ARM Processor Architecture

Adopted from National Chiao-Tung University
IP Core Design

SOC Consortium Course Material

Outline

JARM Processor Core
1 Memory Hierarchy
 Software Development
JdSummary

SOC Consortium Course Material 2

ARM Processor Core

SOC Consortium Course Material 3

3-Stage Pipeline ARM Organization

A[31:0] ﬁ

—

i

address register

C incrementer

control @

o

register
bank

wco Cr>»

multiply
register

barrel
shifter

nwco >
nwnco @

e

instruction
decode
&

control

i

data out register

data in register

{} D[31:0]

U

1 Register Bank

— 2 read ports, 1 write ports, access
any register

— 1 additional read port, 1 additional
write port for r15 (PC)

] Barrel Shifter

— Shift or rotate the operand by any
number of bits

dALU

1 Address register and
Incrementer

 Data Registers

— Hold data passing to and from
memory

 Instruction Decoder and
Control

SOC Consortium Course Material

3-Stage Pipeline (1/2) sOC

consortium
1 | fetch ‘ deccx:le‘executei

2 fetch decode | execute
3 fetch decode ‘ execute i
iNnstruction
_ -
time
1 Fetch

— The instruction is fetched from memory and placed in the instruction pipeline

] Decode

— The instruction is decoded and the datapath control signals prepared for the
next cycle

] Execute

— The register bank is read, an operand shifted, the ALU result generated and
written back into destination register

SOC Consortium Course Material 5

3-Stage Pipeline (2/2)

At any time slice, 3 different instructions may
occupy each of these stages, so the hardware In
each stage has to be capable of independent
operations

dWhen the processor is executing data processing
Instructions , the latency = 3 cycles and the
throughput = 1 instruction/cycle

SOC Consortium Course Material

Multi-Cycle Instruction

1 fetch ADD | decode execute

2 fetch STR| decode | calc. addr.| data xfer

3 fetch ADD i decode execLte i
4 fetch ADD decode execute i

5 fetch ADD | decode

execute

instruction

B

time
 Memory access (fetch, data transfer) in every cycle

1 Datapath used in every cycle (execute, address calculation,
data transfer)

 Decode logic generates the control signals for the data path
use in next cycle (decode, address calculation)

SOC Consortium Course Material 7

Data Processing Instruction

@

address register

I

registers

increment

Rd PC

Rn

Rm
mult

\4
as instruction /
>

e
|dataout data in I. pipe

e

(a) register - register operations

@

address register

I

registers
Rn

increment

Rd

mult

A\
\ as instruction /
AP

|data out| | datain l. pipe

I

(b) register - immediate operations

1 All operations take place in a single clock cycle

SOC Consortium Course Material

Data Transfer Instructions

| address register address register <—,.|L
TT increment I increment ;l
. Rn PC K
registers registers
Rn Rd

mult

\%
\ =A+B/A-B

\%
\=A/A+B/A-B/

Ve
data out| | data in I. pipe byte? data in i. pipe
| et p—
(a) 1st cycle - compute address (b) 2nd cycle - store data & auto-index

O Computes a memory address similar to a data processing instruction

 Load instruction follows a similar pattern except that the data from
memory only gets as far as the ‘data in’ register on the 2nd cycle and a
3rd cycle Is needed to transfer the data from there to the destination
register

SOC Consortium Course Material 9

Branch Instructions

i

address register

|[=

registers
PC

mult
112 A
U e
[23:0

e

data out| | data in I. pipe

4

(a) 1stcycle - compute branch target

IS

@

address register

I

registers

increment

R14

(b) 2nd cycle - save return addess

d The third cycle, which is required to complete the pipeline refilling, is also
used to mark the small correction to the value stored in the link register
In order that is points directly at the instruction which follows the branch

SOC Consortium Course Material 10

Branch Pipeline Example

Cycle 1 2 3 4 5
-.
address opeation
0x8000 EBL felch | decode | execute | linkret adjust
0x8004 X feich | decode |
0x8008 XX fetch |\
0X8FEC ADD f&tch decode | execute
0x8FF0 SUB felch | decode | execute
0xX8FF4 MOV fetch | decode
fetch
JBreaking the pipeline
JNote that the core Is executing in the ARM
State
SOC Consortium Course Material 11

