
data

write-back

forwarding
paths

immediate
fields

next
pc

reg
shift

load/store
address

LDR pc

SUBS pc

post-
index

pre-index

LDM/
STM

register write

r15

pc + 8

pc + 4

+4

mux

shift

mul

B, BL
MOV pc

15SOC Consortium Course Material

Pipeline Hazards
There are situations, called hazards, that prevent the next
instruction in the instruction stream from being executing
during its designated clock cycle. Hazards reduce the
performance from the ideal speedup gained by pipelining.
There are three classes of hazards:
– Structural Hazards

• They arise from resource conflicts when the hardware cannot support all
possible combinations of instructions in simultaneous overlapped
execution.

– Data Hazards
• They arise when an instruction depends on the result of a previous

instruction in a way that is exposed by the overlapping of instructions in
the pipeline.

– Control Hazards
• They arise from the pipelining of branches and other instructions that

change the PC

16SOC Consortium Course Material

Structural Hazards

When a machine is pipelined, the overlapped
execution of instructions requires pipelining of
functional units and duplication of resources to
allow all possible combinations of instructions in
the pipeline.
If some combination of instructions cannot be
accommodated because of a resource conflict, the
machine is said to have a structural hazard.

17SOC Consortium Course Material

Example

A machine has shared a single-memory pipeline
for data and instructions. As a result, when an
instruction contains a data-memory reference
(load), it will conflict with the instruction reference
for a later instruction (instr 3):

WBMEMEXIDIFInstr 3
WBMEMEXIDIFInstr 2

WBMEMEXIDIFInstr 1
WBMEMEXIDIFload

87654321instr
Clock cycle number

18SOC Consortium Course Material

Solution (1/2)

To resolve this, we stall the pipeline for one clock
cycle when a data-memory access occurs. The
effect of the stall is actually to occupy the
resources for that instruction slot. The following
table shows how the stalls are actually
implemented.

WB

9

MEMEXIDIFstallInstr 3
WBMEMEXIDIFInstr 2

WBMEMEXIDIFInstr 1
WBMEMEXIDIFload

87654321instr
Clock cycle number

19SOC Consortium Course Material

Solution (2/2)

Another solution is to use separate instruction and
data memories.
ARM belongs to the Harvard architecture, so it does
not suffer from this hazard

20SOC Consortium Course Material

Data Hazards

Data hazards occur when the pipeline changes the
order of read/write accesses to operands so that the
order differs from the order seen by sequentially
executing instructions on the unpipelined machine.

R10,R1,R11
R8,R1,R9

R6,R1,R7

R4,R5,R1

R1,R2,R3

WBMEMEXIDxorIFXOR

9

WBMEMEXIDorIFOR

WBMEMEXIDandIFAND

WBMEMEXIDsubIFSUB

WBMEMEXIDIFADD

87654321

Clock cycle number

21SOC Consortium Course Material

Forwarding

The problem with data hazards, introduced by this
sequence of instructions can be solved with a
simple hardware technique called forwarding.

R6,R1,R7

R4,R5,R1
R1,R2,R3

WBMEMEXIDandIFAND

WBMEMEXIDsubIFSUB
WBMEMEXIDIFADD

7654321

Clock cycle number

22SOC Consortium Course Material

Forwarding Architecture

Forwarding works as
follows:
– The ALU result from the

EX/MEM register is always fed
back to the ALU input latches.

– If the forwarding hardware
detects that the previous ALU
operation has written the
register corresponding to the
source for the current ALU
operation, control logic selects
the forwarded result as the ALU
input rather than the value read
from the register file.

I-cache

rot/sgn ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

execute

buffer/
data

write-back

forwarding
paths

immediate
fields

next
pc

reg
shift

load/store
address

LDR pc

SUBS pc

post-
index

pre-index

LDM/
STM

register write

r15

pc + 8

pc + 4

+4

mux

shift

mul

B, BL
MOV pc

forwarding paths

23SOC Consortium Course Material

Forward Data

The first forwarding is for value of R1 from EXadd to EXsub.
The second forwarding is also for value of R1 from MEMadd to EXand.
This code now can be executed without stalls.
Forwarding can be generalized to include passing the result directly
to the functional unit that requires it: a result is forwarded from the
output of one unit to the input of another, rather than just from the
result of a unit to the input of the same unit.

