
IP Core Design-Lab 4

ARM Hardware Development Environment

1/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Outline

• About ARM Hardware Development Environment
• Examples:

– Part A: Semihosting
– Part B: Memory Usage
– Part C:Timer/Interrupt

• Polling & Interrupt
• Lab Exercise
• Reference Topic & Related Documents

2/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

About ARM Hardware Development
Environment

• ARM Integrator Application Platform (AP)
Resources

• ARM Core Module (CM) Resources
• System Memory Map
• Running Images on ARM Integrator

3/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

ARM Integrator ASIC Platform/AP
Resources

• About ARM Integrator AP
– An ATX motherboard which can be used to support the

development of applications and hardware with ARM
processor.

– Platform board provides the AMBA backbone and
system infrastructure required.

– Core Modules & Logic Modules could be attached to
ASIC Platform.

4/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

ARM Integrator ASIC Platform/AP
Resources

• ARM Integrator/AP Overview:
– System controller FPGA.:

• System bus to CMs and LMs
• System bus arbiter
• Interrupt controller
• Peripheral I/O controller
• 3 counter/timers
• Reset controller
• System status and control registers

– Clock Generator
– PCI bus interface supporting onboard expansion.
– External Bus Interface (EBI) supporting external memory

expansion.
– Boot ROM
– 32MB flash memory.
– 512K SSRAM.

5/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

ARM Integrator ASIC Platform/AP
Resources

• ARM Integrator/AP Architecture:

6/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

ARM Integrator ASIC Platform/AP
Resources

• System Controller FPGA (1/3)
– System Bus Interface

• Supports transfers between system bus and the Advanced
Peripheral Bus (APB).

• Supports transfers between system bus and the PCI bus.
• Supports transfers between system bus and the External Bus

Interface (EBI).
– System Bus Arbiter

• Provides arbitration for a total of 6 bus masters.
– Up to 5 masters on CMs or LMs.
– PCI bus bridge.

7/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

ARM Integrator ASIC Platform/AP
Resources

• System Controller FPGA (2/3)
– Peripheral I/O Controllers

• 2 ARM PrimeCell UARTs
• ARM PrimeCell Keyboard & Mouse Interface (KMI)
• ARM PrimeCell Real Time Clock (RTC)
• 3 16-bit counter/timers
• GPIO controller
• Alphanumeric display and LED control, and switch reader

– Reset Controller
• Initializes the Integrator/AP when the system is reset

– System Status & Control Register
• Clock speeds
• Software reset
• Flash memory write protection

8/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

ARM Integrator ASIC Platform/AP
Resources

• System Controller FPGA (3/3)
– Interrupt Controller

• Handles IRQs and FIQs for up to 4 ARM processors.
• IRQs and FIQs originate form the peripheral controllers, OCI

bus, and other devices on LMs.
• Assigns IRQs and FIQs from any sources to any of the 4 ARM

processors.
• Interrupts are masked enabled, acknowledged, or cleared via

registers in the interrupt controller.
• Main sources of interrupts:

– System controller’s internal peripherals
– LM’s devices
– PCI subsystem
– software

9/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

ARM Integrator ASIC Platform/AP
Resources

• System Controller FPGA block diagram

10/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

ARM Integrator Core Module/CM
Resources

• ARM Integrator/Core Module (CM)
– CM provides ARM core personality.
– CM could be used as a standalone development

system without AP.
– CM could be mounted onto AP as a system core.
– CM could be integrated into a 3rd-party development or

ASIC prototyping system.

11/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

ARM Integrator Core Module/CM
Resources

• ARM Integrator/CM Features (CM7TDMI):
– ARM7TDMI microprocessor core.
– core module controller FPGA :

• SDRAM controller
• System bus bridge
• Reset controller
• Interrupt controller

– Supports 16MB~256MB pc66/pc100 168pin SDRAM.
– Supports 256/512 KB SSRAM
– Multi-ICE, logic analyzer, and optional trace connectors.

12/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

ARM Integrator Core Module/CM
Resources

• ARM Integrator/CM Architecture:

13/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

ARM Integrator Core Module/CM
Resources

• Core Module FPGA
– SDRAM controller

• Supports for DIMMs from 16MB to 256MB.
– Reset controller

• Initializes the core.
• Process resets from different sources.