5-Stage Pipeline ARM Organization

EITprog = Ninst * CP] /fclk

— Throg: the time that executes a given program

— Ni«: the number of ARM instructions executed In the
program => compiler dependent

— CPI: average number of clock cycles per instructions =>
hazard causes pipeline stalls

— f.: frequency

 Separate instruction and data memories => 5 stage
pipeline
dUsed in ARM9TDMI

SOC Consortium Course Material 12

5-Stage Pipeline Organization (1/2)

next
pc

pc+4

B, BL
MOV pc
SUBS pc

LDR pc

P e

pc +8

I-cache

fetch

T =

| decode

0r15 {}

instruction

register read

decode

immediate

fields
_

reg
shift

execute

forwarding
paths

\/

load/store
address

> D-cache buffer/

data

register write

write-back

1 Fetch

— The instruction is fetched from
memory and placed in the instruction
pipeline

1 Decode

— The instruction is decoded and
register operands read from the
register files. There are 3 operand
read ports in the register file so most
ARM instructions can source all their
operands in one cycle

] Execute

— An operand is shifted and the ALU
result generated. If the instruction is
a load or store, the memory address
IS computed in the ALU

SOC Consortium Course Material 13

5-Stage Pipeline Organization (2/2)

next
pc

pc+4

B, BL
MOV pc
SUBS pc

LDR pc

P e

pc +

8

I-cache

fetch

T =

| decode

0r15 {}

instruction

register read

decode

immediate

fields
_

reg
shift

execute

forwarding
paths

\/

load/store
address

> D-cache buffer/

data

register write

write-back

] Buffer/Data

— Data memory is accessed if required.
Otherwise the ALU result is simply
buffered for one cycle

L Write back

— The result generated by the
instruction are written back to the
register file, including any data
loaded from memory

SOC Consortium Course Material 14

Pipeline Hazards

 There are situations, called hazards, that prevent the next
Instruction in the instruction stream from being executing
during its designated clock cycle. Hazards reduce the
performance from the ideal speedup gained by pipelining.

L There are three classes of hazards:

— Structural Hazards

* They arise from resource conflicts when the hardware cannot support all
possible combinations of instructions in simultaneous overlapped
execution.

— Data Hazards

* They arise when an instruction depends on the result of a previous
Instruction in a way that is exposed by the overlapping of instructions in
the pipeline.

— Control Hazards

* They arise from the pipelining of branches and other instructions that

change the PC

SOC Consortium Course Material 15

Structural Hazards

dWhen a machine is pipelined, the overlapped
execution of instructions requires pipelining of
functional units and duplication of resources to
allow all possible combinations of instructions in
the pipeline.

If some combination of instructions cannot be

accommodated because of a resource conflict, the
machine Is said to have a structural hazard.

SOC Consortium Course Material 16

Example

JA machine has shared a single-memory pipeline
for data and instructions. As a result, when an
Instruction contains a data-memory reference
(load), it will conflict with the instruction reference
for a later instruction (instr 3):

Clock cycle number
Instr 1 2 3 4 5 6 7 8
load IF ID EX MEM | WB
Instr 1 IF ID EX MEM | WB
Instr 2 IF ID EX MEM | WB
Instr 3 IF ID EX MEM | WB

SOC Consortium Course Material 17

Solution (1/2)

dTo resolve this, we stall the pipeline for one clock
cycle when a data-memory access occurs. The
effect of the stall is actually to occupy the
resources for that instruction slot. The following
table shows how the stalls are actually
Implemented.

Clock cycle number
Instr 1 2 3 4 5 6 7 8 9
load IF ID EX MEM | WB
Instr 1 IF ID EX MEM |WB
Instr 2 IF ID EX MEM | WB
Instr 3 stall |IF ID EX MEM | WB

SOC Consortium Course Material 18

Solution (2/2)

J Another solution Is to use separate instruction and
data memories.

JARM belongs to the Harvard architecture, so it does
not suffer from this hazard

SOC Consortium Course Material 19

Data Hazards

dData hazards occur when the pipeline changes the
order of read/write accesses to operands so that the
order differs from the order seen by sequentially
executing instructions on the unpipelined machine.

