
C. W. Jen 任建葳任建葳任建葳任建葳
cwjen@twins.ee.nctu.edu.tw

IP Core Lab

ARM Hardware Development Environment

1/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Outline

• About ARM Hardware Development Environment
• Examples:

– Part A: Semihosting
– Part B: Memory Usage
– Part C:Timer/Interrupt

• Lab Exercise
• Reference Topic & Related Documents

2/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

About ARM Hardware Development
Environment

• ARM Integrator Application Platform (AP)
Resources

• ARM Core Module (CM) Resources
• System Memory Map
• Micro Hardware Abstraction Layer (uHal) API
• Running Images on ARM Integrator

3/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

ARM Integrator ASIC Platform/AP
Resources

• About ARM Integrator AP
– An ATX motherboard which can be used to support the

development of applications and hardware with ARM
processor.

– Platform board provides the AMBA backbone and
system infrastructure required.

– Core Modules & Logic Modules could be attached to
ASIC Platform.

4/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

ARM Integrator ASIC Platform/AP
Resources

• ARM Integrator/AP Overview:
– System controller FPGA.:

• System bus to CMs and LMs
• System bus arbiter
• Interrupt controller
• Peripheral I/O controller
• 3 counter/timers
• Reset controller
• System status and control registers

– Clock Generator
– PCI bus interface supporting onboard expansion.
– External Bus Interface (EBI) supporting external memory

expansion.
– Boot ROM
– 32MB flash memory.
– 512K SSRAM.

5/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

ARM Integrator ASIC Platform/AP
Resources

• ARM Integrator/AP Architecture:

6/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

ARM Integrator ASIC Platform/AP
Resources

• System Controller FPGA (1/3)
– System Bus Interface

• Supports transfers between system bus and the Advanced
Peripheral Bus (APB).

• Supports transfers between system bus and the PCI bus.
• Supports transfers between system bus and the External Bus

Interface (EBI).
– System Bus Arbiter

• Provides arbitration for a total of 6 bus masters.
– Up to 5 masters on CMs or LMs.
– PCI bus bridge.

7/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

ARM Integrator ASIC Platform/AP
Resources

• System Controller FPGA (2/3)
– Peripheral I/O Controllers

• 2 ARM PrimeCell UARTs
• ARM PrimeCell Keyboard & Mouse Interface (KMI)
• ARM PrimeCell Real Time Clock (RTC)
• 3 16-bit counter/timers
• GPIO controller
• Alphanumeric display and LED control, and switch reader

– Reset Controller
• Initializes the Integrator/AP when the system is reset

– System Status & Control Register
• Clock speeds
• Software reset
• Flash memory write protection

8/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

ARM Integrator ASIC Platform/AP
Resources

• System Controller FPGA (3/3)
– Interrupt Controller

• Handles IRQs and FIQs for up to 4 ARM processors.
• IRQs and FIQs originate form the peripheral controllers, OCI

bus, and other devices on LMs.
• Assigns IRQs and FIQs from any sources to any of the 4 ARM

processors.
• Interrupts are masked enabled, acknowledged, or cleared via

registers in the interrupt controller.
• Main sources of interrupts:

– System controller’s internal peripherals
– LM’s devices
– PCI subsystem
– software

9/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

ARM Integrator ASIC Platform/AP
Resources

• System Controller FPGA block diagram

10/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

ARM Integrator Core Module/CM
Resources

• ARM Integrator/Core Module (CM)
– CM provides ARM core personality.
– CM could be used as a standalone development

system without AP.
– CM could be mounted onto AP as a system core.
– CM could be integrated into a 3rd-party development or

ASIC prototyping system.

11/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

ARM Integrator Core Module/CM
Resources

• ARM Integrator/CM Features (CM7TDMI):
– ARM7TDMI microprocessor core.
– core module controller FPGA :

• SDRAM controller
• System bus bridge
• Reset controller
• Interrupt controller

– Supports 16MB~256MB pc66/pc100 168pin SDRAM.
– Supports 256/512 KB SSRAM
– Multi-ICE, logic analyzer, and optional trace

connectors.