R6,R1,R7
R4,R5,R1
R1,R2,R3

WBMEMEXandIDIFAND
WBMEMEXsubIDIFSUB

WBMEMaddEXaddIDIFADD

7654321

Clock cycle number

24SOC Consortium Course Material

Without Forward

WB

9

MEM
WB

8

R6,R1,R7
R4,R5,R1

R1,R2,R3

EXIDandIFstallstallAND
MEMEXIDsubstallstallIFSUB

WBMEMEXIDIFADD

7654321

Clock cycle number

25SOC Consortium Course Material

Data Forwarding

Data dependency arises when an instruction needs to use
the result of one of its predecessors before the result has
returned to the register file => pipeline hazards
Forwarding paths allow results to be passed between stages
as soon as they are available
5-stage pipeline requires each of the three source operands
to be forwarded from any of the intermediate result registers
Still one load stall
LDR rN, […]
ADD r2,r1,rN ;use rN immediately
– One stall
– Compiler rescheduling

26SOC Consortium Course Material

Stalls are Required

WBMEMEXEIDIFR8,R1,R9OR

8

R6,R1,R7
R4,R1,R5
R1,@(R2)

WBMEMEXandIDIFAND
WBMEMEXsubIDIFSUB

WBMEMEXIDIFLDR

7654321

The load instruction has a delay or latency that cannot be
eliminated by forwarding alone.

27SOC Consortium Course Material

The Pipeline with one Stall

WB

9

MEMEXIDIFstallR8,R1,R9OR
WB

8

R6,R1,R7
R4,R1,R5
R1,@(R2)

MEMEXIDstallIFAND
WBMEMEXsubstallIDIFSUB

WBMEMEXIDIFLDR

7654321

The only necessary forwarding is done for R1 from MEM to
EXsub.

28SOC Consortium Course Material

LDR Interlock

In this example, it takes 7 clock cycles to execute 6
instructions, CPI of 1.2
The LDR instruction immediately followed by a data
operation using the same register cause an interlock

29SOC Consortium Course Material

Optimal Pipelining

In this example, it takes 6 clock cycles to execute 6
instructions, CPI of 1
The LDR instruction does not cause the pipeline to interlock

30SOC Consortium Course Material

LDM Interlock (1/2)

In this example, it takes 8 clock cycles to execute 5
instructions, CPI of 1.6
During the LDM there are parallel memory and writeback
cycles

31SOC Consortium Course Material

LDM Interlock (2/2)

In this example, it takes 9 clock cycles to execute 5
instructions, CPI of 1.8
The SUB incurs a further cycle of interlock due to it using the
highest specified register in the LDM instruction

32SOC Consortium Course Material

ARM7TDMI Processor Core
Current low-end ARM core for applications like
digital mobile phones
TDMI
– T: Thumb, 16-bit compressed instruction set
– D: on-chip Debug support, enabling the processor to halt

in response to a debug request
– M: enhanced Multiplier, yield a full 64-bit result, high

performance
– I: Embedded ICE hardware

Von Neumann architecture
3-stage pipeline, CPI ~ 1.9

33SOC Consortium Course Material

ARM7TDMI Block Diagram

JTAG TAP
controller

Embedded

processor
core

TCK TMSTRST TDI TDO

D[31:0]

A[31:0]

opc, r/w,
mreq, trans,
mas[1:0]

other
signals

scan chain 0

scan chain 2

scan chain 1

extern0
extern1 ICE

bus
splitter

Din[31:0]

Dout[31:0]

34SOC Consortium Course Material

ARM7TDMI Core Diagram

35SOC Consortium Course Material

ARM7TDMI Interface Signals (1/4)

mreq
seq
lock

Dout[31:0]