Clock cycle number
1 |12 |3 4) 6 7 38 9
ADD | R1,R2,R3 IF | ID | EX MEM
SUB | R4,R5,R1 IF | ID EX MEM | WB
AND | R6,R1,R7 IF MEM | WB

OR |R8,R1,R9 EX MEM | WB
XOR | R10,R1,R11 ID EX MEM | WB

XOr

sub

SOC Consortium Course Material 20

Forwarding

d The problem with data hazards, introduced by this
seguence of instructions can be solved with a
simple hardware technique called forwarding.

Clock cycle number
1 2 3 4 5 6 7
ADD |R1,R2,R3 |IF ID EX — MEM-\WB
SUB |R4,R5,R1 IF D, }x A)EM WB
AND | R6,R1,R7 |F D4 |EX MEM | WB

SOC Consortium Course Material 21

Forwarding Architecture

next
pc

B,BL

MOV pc
SUBS pc

LDR pc

+4

cache « = Forwarding works as

i ——— follows:
— The ALU result from the

| decode

0r15

{} instruction EX/MEM regISter |S a|WayS fed

decode

register read baCk '[O the ALU |nput IatCheS

immediate

— If the forwarding hardware
detects that the previous ALU
operation has written the

xectte register corresponding to the

source for the current ALU

operation, control logic selects
the forwarded result as the ALU
input rather than the value read

load/store

address

m the register file.

2\

forwarding paths

register write write-back

SOC Consortium Course Material

22

Forward Data

Clock cycle number
1 2 3 4 5 6 7
ADD |R1,R2,R3 |IF ID EX.4 |MEM,_, | WB
SUB | R4,R5R1 IF ID EX b MEM WB
AND | R6,R1,R7 1= ID EX.g MEM | WB

d The first forwarding is for value of R1 from EX_,, to EX_ .
The second forwarding is also for value of R1 from MEM_,, to EX_, ..
This code now can be executed without stalls.

O Forwarding can be generalized to include passing the result directly
to the functional unit that requires it: a result is forwarded from the
output of one unit to the input of another, rather than just from the
result of a unit to the input of the same unit.

SOC Consortium Course Material 23

Without Forward

Clock cycle number

1 |2 |3 |4 5 6 7 8 9
ADD |RLR2R3 |IF |ID |EX |MEM |WB=g~__

SUB |R4,R5R1 IF |stall |stall |IDy, |EX [WEM |wB

AND |R6,R1,R7 stall | stall | IF D, |EX |MEM |WB

SOC Consortium Course Material

24

Data Forwarding

1 Data dependency arises when an instruction needs to use
the result of one of its predecessors before the result has
returned to the register file => pipeline hazards

 Forwarding paths allow results to be passed between stages
as soon as they are available

1 5-stage pipeline requires each of the three source operands
to be forwarded from any of the intermediate result registers

4 Still one load stall
LDR rN, [..]
ADD r2,rl1,rN ;use rN iImmediately

— One stall
— Compiler rescheduling

SOC Consortium Course Material 25

Stalls are Required

1 2 |3 |4 S 6 7 38
LDR |R1,@(R2) |IF |ID |EX |MEM |WB
SUB |R4,R1,R5 IF (ID |EX,, | MEM | WB
AND |R6,R1,R7 IF | ID EX,.q | MEM | WB
OR R8,R1,R9 1= ID EXE |MEM |WB

 The load instruction has a delay or latency that cannot be
eliminated by forwarding alone.

SOC Consortium Course Material 26

The Pipeline with one Stall

1|2 |3 |4 |5 |6 |7 |8 |9
LDR |RL@(R) |IF [ID |EX |MEMTYB S~
SUB |R4,R1,R5 F |ID |stall |EX MEM\\WB
AND | R6,R1,R7 F |stal [ID |EX |MEM |wB
OR |R8,R1,RY stall [IF |ID |EX |MEM |wB

1 The only necessary forwarding is done for R1 from MEM to
EX b

SOC Consortium Course Material 27

LDR Interlock sOC

consortium

Cycle : FENEBEEEEEEEBEEE T BRE

Operation

F - Fetch D -Decode E - Excute I-Interfock M- Memory
W - Writeback

4 In this example, it takes 7 clock cycles to execute 6
Instructions, CPI| of 1.2

d The LDR instruction immediately followed by a data
operation using the same register cause an interlock