12/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

ARM Integrator Core Module/CM
Resources

• ARM Integrator/CM Architecture:

13/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

ARM Integrator Core Module/CM
Resources

• Core Module FPGA
– SDRAM controller

• Supports for DIMMs from 16MB to 256MB.
– Reset controller

• Initializes the core.
• Process resets from different sources.

– Status and configuration space
• Provides processor information.
• CM oscillator setup.
• Interrupt control for the processor debug communications

channel.
– System bus bridge

• Provides Interface between the memory bus on the CM and the
system bus on the AP.

14/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

About ARM Hardware Development
Environment

System Memory Map

15/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

System Memory Map

16/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

System Memory Map

• Core Module memory map

17/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

About ARM Hardware Development
Environment

Micro Hardware Abstraction Layer API

18/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Micro Hardware Abstraction Layer/uHAL
API

• uHAL is a Hardware Abstraction Layer that is
designed to conceal hardware difference between
different ARM-based systems.

• uHAL provides a standard layer of board-
dependent functions to manage I/O, RAM, boot
flash, and application flash.

• uHAL API provides simple & extended functions
that are linkable and code reusable to control the
system hardware.

19/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Micro Hardware Abstraction Layer/uHAL
API

• System support provided by uHAL
– System Initialization Software
– Serial Port
– Generic Timer
– Generic LEDs
– Interrupt Control
– Memory Management
– PCI Interface

20/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

About ARM Hardware Development
Environment

Running Images on the ARM Integrator

21/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Running Images on the ARM Integrator

• Setting up the Integrator hardware:
– 1. Connect the Multi-ICE to the CM
– 2. Connect the null-modem cable to the host PC’s serial port
– 3. Connect the Integrator/AP’s power to a turned-off power

plug.
• 3.1 Turn on the the power plug after the system is properly connected.

– 4. Press the case’s power switch to stand-by the Integrator.
• 4.1 The power switch on the case is connected to the stand-by switch

on the Integrator/AP board.
• 4.2 The stand-by LED is red before pressing the power switch on the

case.
• 4.3 After the power switch has been pressed, the LEDs on the case’s

panel would be turned on.

22/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Running Images on the ARM Integrator

• Setting up connection to the Integrator:
– 5. Start Multi-ICE Server from the Program Menu in the

windows.
• 5.1 Press the Auto-Configure button.
• 5.2 Multi-ICE Server would detect the hardware after auto-

configuration. The detected result would be shown in the program
window.

23/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Running Images on the Integrator

• Running the AXD:
– 6. Start AXD.
– 7. Options>>Configure Target

• 7.1 Select the MultiICE and press OK.
– 8. Now AXD is operating using the real Integrator hardware

system instead of using the ARMulator.

24/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Running Images on the ARM Integrator

• Turning off the Integrator
– 1. Press the power switch on the case.
– 2. Turn off the power plug’s power.

• 2.1 The stand-by LED would remain red for several seconds after
turning off the power plug’s power.

• 2.2 After the stand-by LED goes off, the Integrator is turned off.

25/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Examples

• Part A: Semihosting
• Part B: Memory Usage
• Part C: Timer/Interrupt

26/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A:
Semihosting

Examples

27/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting

• What is Semihosting?
– A mechanism whereby the target communicates I/O requests made in the

application code to the host system, rather than attempting to support the
I/O itself.

• Semihosting overview

28/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting

• How Semihosting Work?
– The application invokes the semihosting SWI(Software

Interrupt)
– The debug agent then handles the SWI exception.
– The debug agent provides the necessary

communication to the host system.
– Semihosting operations are requested using a

semihosted SWI numbers:
• 0x123456 in ARM state.
• 0xAB in Thumb state.

29/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting

• SWI Interface
– A Software Interrupt(SWI) is requested with an SWI

number.
• Semihosting SWI numbers: 0x123456(ARM), 0xAB(Thumb)

– Different operations in the SWI are identified using
value of r0.