– Status and configuration space
• Provides processor information.
• CM oscillator setup.
• Interrupt control for the processor debug communications

channel.
– System bus bridge

• Provides Interface between the memory bus on the CM and the
system bus on the AP.

14/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

About ARM Hardware Development
Environment

System Memory Map

15/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

System Memory Map

16/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

System Memory Map

• Core Module memory map

17/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

About ARM Hardware Development
Environment

Running Images on the ARM Integrator

18/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Running Images on the ARM Integrator

• Setting up the Integrator hardware:
– 1. Connect the Multi-ICE to the CM
– 2. Connect the null-modem cable to the host PC’s serial port
– 3. Connect the Integrator/AP’s power to a turned-off power

plug.
• 3.1 Turn on the the power plug after the system is properly connected.

– 4. Press the case’s power switch to stand-by the Integrator.
• 4.1 The power switch on the case is connected to the stand-by switch

on the Integrator/AP board.
• 4.2 The stand-by LED is red before pressing the power switch on the

case.
• 4.3 After the power switch has been pressed, the LEDs on the case’s

panel would be turned on.

19/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Running Images on the ARM Integrator

• Setting up connection to the Integrator:
– 5. Start Multi-ICE Server from the Program Menu in the

windows.
• 5.1 Press the Auto-Configure button.
• 5.2 Multi-ICE Server would detect the hardware after auto-

configuration. The detected result would be shown in the program
window.

20/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Running Images on the Integrator

• Running the AXD:
– 6. Start AXD.
– 7. Options>>Configure Target

• 7.1 Select the MultiICE and press OK.
– 8. Now AXD is operating using the real Integrator hardware

system instead of using the ARMulator.

21/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Running Images on the ARM Integrator

• Turning off the Integrator
– 1. Press the power switch on the case.
– 2. Turn off the power plug’s power.

• 2.1 The stand-by LED would remain red for several seconds after
turning off the power plug’s power.

• 2.2 After the stand-by LED goes off, the Integrator is turned off.

22/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Examples

• Part A: Semihosting
• Part B: Memory Usage
• Part C: Timer/Interrupt

23/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Examples

Part A:
Semihosting

24/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part A: Semihosting

• What is Semihosting?
– A mechanism whereby the target communicates I/O requests made in the

application code to the host system, rather than attempting to support the
I/O itself.

• Semihosting overview

25/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part A: Semihosting

• How Semihosting Work?
– The application invokes the semihosting SWI(Software

Interrupt)
– The debug agent then handles the SWI exception.
– The debug agent provides the necessary

communication to the host system.
– Semihosting operations are requested using a

semihosted SWI numbers:
• 0x123456 in ARM state.
• 0xAB in Thumb state.

26/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part A: Semihosting

• SWI Interface
– A Software Interrupt(SWI) is requested with an SWI

number.
• Semihosting SWI numbers: 0x123456(ARM), 0xAB(Thumb)

– Different operations in the SWI are identified using
value of r0.

– Other parameters are passed in a block that is pointed
by r1.

– The result is returned in r0. It could be an immediate
value or a pointer.

27/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part A: Semihosting

• Semihosting SWIs
– Semihosting operations used by C library functions

such as printf(), scanf().
– No need to implement semihosting operations for

default standard I/O functions.

28/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Example

Part B:
Memory Usage

29/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part B: Memory Usage

• This part contains only one example. It does the
following tasks:
– Backup the data in the SSRAM at locations 0x30000 to

0x38000 range to the SDRAM at locations 0x80000000
to 0x80008000.

– Write values to the SSRAM at locations 0x30000 to
0x38000.

– Verify the values in the SSRAM at locations 0x30000 to
0x38000.

– Restore the backuped data back to their original
locations.

30/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part B: Memory Usage

• Core Module Memory Map:
– The boot ROM on the AP and local SSRAM on the CM

share the same location within the system memory map.
– The access to which memory at the boot ROM/SSRAM

overlapped location is determined by the REMAP bit
and the nMBDET bit.

• nMBDET : 1st (lsb) bit of the CM_CTRL(0x1000000C) register.
– If the CM is attached to the AP, nMBDET=0; else

nMBDET=1.
• REMAP : 2nd bit of the CM_CTRL(0x1000000C) register. Only

has effect when nMBDET=0.
– REMAP =0, 0x00000000 ~ 0x0003FFFF are directed to the

boot ROM.
– REMAP =1, 0x00000000 ~ 0x0003FFFF are mapped to the

CM’s local SSRAM.