SOC Consortium Course Material 28

Optimal Pipelining {o1d

consartium

Cycle L r 1 P2 03t 4t 56t T8 19

Operation

F - Fetch D - Decode E - Excute I -Interlock M- Memory
W - Writeback

4 In this example, it takes 6 clock cycles to execute 6
Instructions, CPI of 1

1 The LDR instruction does not cause the pipeline to interlock

SOC Consortium Course Material 29

consartium

LDM Interlock (1/2) {o1d

Cycle i e EEE EE B BEE 2aEE BE B
D[]E'i"dﬁl}ll H v ‘ ¥ B ' H ' H p ' M
LDMLA RI3!, {RO-R3}

Sug RY, RT.R2

STR R4, RO

"ORR R&,R&,RZ & & i1

AND R6, R3,RI i i

F - Fetch D - Decode E - Excute [- Interlock M - Memory

ME - Simulianeous Memory and Writeback W - Writehack

4 In this example, it takes 8 clock cycles to execute 5
Instructions, CPI of 1.6

 During the LDM there are parallel memory and writeback
cycles

SOC Consortium Course Material 30

consortium

LDM Interlock (2/2) {o1d

Cycle i : 1 1 2 i3 i 45637 :i83i9 10°:

Operation

ORR RS, R4. R3 . , : : : ,
AND R6, R3. R1 : 5 : : : : :

F - Fetch D - Decode E - Excute I - Interlock M - Memory
ME - Simultaneous Memory and Writeback W - Writehack

4 In this example, it takes 9 clock cycles to execute 5
Instructions, CPIl of 1.8

1 The SUB incurs a further cycle of interlock due to it using the
highest specified register in the LDM instruction

SOC Consortium Course Material 31

ARM/TDMI Processor Core

dCurrent low-end ARM core for applications like
digital mobile phones

A TDMI

— T: Thumb, 16-bit compressed instruction set

— D: on-chip Debug support, enabling the processor to halt
INn response to a debug request

— M: enhanced Multiplier, yield a full 64-bit result, high
performance

— |: Embedded ICE hardware
JVon Neumann architecture
13-stage pipeline, CPI ~ 1.9

SOC Consortium Course Material 32

ARM7TDMI Block Diagram

scan chain 2
externd > Embedded scan chain 0
externl - ICE
5% T A A
mreq, trans,
ABLa] < = I I I I Processor other
e < ‘ ‘ | core signals
—

Pt < <> * * ~scan chain 1
Din[31:0 :: >| -

. bus JTAG TAP
Dout[31:0] splitter controller

Prtto

TCK TMSTRST TDI TDO

SOC Consortium Course Material 33

ARM7TDMI Core Diagram

[31:0

QA:E ATT] AiE J\r

Address Register

2 mat

Address
(=}
u
j s

S 30300

Incrementer
Register Bank
(31 x 32-bit registers}

i"-"'C-CT

—

== [wa]

A, (B status registers)
L
g
4]
u
5 32x8
A Multiplier
b
u
s | I
Barrel
Shifter

\

32-bit ALU

7

i

Write Data Register

ﬂ

3can
Contro

Instruction
Decoder
&
Control

Logis

rtettliideertttti ittt tov ittt

ﬂrr

Instruction Pipsling
& Read Data Register

& Thumb Instruction Decoder

nENOUT | nENIN

T

DBE

D[31:0]

SOC Consortium Course Material

DBGROQI
BEREAKPTI
DBGACK
ECLK
nEXEC
ISYNC
BL[3:0]
AFE
MCLK
nWAIT
nRW
MAS[1:0]
niRG
nFlQ
nRESET

ABORT
nTRANS
nMREQ
nOPC
S5EQ
LOCK
ncrl
CPA
CPB
nM[4.0]
TEE
TBIT
HIGHZ

34

ARMY7TDMI Interface Signals (1/4)

clock mclk >
control walt ———»-

eclk a———

configuration(bigend =]

g ——»
interrupts [Ty —»
isync ——»|

initialization <

-~ enin —

ale ———»
bus ape —
control dbe ——»|

ecapclk <——

dbgrq ——»
breakpt ———»
dbgack «———
EXec «+—
externl ————»
extern) ——»
debug dbgen ——»
rangeout0 <———
rangeoutl <+—
dbgrgi <+—
commrx +—