– Other parameters are passed in a block that is pointed
by r1.

– The result is returned in r0. It could be an immediate
value or a pointer.

30/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting

• Semihosting SWIs
– Semihosting operations used by C library functions

such as printf(), scanf().
– No need to implement semihosting operations for

default standard I/O functions.

31/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting Example

• This program controls the Integrator board LED
and print strings to the host using uHal API.

• Please trace the linked code and observe how
SWI is used.

32/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting Example

• LED.c
#include "uhal.h"

#ifdef SEMIHOSTED
extern void print_header(void);
extern void print_end(void);
#endif

char *test_name = "LED Flash Tests\n";
char *test_ver = "Program Version 1.1\n";

int main(int argc, int *argv[])
{
 unsigned int count, max, on;
 unsigned int wait, i, j;
 unsigned int ncount;

 count = uHALr_InitLEDs();
 max = (1 << count);

33/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting Example

• LED.c (continued)
#ifdef SEMIHOSTED
 // init the library
 uHALr_LibraryInit();

 print_header();
 uHALr_printf("\nCheck target for %d flashing LEDs\n", count);
#endif

 while (1)
 {

// Repeat several times to allow user to move their head
for (ncount = 0; ncount < 64; ncount++)
{
 // Do a binary count on the LEDs
 for (i = 0; i < max; i++)
 {

// which LEDs are on?
on = (max - 1) & i;

for (j = 0; j < count; j++)
 uHALr_WriteLED(j + 1, (on & (1 << j) ? 1 : 0));

34/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting Example

• LED.c (continued)

// wait a while
for (wait = 0; wait < 1000000; wait++)
 ;

 }
}

#ifdef SEMIHOSTED
// All done, give semihosted a chance to break in..
uHALr_printf("Press a key to repeat the test.\n");
uHALr_getchar();

#endif

 }
 return (OK);
}

35/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting Example
• Build under CodeWarriorIDE:

– 1. Start CodeWarriorIDE.
– 2. File>New to create a new project.

• 2.1 Select ARM Executable Image under the Project tab.
• 2.2 Type the project name, Ex1 for example.
• 2.3 Specify the project path.

36/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting Example

• Building under CodeWarriorIDE (continued):
– 3. Create a new target for semihosting.

• 3.1 A Project Management Window appears. Click on the Targets
tab.

• 3.2 Project>Create New Target.
• 3.3 A New Target window appears.

– New target name = Semihosted.
– New target contains = Clone existing target.

37/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting Example
• Building under CodeWarriorIDE (continued)

– 4. Target Semihosted Settings
• 4.1 Hit the Build Target Setting button.
• 4.2 A Semihosted Settings window appears. Click Target-Target

Settings in Target Setting Panel.
– Linker = ARM Linker

38/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting Example

• Building under CodeWarriorIDE (continued):
• 4.3 Click Language Settings>ARM C Compiler in Target Setting

Panel.
• 4.4 Click Debug/Opt tab. And set as follows:

– Check Enable debug table generation in Debug Control.
– Check Include preprocessor in Debug Control.
– Check Most in Optimization Level.Click Save.

39/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting Example

• Building under CodeWarriorIDE (continued):
• 4.5 Click Language Settings>ARM C Compiler in Semihosted Setting

Panel.
• 4.6 Hit Preprocessor tab. Add followings in List of #DEFINEs:

– Type SEMIHOSTED=1.Hit Add button.

40/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting Example

• Building under CodeWarriorIDE (continued):
– 5. Project>Add Files... to add files to the project.

– Please copy led.c, prheader.c to from
ARM/AFSv1__3/Source/uHALdemo/Sources to your working directory
first.

• 5.1 Add led.c, prheader.c for all targets.
• 5.2 Add uHAL_u_.a from ARM/AFSv1_3/lib/Integrator for all targets.