D[31:0]

r/w
mas[1:0]

mode[4:0]
trans

abort

opc
cpi

cpa
cpb

memory
interface

MMU
interface

coprocessor
interface

mclk
wait
eclk

isync

bigend

enin

irq
¼q

reset

enout

abe

Vdd
Vss

clock
control

configuration

interrupts

initialization

bus
control

power

ale
ape
dbe

dbgrq
breakpt
dbgack

debug

exec
extern1
extern0
dbgen

bl[3:0]

TRST
TCK
TMS
TDI

JTAG
controls

TDO

Tbit statetbe

rangeout0
rangeout1

dbgrqi
commrx
commtx

enouti

highz
busdis

ecapclk

busen

Din[31:0]

A[31:0]

ARM7TDMI

core

tapsm[3:0]
ir[3:0]
tdoen
tck1
tck2
screg[3:0]

TAP
information

drivebs
ecapclkbs
icapclkbs
highz
pclkbs
rstclkbs
sdinbs
sdoutbs
shclkbs
shclk2bs

boundary
scan
extension

36SOC Consortium Course Material

ARM7TDMI Interface Signals (2/4)
Clock control
– All state change within the processor are controlled by mclk, the

memory clock
– Internal clock = mclk AND \wait
– eclk clock output reflects the clock used by the core

Memory interface
– 32-bit address A[31:0], bidirectional data bus D[31:0], separate data

out Dout[31:0], data in Din[31:0]
– \mreq indicates that the memory address will be sequential to that

used in the previous cycle

mreq seq Cycl e Use
0 0 N Non-sequential memory access
0 1 S Sequential memory access
1 0 I Internal cycle – bus and memory inactive
1 1 C Coprocessor register transfer – memory inactive

37SOC Consortium Course Material

ARM7TDMI Interface Signals (3/4)
– Lock indicates that the processor should keep the bus to ensure the

atomicity of the read and write phase of a SWAP instruction
– \r/w, read or write
– mas[1:0], encode memory access size – byte, half–word or word
– bl[3:0], externally controlled enables on latches on each of the 4 bytes

on the data input bus
MMU interface
– \trans (translation control), 0: user mode, 1: privileged mode
– \mode[4:0], bottom 5 bits of the CPSR (inverted)
– Abort, disallow access

State
– T bit, whether the processor is currently executing ARM or Thumb

instructions
Configuration
– Bigend, big-endian or little-endian

38SOC Consortium Course Material

ARM7TDMI Interface Signals (4/4)

Interrupt
– \fiq, fast interrupt request, higher priority
– \irq, normal interrupt request
– isync, allow the interrupt synchronizer to be passed

Initialization
– \reset, starts the processor from a known state, executing from

address 0000000016

ARM7TDMI characteristics

Process 0.35 um Transistors 74,209 MIPS 60
Metal layers 3 Core area 2.1 mm

2
Power 87 mW

Vdd 3.3 V Clock 0 to 66 MHz MIPS/W 690

39SOC Consortium Course Material

Memory Access

The ARM7 is a Von Neumann, load/store
architecture, i.e.,
– Only 32 bit data bus for both instr. and data.
– Only the load/store instr. (and SWP) access

memory.
Memory is addressed as a 32 bit address
space
Data type can be 8 bit bytes, 16 bit half-words
or 32 bit words, and may be seen as a byte
line folded into 4-byte words
Words must be aligned to 4 byte boundaries,
and half-words to 2 byte boundaries.
Always ensure that memory controller
supports all three access sizes

40SOC Consortium Course Material

ARM Memory Interface

Sequential (S cycle)
– (nMREQ, SEQ) = (0, 1)
– The ARM core requests a transfer to or from an address which is either the

same, or one word or one-half-word greater than the preceding address.
Non-sequential (N cycle)
– (nMREQ, SEQ) = (0, 0)
– The ARM core requests a transfer to or from an address which is unrelated to

the address used in the preceding address.
Internal (I cycle)
– (nMREQ, SEQ) = (1, 0)
– The ARM core does not require a transfer, as it performing an internal

function, and no useful prefetching can be performed at the same time
Coprocessor register transfer (C cycle)
– (nMREQ, SEQ) = (1, 1)
– The ARM core wished to use the data bus to communicate with a

coprocessor, but does no require any action by the memory system.