31/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part B: Memory Usage

• CM_CTRL (0x1000000C)
Bits Name Access Function
31:6 Reserved
5 BIGEND R/W 0 = little-endian (default)

1 = big-endian
4 Reserved
3 RESET W 1 = Reset the CM
2 REMAP R/W 0 = access Boot ROM

1 = access SSRAM
1 nMBDET R 0 = mounted on motherboard

1 = stand alone
0 LED R/W 0 = LED on

1 = LED off

32/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part B: Memory Usage
• SSRAM.C

#include <stdio.h>

int main(void){
unsigned int CM_CTRL_ADDR = 0x1000000C;
unsigned int SSRAM_ADDR = 0x00000000; // CM's SSRAM ranges 0x0 ~

0x0003FFFF

unsigned int *CM_CTRL_PTR, *SSRAM_PTR, *SDRAM_PTR;

unsigned int i;
int SSRAM_test_error = 0;

CM_CTRL_PTR = (unsigned int *) CM_CTRL_ADDR;
SSRAM_PTR = (unsigned int *) SSRAM_ADDR;

// Memory Remap to SSRAM
*CM_CTRL_PTR =0x4;

printf("SSRAM Write Test\n");

33/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part B: Memory Usage
• SSRAM.C (continued)

printf("Press any key to start SSRAM test!!\n");

getchar();
*CM_CTRL_PTR =0x5; // turn off the MISC LED on the CM

printf("Backup SSRAM data from 0x0000 to 0x8000 to SDRAM at 0x80000000\n");
for(i=0;i<0x8000;i+=4)
{

SDRAM_PTR = (unsigned int *)(i+0x80000000);
SSRAM_PTR = (unsigned int *)(i+0x30000);
*SDRAM_PTR = *SSRAM_PTR;

}

printf("Writing...\n");
for(i=0;i<0x8000;i+=4)
{

SSRAM_PTR = (unsigned int *)(i+0x30000);
*SSRAM_PTR = i;

}

34/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part B: Memory Usage
• SSRAM.C (continued)

printf("Verifying...\n");
for(i=0x0;i<0x8000;i+=4)
{

SSRAM_PTR = (unsigned int *) (i+0x30000);
if(*SSRAM_PTR != i)
{

printf("SSRAM W/R test error!!\n");
printf("Error address>> %x\n",i);
SSRAM_test_error = 1;
getchar();

}
}

if(SSRAM_test_error != 1)
printf("SSRAM test passed!!\n");

*CM_CTRL_PTR =0x4;
printf("SSRAM test finished.\n");

35/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part B: Memory Usage

• SSRAM.C (continued)
printf("Restore original SSRAM data from 0x00000000 to 0x80008000 to SSRAM at

0x8000\n");
for(i=0;i<0x8000;i+=4)
{

SDRAM_PTR = (unsigned int *)(i+0x80000000);
SSRAM_PTR = (unsigned int *) (i+0x30000);
*SSRAM_PTR = *SDRAM_PTR;

}

return 0;
}

36/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part B: Memory Usage

• Building SSRAM.c
– 1. Create a new ARM Executable Image project.
– 2. Add SSRAM.c to the project
– 3. Make the project
– 4. Run the project

37/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Examples

Part C:
Timer/Interrupt

38/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt

• This part contains 1 example:
– Using Timer/Interrupts with pointers.(with no uHAL API)

• This example installs a timer interrupt and it’s handler to flash
the LED.

• Observation key points
– Check the Timer/Interrupt related registers values, see

how the change.
– Observe how interrupt is handled.

39/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt

• About Counter/Timers
– There are 3 counter/timers on an ARM Integrator AP.
– Each counter/timer generates an IRQ when it reaches 0.
– Each counter/timer has:

• A 16-bit down counter
with selectable prescale

• A load register
• A control register

40/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt

• Counter/Timer Registers
– These registers control the 3 counter/timers on the

Integrator AP board.
– Each timer has the following registers.

• TIMERX_LOAD: a 16-bit R/W register which is the initial value
in free running mode, or reloads each time the counter value
reaches 0 in periodic mode.

• TIMERX_VALUE: a 16-bit R register which contains the current
value of the timer.

• TIMERX_CTRL: an 8-bit R/W register that controls the
associated counter/timer operations.