41/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting Example
• Building under CodeWarriorIDE (continued):

– 6. Set Access Path
• 6.1 Click Target>Access Path in Semihosted Setting Panel.

– Hit Add button to Add following path with absolute path
checked:

» C:\Program Files\ARM\AFSv1_3\Include
» C:\Program Files\ARM\AFSv1_3\Lib\Integrator

42/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting Example

• Building under CodeWarriorIDE (continued):
– 7. Delete ArmDebug, ArmDegRel, ArmRelease targets.

• Click Target tab in Project Managing Window.
• Click on targets you wish to delete.
• Press Del key on the keyboard.
• Leave only target Semihosted not deleted.

43/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting Example

• Building under CodeWarriorIDE (continued):
– 8. Hit the Make button to compile and link the project, refer

to step 6 in Example.
– 9. Hit the Run button to run the program.

44/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part A: Semihosting Example

• Running under AXD:
– If using Multi-ICE with Integrator. You’ll see LEDs on

the integrator flashing.
– The COM port of the Integrator is reserved when using

with Multi-ICE. Hence data is transmitted through Multi-
ICE.

45/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Example

Part B:
Memory Usage

46/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part B: Memory Usage

• This part contains only one example. It does the
following tasks:
– Backup the data in the SSRAM at locations 0x30000 to

0x38000 range to the SDRAM at locations 0x80000000
to 0x80008000.

– Write values to the SSRAM at locations 0x30000 to
0x38000.

– Verify the values in the SSRAM at locations 0x30000 to
0x38000.

– Restore the backuped data back to their original
locations.

47/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part B: Memory Usage

• Core Module Memory Map:
– The boot ROM on the AP and local SSRAM on the CM

share the same location within the system memory
map.

– The access to which memory at the boot ROM/SSRAM
overlapped location is determined by the REMAP bit
and the nMBDET bit.

• nMBDET : 1st (lsb) bit of the CM_CTRL(0x1000000C) register.
– If the CM is attached to the AP, nMBDET=0; else

nMBDET=1.
• REMAP : 2nd bit of the CM_CTRL(0x1000000C) register. Only

has effect when nMBDET=0.
– REMAP =0, 0x00000000 ~ 0x0003FFFF are directed to the

boot ROM.
– REMAP =1, 0x00000000 ~ 0x0003FFFF are mapped to the

CM’s local SSRAM.

48/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part B: Memory Usage

• CM_CTRL (0x1000000C)
Bits Name Access Function
31:6 Reserved
5 BIGEND R/W 0 = little-endian (default)

1 = big-endian
4 Reserved
3 RESET W 1 = Reset the CM
2 REMAP R/W 0 = access Boot ROM

1 = access SSRAM
1 nMBDET R 0 = mounted on motherboard

1 = stand alone
0 LED R/W 0 = LED on

1 = LED off

49/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part B: Memory Usage
• SSRAM.C

#include <stdio.h>

int main(void){
unsigned int CM_CTRL_ADDR = 0x1000000C;
unsigned int SSRAM_ADDR = 0x00000000; // CM's SSRAM ranges

0x0 ~ 0x0003FFFF

unsigned int *CM_CTRL_PTR, *SSRAM_PTR, *SDRAM_PTR;

unsigned int i;
int SSRAM_test_error = 0;

CM_CTRL_PTR = (unsigned int *) CM_CTRL_ADDR;
SSRAM_PTR = (unsigned int *) SSRAM_ADDR;

// Memory Remap to SSRAM
*CM_CTRL_PTR =0x4;

printf("SSRAM Write Test\n");

50/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part B: Memory Usage

printf("Press any key to start SSRAM test!!\n");

getchar();
*CM_CTRL_PTR =0x5; // turn off the MISC LED on the CM

printf("Backup SSRAM data from 0x0000 to 0x8000 to SDRAM at 0x80000000\n");
for(i=0;i<0x8000;i+=4)
{

SDRAM_PTR = (unsigned int *)(i+0x80000000);
SSRAM_PTR = (unsigned int *)(i+0x30000);
*SDRAM_PTR = *SSRAM_PTR;