N Commtx ~———

~ O—pC ————]
coprocessor cpi -+
interface cpa —

N cpb —>

(Vdd ——

power Vss ——»|

ARM7TDMI;

core

EE——
—>
——»
>
L »
—»
————»
————
EE——
L
——>
———
L
——
|
L
————»
——
——»
————»
L »
——»
e
L »
>
e
————
e
 ————
——»

—
—
=

A[31:0]
Din[31:0]
Dout[31:0]

D[31:0]

bl[3:0]

riw
mas[1:0]
mreq

seq

lock e

JEE— N
trans

mode[4:0]
abort s

Thit P!

tapsm[3:0TN
ir[3:0]

tdoen

tckl

tck2
screg[3:0]

drivebs ™
ecapclkbs
icapclkbs
highz
pclkbs
rstclkbs
sdinbs
sdoutbs
shclkbs
shclk2bs ~

TRST N
TCK

TMS

TDI

TDO -

memory
interface

MMU
interface

state

TAP
information

boundary
scan
extension

JTAG
controls

SOC Consortium Course Material

35

ARMY7TDMI Interface Signals (2/4)

] Clock control

— All state change within the processor are controlled by mclk, the
memory clock

— Internal clock = mclk AND \wait
— eclk clock output reflects the clock used by the core

d Memory interface

— 32-bit address A[31:0], bidirectional data bus D[31:0], separate data
out Dout[31:0], data in Din[31:0]

— \mreq indicates that the memory address will be sequential to that
used in the previous cycle

mreq Seq Cycle Use

0 0 N Non-seguential memory access

0 1 S Sequential memory access

1 0 I Internal cycle — bus and memory inactive

1 1 C Coprocessor register transfer — memory inactive

SOC Consortium Course Material 36

ARM7TDMI Interface Signals (3/4)

— Lock indicates that the processor should keep the bus to ensure the
atomicity of the read and write phase of a SWAP instruction

— \r/w, read or write
— mas[1:0], encode memory access size — byte, half-word or word

— Dbl[3:0], externally controlled enables on latches on each of the 4 bytes
on the data input bus

J MMU interface

— \trans (translation control), 0: user mode, 1: privileged mode
— \mode[4:0], bottom 5 bits of the CPSR (inverted)
— Abort, disallow access

] State

— T bit, whether the processor is currently executing ARM or Thumb
Instructions

 Configuration
— Bigend, big-endian or little-endian

SOC Consortium Course Material 37

ARM7TDMI Interface Signals (4/4)

4 Interrupt

— \fig, fast interrupt request, higher priority

— \irg, normal interrupt request

— Isync, allow the interrupt synchronizer to be passed
4 Initialization

— \reset, starts the processor from a known state, executing from
address 00000000,

J ARM7TDMI characteristics

Process 0.35um Transistors 74,20% MIPS 60
Metal layers 3 Corearea 2.1 mm Power 87 mW
\vdd 3.3V Clock Oto66 MHz MIPS/W 690

SOC Consortium Course Material 38

Memory Access

a

The ARM7 is a Von Neumann, load/store
architecture, I.e.,
— Only 32 bit data bus for both instr. and data.
— Only the load/store instr. (and SWP) access
memaory.
Memory is addressed as a 32 bit address
space
Data type can be 8 bit bytes, 16 bit half-words Jox12

or 32 bit words, and may be seen as a byte
line folded into 4-byte words

Words must be aligned to 4 byte boundaries,
and half-words to 2 byte boundaries.

Always ensure that memory controller e
supports all three access sizes b

Byte Line

| 0x10
| 0x0C

0x08

| ox04

0x00

Memory as words

SOC Consortium Course Material

39

ARM Memory Interface

O Sequential (S cycle)
— (nMREQ, SEQ) = (0, 1)

— The ARM core requests a transfer to or from an address which is either the
same, or one word or one-half-word greater than the preceding address.

O Non-sequential (N cycle)
— (nMREQ, SEQ) = (0, 0)

— The ARM core requests a transfer to or from an address which is unrelated to
the address used in the preceding address.

4 Internal (I cycle)
— (nMREQ, SEQ) = (1, 0)

— The ARM core does not require a transfer, as it performing an internal
function, and no useful prefetching can be performed at the same time

L Coprocessor register transfer (C cycle)
— (NMREQ, SEQ) = (1, 1)

— The ARM core wished to use the data bus to communicate with a
coprocessor, but does no require any action by the memory system.