• TIMERX_CLR: a write only location which clears the timer’s
interrupt.

41/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt
• Counter Timer Registers
Address Name Type Size Function
0x13000000 TIMER0_LOAD R/W 16 Timer0 load register
0x13000004 TIMER0_VALUE R 16 Timer0 current value reg
0x13000008 TIMER0_CTRL R/W 8 Timer0 control register
0x1300000C TIMER0_CLR W 1 Timer0 clear register

• Timer Control Register
Bits Name Function
7 ENABLE Timer enable: 0=disable; 1=enable.
6 MODE Timer mode: 0=free running; 1=periodic
5:4 unused Unused, always 0
3:2 PRESCALE Prescale divisor: 00=none; 01 = div by 16

10=div by 256; 11 = undefined
1:0 Unused Unused,always 0

42/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt

• About Interrupt Controller
– Implemented in the system controller FPGA.
– Provides interrupt handling for up to 4 processors.
– There’s a 22-bit IRQ and FIQ controller for each

processor.

43/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt

• IRQ Registers
– The registers control each processor’s interrupt handler

on the Integrator AP board.
– Each IRQ has following registers:

• IRQX_STATUS: a 22-bit register representing the current
masked IRQ status.

• IRQX_RAWSTAT: a 22-bit register representing the raw IRQ
status.

• IRQX_ENABLESET: a 22-bit location used to set bits in the
enable register.

• IRQX_ENABLECLR: a 22-bit location used to clear bits in the
enable register.

44/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt

• IRQ Registers
Address Name Type Size Function
0x14000000 IRQ0_STATUS R 22 IRQ0 status
0x14000004 IRQ0_RAWSTAT R 22 IRQ0 IRQ status
0x14000008 IRQ0_ENABLESET R/W 22 IRQ0 enable set
0x1400000C IRQ0_ENABLECLR W 22 IRQ0 enable clear

• IRQ Registers bit assignments
Bit Name Function
0 SOFTINT Software interrupt
5 TIMERINT0 Counter/Timer interrupt
6 TIMERINT1 Counter/Timer interrupt
7 TIMERINT2 Counter/Timer interrupt

45/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt

• How Interrupt works:

Memory
Device Interrupt

Controller

AP
IRQ Vector

Branch
Table

IRQ(0x18)

. . .

Interrupt_Handler:
- Check IRQ source
- Branch to corresponding

Interrupt Service RoutineB Interrupt_Service_Routine

User Code

User Code

B Interrupt_Handler

Interrupt_Service_Routine:
- ISR tasks
- Clear IRQ

46/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt

• Timer/Interrupt example without uHAL:
• Several important functions are used in this

example:
– Install_Handler: This function install the IRQ handler at

the branch vector table at 0x18.
– myIRQHandler: This is the user’s IRQ handler. It

performs the timer ISR in this example.
– enableIRQ: The IRQ enable bit in the CPSR is set to

enable IRQ.
– LoadTimer,WriteTimerCtrl,ReadTimer,ClearTimer:

Timer related functions.

47/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt
• Timer_IRQ.c

#include <stdio.h>

unsigned Install_Handler(unsigned routine, unsigned *vector)
{

unsigned vec, oldvec;
vec = ((routine - (unsigned)vector - 0x8) >> 2);

/* --> routine is the pointer point to the IRQ handler. */
/* --> shift right 2 is for address word aligned. */
/* --> subtract 8 is due to the pipeline */
/* since PC will be fetching the 2nd instruction */
/* after the instruction currently being executed. */

vec = 0xea000000 | vec;/* to implement the instruction B <address> */
/* 0xea is the Branch operation */

oldvec = *vector; /* the IRQ address or FIQ address */
vector = vec; / the contents of IRQ address is now the branch instruction

*/
return (oldvec);

}

48/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt
• Timer_IRQ.c continued

__irq void myIRQHandler (void)
{

printf("\nFrom IRQ Handler>>HIHI!!\n");
ClearTimer(); /* Clear the timer’s IRQ */

}

// this function is used to set the I bit in CPSR
__inline void enable_IRQ(void)
{

int tmp;
__asm
{

MRS tmp, CPSR
BIC tmp, tmp, #0x80
MSR CPSR_c, tmp

}
}

49/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt
• Timer_IRQ.c continued

void d2b(int d_number, int array_len, int *b_number) {
int len; /*array index*/ /* This function transform data into binary digits */
int temp=1;

for (len=0;len<array_len;len++) {
if (temp&d_number) b_number[len]=1;
else b_number[len]=0;
d_number=d_number>>1;