}

printf("Writing...\n");
for(i=0;i<0x8000;i+=4)
{

SSRAM_PTR = (unsigned int *)i;
*SSRAM_PTR = i;

}

• SSRAM.C (continued)

51/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part B: Memory Usage

printf("Verifying...\n");
for(i=0x0;i<0x8000;i+=4)
{

SSRAM_PTR = (unsigned int *) (i+0x30000);
if(*SSRAM_PTR != i)
{

printf("SSRAM W/R test error!!\n");
printf("Error address>> %x\n",i);
SSRAM_test_error = 1;
getchar();

}
}

if(SSRAM_test_error != 1)
printf("SSRAM test passed!!\n");

*CM_CTRL_PTR =0x4;
printf("SSRAM test finished.\n");

• SSRAM.C (continued)

52/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part B: Memory Usage

printf("Restore original SSRAM data from 0x00000000 to 0x80008000 to SSRAM at
0x8000\n");

for(i=0;i<0x8000;i+=4)
{

SDRAM_PTR = (unsigned int *)(i+0x80000000);
SSRAM_PTR = (unsigned int *) (i+0x30000);
*SSRAM_PTR = *SDRAM_PTR;

}

return 0;
}

• SSRAM.C (continued)

53/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part B: Memory Usage

• Building SSRAM.c
– 1. Create a new ARM Executable Image project.
– 2. Add SSRAM.c to the project
– 3. Make the project
– 4. Run the project

54/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C:
Timer/Interrupt

Examples

55/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt

• This part contains 2 examples:
– Using Timer/Interrupt with uHAL API.

• This example installs a timer interrupt to update a variable. A
loop in main() contains the code that reads the variable and
outputs its value to the standard output port.

– Using Timer/Interrupts with pointers.(with no uHAL API)
• This example installs a timer interrupt and it’s handler to flash

the LED.

• Observation key points
– Check the Timer/Interrupt related registers values, see

how the change.
– Observe how interrupt is handled.

56/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt

• About Counter/Timers
– There are 3 counter/timers on an ARM Integrator AP.
– Each counter/timer generates an IRQ when it reaches

0.
– Each counter/timer has:

• A 16-bit down counter
with selectable prescale

• A load register
• A control register

57/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt

• Counter/Timer Registers
– These registers control the 3 counter/timers on the

Integrator AP board.
– Each timer has the following registers.

• TIMERX_LOAD: a 16-bit R/W register which is the initial value
in free running mode, or reloads each time the counter value
reaches 0 in periodic mode.

• TIMERX_VALUE: a 16-bit R register which contains the current
value of the timer.

• TIMERX_CTRL: an 8-bit R/W register that controls the
associated counter/timer operations.

• TIMERX_CLR: a write only location which clears the timer’s
interrupt.

58/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt
• Counter Timer Registers
Address Name Type Size Function
0x13000000 TIMER0_LOAD R/W 16 Timer0 load register
0x13000004 TIMER0_VALUE R 16 Timer0 current value reg
0x13000008 TIMER0_CTRL R/W 8 Timer0 control register
0x1300000C TIMER0_CLR W 1 Timer0 clear register

• Timer Control Register
Bits Name Function
7 ENABLE Timer enable: 0=disable; 1=enable.
6 MODE Timer mode: 0=free running; 1=periodic
5:4 unused Unused, always 0
3:2 PRESCALE Prescale divisor: 00=none; 01 = div by 16

 10=div by 256; 11 = undefined
1:0 Unused Unused,always 0

59/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt

• About Interrupt Controller
– Implemented in the system controller FPGA.
– Provides interrupt handling for up to 4 processors.
– There’s a 22-bit IRQ and FIQ controller for each

processor.

60/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt

• IRQ Registers
– The registers control each processor’s interrupt handler

on the Integrator AP board.
– Each IRQ has following registers:

• IRQX_STATUS: a 22-bit R register representing the current
masked IRQ status.