SOC Consortium Course Material 40

Cached ARM7TDMI Macrocells

JTAG and non-AMBA signals

EmbeddedICE & JTAG

ARM7TDMI

Physical
Address AMBA

Address
Interface AMBA

Inst. & data Data

Inst. & data cache

0O ARM710T d ARM720T

— 8K unified write through cache - ?ijpEp[A /10T but with WinCE

— Full memory management unit
supporting virtual memory d ARM 740T

— \Write buffer — 8K unified write through cache

— Memory protection unit
— Write buffer

SOC Consortium Course Material 41

ARMS

1 Higher performance than ARMY7
— By increasing the clock rate
— By reducing the CPI
* Higher memory bandwidth, 64-bit wide memory
« Separate memories for instruction and data accesses

K— fetch
dJ ARM \ ARM9TDMI oo = Pt
8 ARM10TDMI l} T
D COre Organlzathn <:] PC instructions
memor .

— The prefetch unit is responsible for bz(a%%ld\?ilci){]) S—)| Integer
fetching instructions from memory and) N
buffering them (exploiting the double N"ite data £ @aa
bandwidth memory)

— It is also responsible for branch prediction coprocessor(s)

and use static prediction based on the
branch prediction (backward: predicted
‘taken’; forward: predicted ‘not taken’)

SOC Consortium Course Material 42

Pipeline Organization

d5-stage, prefetch unit occupies the 1st stage,
Integer unit occupies the remainder

(1) Instruction prefetch » Prefetch Unit

(2) Instruction decode and register read ™

(3) Execute (shift and ALU)
> Integer Unit
(4) Data memory access

(5) Write back results

SOC Consortium Course Material 43

Integer Unit Organization

instructions PC+8

coprocessor
instructions

<: inst. decode

1
decode
N/

register read

—

i

ALU/shlfter execute

coproc I
data Ei multiplier

\%

'Jl> write

pipeline

>address memory

. K data

—
forwarding rot/san ex
paths
- —
S write

register write

SOC Consortium Course Material 44

ARMS8 Macrocell

d ARM810

— 8Kbyte unified instruction
P and data cache

T — Copy-back
PC instructions DOUbIe-bandWIdth

I

virtual address

8 Kbyte cache

(double-
bandwidth) ¢

AT
|

read data ARMS integer
unit
1 write data | | - M M U
N CPinst. CPdata
17 — Coprocessor
copy-back tag~,, _ g
copy-back data—m| - % CP15 - erte b Uffer
A4 __=> :
JTAG write buffer :> MMU
physical address {}
address buffer
V
data in data out address

SOC Consortium Course Material 45

ARMOTDMI

J Harvard architecture

— Increases available memory bandwidth
 |nstruction memory interface
« Data memory interface

— Simultaneous accesses to instruction and data memory
can be achieved

1 5-stage pipeline
JChanges implemented to

— Improve CPIto ~1.5
— Improve maximum clock frequency

SOC Consortium Course Material 46

ARMO9TDMI Organization

next
pc

pc+4

B, BL
MOV pc
SUBS pc

LDR pc

w

<1—

N

pc +8

I-cache

—— =

decode

0r15

fetch

{} instruction

register read

sage—

; reg
shift shift

/ forwarding

load/store
address

> D-cache

paths

byte repl.
\/

Z\

register write

SOC Consortium Course Material

decode

immediate

execute

buffer/
data

write-back

47

ARMO9TDMI Pipeline Operations (1/2)

ARM/TDMIE: Fetch Decode Execute
instruction Thumb | ARM reg | _ | reg
fetch decompress | decode read | shift/ALU | write
ARMITDMI: VY » Y 4 \/
instruction :_r read| _ data memory|| reg |
fetch decode shit/ALU access write
Fetch Decode Execute Memory Write

Not sufficient slack time to translate Thumb instructions into ARM instructions and
then decode, instead the hardware decode both ARM and Thumb instructions

directly

SOC Consortium Course Material

48

ARMO9TDMI Pipeline Operations (2/2)

J Coprocessor support
— Coprocessors: floating-point, digital signal processing, special-
purpose hardware accelerator
dOn-chip debugger