}
}

void printB(int d_number, int array_len, int*b_number){
int i; /* This function prints the binary digits */
for(i=(array_len-1);i>=0;i--){

printf("%d",b_number[i]);
if (i%8==0 && i!=0)

printf("_");
}
printf("\n");

}

50/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt
• Timer_IRQ.c continued

void LoadTimer(int loadvalue){
int TIMER0_LOAD_ADDR = 0x13000000;
int *TIMER0_LOAD;

TIMER0_LOAD = (int *)TIMER0_LOAD_ADDR;

*TIMER0_LOAD = loadvalue;
printf("Timer Message>>> Timer0 loaded!!\n");

}

int ReadTimer(void){
int TIMER0_VALUE_ADDR = 0x13000004;
int *TIMER0_VALUE;

TIMER0_VALUE = (int *)TIMER0_VALUE_ADDR;

printf("Timer Message>>> Timer0 value aquired!!\n");
return *TIMER0_VALUE;

}

51/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt
• Timer_IRQ.c continued

void WriteTimerCtrl(int writevalue){
int TIMER0_CTRL_ADDR = 0x13000008;
int *TIMER0_CTRL;

TIMER0_CTRL = (int *)TIMER0_CTRL_ADDR;

*TIMER0_CTRL = writevalue;
printf("Timer Message>>> Timer0 control register changed!!\n");

}

void ClearTimer(void){
int TIMER0_CLEAR_ADDR = 0x1300000C;
int *TIMER0_CLEAR;

TIMER0_CLEAR = (int *)TIMER0_CLEAR_ADDR;

*TIMER0_CLEAR = 1;
printf("Timer Message>>> Timer0 cleared!!\n");

}

52/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt
• Timer_IRQ.c continued

int main(void) {
int IRQ0_STATUS_ADDR = 0x14000000;
int IRQ0_RAWSTAT_ADDR = 0x14000004;
int IRQ0_ENABLESET_ADDR = 0x14000008;
int IRQ0_ENABLECLR_ADDR = 0x1400000C;

int *IRQ0_STATUS, *IRQ0_RAWSTAT, *IRQ0_ENABLESET, *IRQ0_ENABLECLR;

int b_num[22];
int i;
unsigned *irqvec = (unsigned *)0x18;

Install_Handler((unsigned)myIRQHandler, irqvec); /* Install user’s IRQ Handler */

enable_IRQ(); /* DR added - ENABLE IRQs */

IRQ0_STATUS = (int *) IRQ0_STATUS_ADDR;
IRQ0_RAWSTAT = (int *) IRQ0_RAWSTAT_ADDR;
IRQ0_ENABLESET = (int *) IRQ0_ENABLESET_ADDR;
IRQ0_ENABLECLR = (int *) IRQ0_ENABLECLR_ADDR;

53/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt
• Timer_IRQ.c continued

*IRQ0_ENABLESET = 0x0021;

d2b(*IRQ0_STATUS,22,b_num);
printf("IRQ0_STATUS: ");
printB(*IRQ0_STATUS,22,b_num);

d2b(*IRQ0_RAWSTAT,22,b_num);
printf("IRQ0_RAWSTAT: ");
printB(*IRQ0_RAWSTAT,22,b_num);

d2b(*IRQ0_ENABLESET,22,b_num);
printf("IRQ0_ENABLESET: ");
printB(*IRQ0_ENABLESET,22,b_num);

d2b(*IRQ0_ENABLECLR,22,b_num);
printf("IRQ0_ENABLECLR: ");
printB(*IRQ0_ENABLECLR,22,b_num);

54/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Part C: Timer/Interrupt
• Timer_IRQ.c continued

LoadTimer(64); /* set Timer0 reload value to 64 */
WriteTimerCtrl(0xC4); /* Enable the timer */

// wait for a while
for(i=0;i<1000000000;i++)
{

;
}
printf("\nEND\n");
return 0;

}

55/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Polling & Interrupt(1/2)

1. Load data to register in
your IP.

2. Write 1 to Enable register
to enable your IP.

3. Pooling. Read the Ready
location periodically. If
ready = 1, read Result
location to get the result.

4. Write 0 to Enable register
to disable your IP.

Enable

Load data

Pooling

For example

Pooling:
… (Other meaningful
operations, add functions
you like)

Check Ready location. If
not ready go back to
Pooling. If ready, read the
Result location to get the
result and disable the
model.