41SOC Consortium Course Material

Cached ARM7TDMI Macrocells

ARM710T
– 8K unified write through cache
– Full memory management unit

supporting virtual memory
– Write buffer

ARM720T
– As ARM 710T but with WinCE

support

ARM 740T
– 8K unified write through cache
– Memory protection unit
– Write buffer

42SOC Consortium Course Material

ARM8

Higher performance than ARM7
– By increasing the clock rate
– By reducing the CPI

• Higher memory bandwidth, 64-bit wide memory
• Separate memories for instruction and data accesses

memory
(double-

bandwidth)

prefetch
unit

integer
unit

coprocessor(s)

write data

read data

addresses

 instructionsPC

CPdataCPinst.

Core Organization
– The prefetch unit is responsible for

fetching instructions from memory and
buffering them (exploiting the double
bandwidth memory)

– It is also responsible for branch prediction
and use static prediction based on the
branch prediction (backward: predicted
‘taken’; forward: predicted ‘not taken’)

ARM
8

ARM9TDMI
ARM10TDMI

43SOC Consortium Course Material

Pipeline Organization

5-stage, prefetch unit occupies the 1st stage,
integer unit occupies the remainder

(1) Instruction prefetch

(2) Instruction decode and register read

(3) Execute (shift and ALU)

(4) Data memory access

(5) Write back results

Prefetch Unit

Integer Unit

44SOC Consortium Course Material

Integer Unit Organization

inst. decode

register write

+4

write
pipeline

multiplier

register read

mux

ALU/shifter

rot/sgn ex

PC+8instructions
coprocessor
instructions

coproc
data

forwarding
paths

write
data

address
read
data

decode

execute

memory

write

45SOC Consortium Course Material

ARM8 Macrocell

8 Kbyte cache
(double-

bandwidth)

prefetch
unit

ARM8 integer
unit

CP15

write data

read data

virtual address

 instructionsPC

CPdataCPinst.

write buffer MMU

address buffer
physical address

data outdata in address

copy-back tag

JTAG

copy-back data

ARM810
– 8Kbyte unified instruction

and data cache
– Copy-back
– Double-bandwidth
– MMU
– Coprocessor
– Write buffer

46SOC Consortium Course Material

ARM9TDMI

Harvard architecture
– Increases available memory bandwidth

• Instruction memory interface
• Data memory interface

– Simultaneous accesses to instruction and data memory
can be achieved

5-stage pipeline
Changes implemented to
– Improve CPI to ~1.5
– Improve maximum clock frequency

47SOC Consortium Course Material

ARM9TDMI Organization

I-cache

rot/sgn ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

execute

buffer/
data

write-back

forwarding
paths

immediate
fields

next
pc

reg
shift

load/store
address

LDR pc

SUBS pc

post-
index

pre-index

LDM/
STM

register write

r15

pc + 8

pc + 4

+4

mux

shift

mul

B, BL
MOV pc

48SOC Consortium Course Material

ARM9TDMI Pipeline Operations (1/2)

instruction
fetch

instruction
fetch

Thumb
decompress

ARM
decode

reg
read

reg
writeshift/ALU

reg
writeshift/ALU

r. read

decode

data memory
access

Fetch Decode Execute

Memory WriteFetch Decode Execute

ARM9TDMI:

ARM7TDMI:

Not sufficient slack time to translate Thumb instructions into ARM instructions and
then decode, instead the hardware decode both ARM and Thumb instructions
directly