— Additional features compared to ARM7TDMI
« Hardware single stepping
» Breakpoint can be set on exceptions

JARMO9TDMI characteristics

Process 0.25um Transistors 110,00(3 MIPS 220
Metal layers 3 Corearea 2.1 mm Power 150 mW
vdd 25V Clock 0to 200 MHz MIPS/W 1500

SOC Consortium Course Material 49

ARMO9TDMI Macrocells (1/2)

e e g
lconrortium

J ARM920T

NN " — 2 x 16K caches
instructions external 5\
instruction <:> C?E:Sﬁzizor < > data N FU” memory)
cache 4 — —N che management unit
R T 2 supporting virtual
<: _ _ :> addressing and
e eton 1] | 1] data memory protection
MMU —| |3 ARMOTDMI [— m— MMU :
< — Write buffer
— :> Emge?_lgf(gICE <:> é
VQ\,;> physical
. dd ta
— AMBA interface <: erll:[e <: PSS
<:>bu e copy-back DA

U U

AMBA AMBA
address data

SOC Consortium Course Material 50

ARMO9TDMI Macrocells (2/2)

d ARM 940T

— 2 x 4K caches

— Memory protection
Unit

AN

external
coprocessor
interface

|

1l

Protection Unit

— Write buffer

I
.
I

instruction data
cache cache

<
&

ARMOTDMI

<L qr

dataaddress {}

EmbeddedICE
& JTAG

data

instructions

§
¢

write
buffer

i} Iaddressl | {}

AMBA interface

Ly

AMBA AMBA
address data

2k

SOC Consortium Course Material 51

ARMO9E-S Family Overview

d ARM9E-S is based on an ARM9TDMI with the following
extensions:

— Single cycle 32*6 multiplier implementation
— EmbeddedICE logic RT A
— Improved ARM/Thumb interworking

— New 32*16 and 16*16 multiply instructions
— New count leading zero instruction J
— New saturated math instructions

Jd ARM946E-S
— ARMO9E-S core
— Instruction and data caches, selectable sizes
— Instruction and data RAMSs, selectable sizes
— Protection unit

— AHB bus interface
SOC Consortium Course Material 52

> Architecture v5TE

ARM10TDMI (1/2)

e e g
iconsortium

JdCurrent high-end ARM processor core
J Performance on the same IC process

ARM10TDMI 2 ARM9TDMI 2 ARM/7TDMI
1300MHz, 0.25um CMOS
Jdincrease clock rate
ARM10TDMI
bra_nc_h addr. data memory da_ta |
prediction calc. access write |
instruction decode :_r read| shift/ALU multiplier reg I
fetch decode multiply partials add || write |
Fetch |Sssue Decode Execute Memory Write

SOC Consortium Course Material 53

ARM10TDMI (2/2)

JReduce CPI

— Branch prediction
— Non-blocking load and store execution
— 64-bit data memory - transfer 2 registers in each cycle

SOC Consortium Course Material 54

ARM1020T Overview

J Architecture v5T
— ARM1020E will be v5TE

dCPI~1.3
 6-stage pipeline
1 Static branch prediction

d 32KB instruction and 32KB data caches
— ‘hit under miss’ support

1 64 bits per cycle LDM/STM operations
d Embedded ICE Logic RT-II
4 Support for new VFPv1 architecture

d ARM10200 test chip
— ARM1020T
— VFP10
— SDRAM memory interface
— PLL

SOC Consortium Course Material

55

Summary (1/2)

JARM7TDMI

— VVon Neumann architecture
— 3-stage pipeline
— CPI~1.9

JARMOTDMI, ARM9E-S

— Harvard architecture
— b-stage pipeline
— CPI~15

JARM10TDMI

— Harvard architecture
— 6-stage pipeline
— CPI~1.3

SOC Consortium Course Material 56

Summary (2/2)

JCache

— Direct-mapped cache
— Set-associative cache
— Fully associative cache

 Software Development

— CodeWarrior
— AXD

SOC Consortium Course Material 57

References

[1] http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.html

[2] ARM System-on-Chip Architecture by S.Furber, Addison
Wesley Longman: ISBN 0-201-67519-6.

[3] www.arm.com

SOC Consortium Course Material 58