• IRQX_RAWSTAT: a 22-bit R register representing the raw IRQ
status.

• IRQX_ENABLESET: a 22-bit location used to set bits in the
enable register.

• IRQX_ENABLECLR: a 22-bit location used to clear bits in the
enable register.

61/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt

• IRQ Registers
Address Name Type Size Function
0x14000000 IRQ0_STATUS R 22 IRQ0 status
0x14000004 IRQ0_RAWSTAT R 22 IRQ0 IRQ status
0x14000008 IRQ0_ENABLESET R/W 22 IRQ0 enable set
0x1400000C IRQ0_ENABLECLR W 22 IRQ0 enable clear

• IRQ Registers bit assignments
Bit Name Function
0 SOFTINT Software interrupt
5 TIMERINT0 Counter/Timer interrupt
6 TIMERINT1 Counter/Timer interrupt
7 TIMERINT2 Counter/Timer interrupt

62/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt

• How Interrupt works:

Device Interrupt
Controller

Vector
Branch
Table

IRQ(0x18)

Memory

Interrupt_Handler:
 - Check IRQ source
 - Branch to corresponding
 Interrupt Service Routine

IRQ

Interrupt_Service_Routine:
 - ISR tasks
 - Clear IRQ

B Interrupt_Handler

B Interrupt_Service_Routine

User Code

User Code

AP

. . .

63/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt

• Timer/Interrupt example without uHAL:
• Several important functions are used in this

example:
– Install_Handler: This function install the IRQ handler at

the branch vector table at 0x18.
– myIRQHandler: This is the user’s IRQ handler. It

performs the timer ISR in this example.
– enableIRQ: The IRQ enable bit in the CPSR is set to

enable IRQ.
– LoadTimer,WriteTimerCtrl,ReadTimer,ClearTimer:

Timer related functions.

64/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt
• Timer_IRQ.c

#include <stdio.h>

unsigned Install_Handler(unsigned routine, unsigned *vector)
{

unsigned vec, oldvec;
vec = ((routine - (unsigned)vector - 0x8) >> 2);

/* --> routine is the pointer point to the IRQ handler. */
/* --> shift right 2 is for address word aligned. */
/* --> subtract 8 is due to the pipeline */
/* since PC will be fetching the 2nd instruction */
/* after the instruction currently being executed. */

vec = 0xea000000 | vec;/* to implement the instruction B <address> */
 /* 0xea is the Branch operation */

oldvec = *vector; /* the IRQ address or FIQ address */
vector = vec; / the contents of IRQ address is now the branch instruction */
return (oldvec);

}

65/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt

__irq void myIRQHandler (void)
{

printf("\nFrom IRQ Handler>>HIHI!!\n");
ClearTimer(); /* Clear the timer’s IRQ */

}

// this function is used to set the I bit in CPSR
__inline void enable_IRQ(void)
{
 int tmp;
 __asm
 {
 MRS tmp, CPSR
 BIC tmp, tmp, #0x80
 MSR CPSR_c, tmp
 }
}

• Timer_IRQ.c continued

66/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt

void d2b(int d_number, int array_len, int *b_number) {
 int len; /*array index*/ /* This function transform data into binary digits */
 int temp=1;

 for (len=0;len<array_len;len++) {
 if (temp&d_number) b_number[len]=1;
 else b_number[len]=0;
 d_number=d_number>>1;
 }
}

void printB(int d_number, int array_len, int*b_number){
int i; /* This function prints the binary digits */
for(i=(array_len-1);i>=0;i--){

printf("%d",b_number[i]);
 if (i%8==0 && i!=0)

 printf("_");
}
printf("\n");

}

• Timer_IRQ.c continued

67/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt
• Timer_IRQ.c continued

void LoadTimer(int loadvalue){
int TIMER0_LOAD_ADDR = 0x13000000;
int *TIMER0_LOAD;

TIMER0_LOAD = (int *)TIMER0_LOAD_ADDR;

*TIMER0_LOAD = loadvalue;
printf("Timer Message>>> Timer0 loaded!!\n");