49SOC Consortium Course Material

ARM9TDMI Pipeline Operations (2/2)
Coprocessor support
– Coprocessors: floating-point, digital signal processing, special-

purpose hardware accelerator

On-chip debugger
– Additional features compared to ARM7TDMI

• Hardware single stepping
• Breakpoint can be set on exceptions

ARM9TDMI characteristics

Process 0.25 um Transistors 110,000 MIPS 220
Metal layers 3 Core area 2.1 mm

2
Power 150 mW

Vdd 2.5 V Clock 0 to 200 MHz MIPS/W 1500

50SOC Consortium Course Material

ARM9TDMI Macrocells (1/2)

ARM920T
– 2 × 16K caches
– Full memory

management unit
supporting virtual
addressing and
memory protection

– Write buffer

AMBA
address

AMBA
data

vir
tu

al
 IA

write
buffer

data
MMU

physical IA

vi
rtu

al
 D

A

instructions

physical
address tag

ph
ys

ic
al

 D
A

copy-back DA

data

ARM9TDMI

EmbeddedICE
& JTAG

CP15

external
coprocessor

interfaceinstruction
cache

instruction
MMU

data
cache

AMBA interface

51SOC Consortium Course Material

ARM9TDMI Macrocells (2/2)

ARM 940T
– 2 × 4K caches
– Memory protection

Unit
– Write buffer

AMBA
address

AMBA
data

in
st

ru
ct

io
ns

da
ta

da
ta

 a
dd

re
ss

I a
dd

re
ss

Protection Unit
data

cache

write
bufferAMBA interface

instruction
cache

external
coprocessor

interface

ARM9TDMI

EmbeddedICE
& JTAG

52SOC Consortium Course Material

ARM9E-S Family Overview
ARM9E-S is based on an ARM9TDMI with the following
extensions:
– Single cycle 32*6 multiplier implementation
– EmbeddedICE logic RT
– Improved ARM/Thumb interworking
– New 32*16 and 16*16 multiply instructions
– New count leading zero instruction
– New saturated math instructions

ARM946E-S
– ARM9E-S core
– Instruction and data caches, selectable sizes
– Instruction and data RAMs, selectable sizes
– Protection unit
– AHB bus interface

Architecture v5TE

53SOC Consortium Course Material

ARM10TDMI (1/2)
Current high-end ARM processor core
Performance on the same IC process

ARM10TDMI ARM9TDMI ARM7TDMI
×2×2

300MHz, 0.25µm CMOS
Increase clock rate

branch
prediction

reg
write

r. read
decode

data memory
access

Memory WriteFetch Decode Execute

decode

Issue

multiplier
partials add

instruction
fetch

data
write

shift/ALU

addr.
calc.

multiply

ARM10TDMI

54SOC Consortium Course Material

ARM10TDMI (2/2)

Reduce CPI
– Branch prediction
– Non-blocking load and store execution
– 64-bit data memory → transfer 2 registers in each cycle

55SOC Consortium Course Material

ARM1020T Overview
Architecture v5T
– ARM1020E will be v5TE

CPI ~ 1.3
6-stage pipeline
Static branch prediction
32KB instruction and 32KB data caches
– ‘hit under miss’ support

64 bits per cycle LDM/STM operations
Embedded ICE Logic RT-II
Support for new VFPv1 architecture
ARM10200 test chip
– ARM1020T
– VFP10
– SDRAM memory interface
– PLL

56SOC Consortium Course Material

Summary (1/2)
ARM7TDMI
– Von Neumann architecture
– 3-stage pipeline
– CPI ~ 1.9

ARM9TDMI, ARM9E-S
– Harvard architecture
– 5-stage pipeline
– CPI ~ 1.5

ARM10TDMI
– Harvard architecture
– 6-stage pipeline
– CPI ~ 1.3

57SOC Consortium Course Material

Summary (2/2)
Cache
– Direct-mapped cache
– Set-associative cache
– Fully associative cache

Software Development
– CodeWarrior
– AXD

58SOC Consortium Course Material

References
[1] http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.html
[2] ARM System-on-Chip Architecture by S.Furber, Addison

Wesley Longman: ISBN 0-201-67519-6.
[3] www.arm.com