56/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Polling & Interrupt(2/2)

1. Install interrupt handler.
2. Enable IRQ.
3. Load data to data register

in your IP.
4. Write 1 to Enable register

to enable your IP.
5. Continue. Do any

operations as you want. Enable

Load data

Continue

What
happens

When your IP is done:
1. Mac set IRQ=1.
2. ARM processor jump to
IRQ handler. And after the
service in IRQ handler is
done, ARM jump back to
use application.

In IRQ handler:
1.Clear IRQ
2.Read result
3.Disable your IP

Install interrupt handler

Enable IRQ

57/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Lab#2 Exercise

• Modify the memory usage example. Use timer to
count the total access time of several data
accessing to SSRAM and SDRAM. Compare the
performance between using SSRAM and SDRAM.

• SSRAM is faster than SDRAM, therefore using
SSRAM should have better performance over
using SDRAM.

58/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Reference Topic & Related Documents

59/79

ARM
 H

ardware Resources
Institute of Electronics,N

ational C
hiao

T
ung

U
niversity

Reference Topic & Related Documents
• Integrator ASIC Platform

[DUI_0098B_AP_UG]
• System Memory Map [DUI_0098B_AP_UG

4.1]
• Counter/Timer [DUI_0098B_AP_UG 3.7, 4.6]
• Interrupt [DUI_0098B_AP_UG 3.6, 4.8]
• LEDs [DUI_0098B_AP_UG 4.5]
• Core Module [DUI_0126B_CM7TDMI]
• Core Module

Registers[DUI_0126B_CM7TDMI 4.2]
• Core Module Memory Organization

[DUI_0126B_CM7TDMI 4.1]
• SSRAM [DUI_0126B_CM7TDMI 3.2]
• SDRAM [DUI_0126B_CM7TDMI 3.4]

• SWI Interface [ADS_DebugTargetGuide
5.1.1]

• SWI Handling [ADS_DeveloperGuide 5.4]
• Semihosting [ADS_DebugTargetGuide 5]
• Building Semihosted application

[ADS_CompilerLinkerUtil 4.2]
• Semihosting directly dependent functions

[ADS_CompilerLinkerUtil Table4-1]
• Semihosting indirectly dependent functions

[ADS_CompilerLinkerUtil Table4-2]
• I/O supported functions using semihosting

SWI [ADS_CompilerLinkerUtil Table4-13]
• uHAL API [DUI_0102D_AFS_REF 2]

[DUI_0136A_AFS_USER 2]

	IP Core Design-Lab 4
	Outline
	About ARM Hardware Development Environment
	ARM Integrator ASIC Platform/AP Resources
	ARM Integrator ASIC Platform/AP Resources
	ARM Integrator ASIC Platform/AP Resources
	ARM Integrator ASIC Platform/AP Resources
	ARM Integrator ASIC Platform/AP Resources
	ARM Integrator ASIC Platform/AP Resources
	ARM Integrator ASIC Platform/AP Resources
	ARM Integrator Core Module/CM Resources
	ARM Integrator Core Module/CM Resources
	ARM Integrator Core Module/CM Resources
	ARM Integrator Core Module/CM Resources
	About ARM Hardware Development Environment
	System Memory Map
	System Memory Map
	About ARM Hardware Development Environment
	Running Images on the ARM Integrator
	Running Images on the ARM Integrator
	Running Images on the Integrator
	Running Images on the ARM Integrator
	Examples
	Part A:Semihosting
	Part A: Semihosting
	Part A: Semihosting
	Part A: Semihosting
	Part A: Semihosting
	Example
	Part B: Memory Usage
	Part B: Memory Usage
	Part B: Memory Usage
	Part B: Memory Usage
	Part B: Memory Usage
	Part B: Memory Usage
	Part B: Memory Usage
	Part B: Memory Usage
	Part C:Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Part C: Timer/Interrupt
	Polling & Interrupt(1/2)
	Polling & Interrupt(2/2)
	Lab#2 Exercise
	Reference Topic & Related Documents
	Reference Topic & Related Documents