}

int ReadTimer(void){
int TIMER0_VALUE_ADDR = 0x13000004;
int *TIMER0_VALUE;

TIMER0_VALUE = (int *)TIMER0_VALUE_ADDR;

printf("Timer Message>>> Timer0 value aquired!!\n");
return *TIMER0_VALUE;

}

68/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt
• Timer_IRQ.c continued

void WriteTimerCtrl(int writevalue){
int TIMER0_CTRL_ADDR = 0x13000008;
int *TIMER0_CTRL;

TIMER0_CTRL = (int *)TIMER0_CTRL_ADDR;

*TIMER0_CTRL = writevalue;
printf("Timer Message>>> Timer0 control register changed!!\n");

}

void ClearTimer(void){
int TIMER0_CLEAR_ADDR = 0x1300000C;
int *TIMER0_CLEAR;

TIMER0_CLEAR = (int *)TIMER0_CLEAR_ADDR;

*TIMER0_CLEAR = 1;
printf("Timer Message>>> Timer0 cleared!!\n");

}

69/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt
• Timer_IRQ.c continued

int main(void) {
int IRQ0_STATUS_ADDR = 0x14000000;
int IRQ0_RAWSTAT_ADDR = 0x14000004;
int IRQ0_ENABLESET_ADDR = 0x14000008;
int IRQ0_ENABLECLR_ADDR = 0x1400000C;

int *IRQ0_STATUS, *IRQ0_RAWSTAT, *IRQ0_ENABLESET, *IRQ0_ENABLECLR;

int b_num[22];
int i;
unsigned *irqvec = (unsigned *)0x18;

Install_Handler((unsigned)myIRQHandler, irqvec); /* Install user’s IRQ Handler */

enable_IRQ(); /* DR added - ENABLE IRQs */

IRQ0_STATUS = (int *) IRQ0_STATUS_ADDR;
IRQ0_RAWSTAT = (int *) IRQ0_RAWSTAT_ADDR;
IRQ0_ENABLESET = (int *) IRQ0_ENABLESET_ADDR;
IRQ0_ENABLECLR = (int *) IRQ0_ENABLECLR_ADDR;

70/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt
• Timer_IRQ.c continued

*IRQ0_ENABLESET = 0x0021;

d2b(*IRQ0_STATUS,22,b_num);
printf("IRQ0_STATUS: ");
printB(*IRQ0_STATUS,22,b_num);

d2b(*IRQ0_RAWSTAT,22,b_num);
printf("IRQ0_RAWSTAT: ");
printB(*IRQ0_RAWSTAT,22,b_num);

d2b(*IRQ0_ENABLESET,22,b_num);
printf("IRQ0_ENABLESET: ");
printB(*IRQ0_ENABLESET,22,b_num);

d2b(*IRQ0_ENABLECLR,22,b_num);
printf("IRQ0_ENABLECLR: ");
printB(*IRQ0_ENABLECLR,22,b_num);

71/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt
• Timer_IRQ.c continued

LoadTimer(64); /* set Timer0 reload value to 64 */
WriteTimerCtrl(0xC4); /* Enable the timer */

// wait for a while
for(i=0;i<1000000000;i++)
{

;
}
printf("\nEND\n");
return 0;

}

72/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt

• Timer/Interrrupt example using uHAL:
• Several import functions are used in this example:

– uHALr_InitInterrupts: Installs new trap handlers and soft
vectors.

– uHALr_InitTimers: Initializes the timers.
– uHALr_RequestSystemTimer: Installs a handler for

system timer and sets up the internal structure.
– uHALr_InstallSystemTimer: Starts the timer and

enables its interrupts.
– uHALr_GetSystemTimerInterval: Gets system timer

interval in msec.
– uHALr_setLED,uHAL_resetLED: LED related functions.

73/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt
• System_Timer.c

#include "uhal.h"

extern void print_header(void);
extern void print_end(void);
char *test_name = "System Timer Tests\n";
char *test_ver = "Program Version 1.0xx\n";

// High-level routine called by IRQ Trap Handler when the timer interrupts
static int OSTick = 0;
void TickTimer(unsigned int irq)
{
 OSTick++;
}

int main(int argc, int *argv[])
{
 int i, j;
 int lasttime = 0;
 int hours, minutes, seconds, frac, sample, interval;
 infoType platformInfo;

74/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt

 // Install new trap handlers and soft vectors
 uHALr_InitInterrupts();

 // initialise the timers
 uHALr_InitTimers();

 // initialise the tick count
 OSTick = 0;

 uHALr_printf("Timer init\n");
 if (uHALr_RequestSystemTimer(TickTimer, (const unsigned char *)"test") <= 0)
 {
 uHALr_printf("Timer/IRQ busy\n");
 }else
 uHALr_printf("RequestSystemTimer OK!!\n");

 // Start system timer & enable the interrupt.
 uHALr_InstallSystemTimer();
 interval = uHALir_GetSystemTimerInterval();

• System_Timer continued

75/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt

 uHALr_printf("Interval= %d\n", interval);

 // loop flashing a led and giving out the tick count
 for (j = 0;; j++)
 {

if (j & 1)
 uHALr_SetLED(1);
else
 uHALr_ResetLED(1);

// Convert the number of ticks to hh:mm:ss
sample = OSTick;
seconds = sample / interval;
minutes = seconds / 60;
hours = minutes / 60;
frac = sample % 1000; // fractions of a second
seconds %= 60; // Only interested in the last 60
minutes %= 60; // Only interested in the last 60

• System_Timer.c continued

76/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Part C: Timer/Interrupt
• System_Timer.c continued

if (seconds != lasttime)
{
 lasttime = seconds;
 uHALr_printf("Timer is %2d:%02d:%02d.%03d (0x%05X)\n", hours, minutes,

seconds, frac, sample);
}

// Wait around for a bit..
for (i = 0; i < 10000; i++)
{

 ;
}

 uHALr_printf("\n");
 }
 print_end();
 return (OK);
}

77/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Lab#2 Exercise

• Modify the memory usage example. Use timer to
count the total access time of several data
accessing to SSRAM and SDRAM. Compare the
performance between using SSRAM and
SDRAM.

• SSRAM is faster than SDRAM, therefore using
SSRAM should have better performance over
using SDRAM.

78/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Reference Topic & Related Documents

79/79

ARM
 H

ardware Resources
Institute of Electronics, N

ational C
hiao T

ung U
niversity

Reference Topic & Related Documents
• Integrator ASIC Platform

[DUI_0098B_AP_UG]
• System Memory Map [DUI_0098B_AP_UG

4.1]
• Counter/Timer [DUI_0098B_AP_UG 3.7, 4.6]
• Interrupt [DUI_0098B_AP_UG 3.6, 4.8]
• LEDs [DUI_0098B_AP_UG 4.5]
• Core Module [DUI_0126B_CM7TDMI]
• Core Module

Registers[DUI_0126B_CM7TDMI 4.2]
• Core Module Memory Organization

[DUI_0126B_CM7TDMI 4.1]
• SSRAM [DUI_0126B_CM7TDMI 3.2]
• SDRAM [DUI_0126B_CM7TDMI 3.4]

• SWI Interface [ADS_DebugTargetGuide
5.1.1]

• SWI Handling [ADS_DeveloperGuide 5.4]
• Semihosting [ADS_DebugTargetGuide 5]
• Building Semihosted application

[ADS_CompilerLinkerUtil 4.2]
• Semihosting directly dependent functions [

ADS_CompilerLinkerUtil Table4-1]
• Semihosting indirectly dependent functions

[ADS_CompilerLinkerUtil Table4-2]
• I/O supported functions using semihosting

SWI [ADS_CompilerLinkerUtil Table4-13]
• uHAL API [DUI_0102D_AFS_REF 2]

[DUI_0136A_AFS_USER 2]

