
IEE 5004 IP Core Design, 2001 1

IP Core Design
Lab Overview

Kun-Bin Lee

NCTU
2001.9~ 2002.1

IEE 5004 IP Core Design, 2001 2

Abstraction
With the advance of IC manufacturing process, the new generation of design

methodology, intellectual properties (IPs) together with platform-based design, is
considered as one of the best approaches to conquer both the raising complexity of the
design and the pressing schedule of time-to-market during developing
System-on-a-Chip (SoC). Because the specific application of a platform is definite,
the characteristics of IPs become well defined and these IPs can be, therefore, reused
without redesigned. On the other hand, both software and hardware architecture can
also be reused as the categorized applications have the same characteristics.

In this course, we are going to develop the IP authoring flow. The authoring flow

includes high-level modeling for design and verification, hardware/software
coordination in embedded system, authoring for hardware IP and its associated
software components - the driver. Though our IP authoring flow is target at
ARM-based SoC design platform, which dominates 70% market in embedded system,
we believe the flow can be applied to other processor-based SoC design environment.

Introduction

It is being widely recognized that the reuse of IPs, hard, firm or soft cores, is

becoming fundamental to closing the design gap for a successful SoC design; i.e., it
conquers the design complexity and meets the time-to-market requirement. The
compelling feature of IPs is that they are correct-by-construction, allowing the
re-deployment of engineering resources to other critical aspects of the design. As
shown in Figure 1, A SoC contains system-level design, hardware design, software
design and hardware/software coverificaiton. To make the system integration more
quickly, IP authoring should also fit to the SoC design flow. In traditional ASIC
design flow shown in Figure 2, hardware and software development are mostly
serialized and the software portion of the IP is less emphasized.

Figure 1 Soc design flow

High Level Algorithm Model
C/C++/COSSAP/VCC/MATLAB

Hardware/Software Partition
N2C/VCC

Communication Refinement
N2C/Port-C/VCC

Front End

Back EndH
ar

dw
ar

e
D

ev
el

op
m

en
t

Sy
st

em
 L

ev
el

D
es

ig
n

Hardware/Software Coverification
N2C/Seamless/"Q/Bridge"

Specification

Chip

Softw
are

D
evelopm

ent

RTOS
WinCE/VxWorks

Device Driver
Driveway

API Embedded
Software

IEE 5004 IP Core Design, 2001 3

Specification development

Prototype build and test

RTL code development

Functional verification

Synthesis

Timing verificaiton

Place and route

Deliver to system integration and software test

Specification development

Prototype build and test

RTL code development

Functional verification

Synthesis

Timing verificaiton

Place and route

Deliver to system integration and software test
Figure 2 Traditional ASIC design flow.

Figure 3 Spiral SoC design flow.

Instead of using traditional ASIC design flow, spiral SoC design flow, which involves
parallel and concurrent development of hardware and software, is used in this course.
Since the hardware design in RTL or behavioral level using HDL is mature, we focus
on high-level modeling for design and verification, hardware/software coordination
in embedded system, authoring for hardware IP and its associated software
components - the driver. For one-semester graduate course, we have four labs and
corresponding homework to guide students in IP authoring. The prerequisites for this
course are cell-based VLSI design and C programming. A website located at
http://twins.ee.nctu.edu.tw/courses/ip_core_01/index.html contains all information
about this course, including handouts for both classes and labs, related readings and
resources, and auxiliary file packages for the labs.

IEE 5004 IP Core Design, 2001 4

Figure 4 Target platform: ARM Integrator.

ROM / RAM
and

peripherals

PCI

CM alias
memory

1GB

2GB

3GB

4GB

LM 0
LM 1
LM 2
LM 3

0xC000_0000

0xD000_0000

0xE000_0000

0xF000_0000 256MB SDRAM
(CM 3)

256MB SDRAM
(CM 2)

256MB SDRAM
(CM 1)

256MB SDRAM
(CM 0) Spare

GPIO
LED/Switch

Mouse
Keyboard
UART 1
UART 0

RTC
Int control

Counter/Timer
EBI regs

Sys control
CM regs

Reserved

EBI

Peripheral
regs

CM 0, 1, 2, 3

CS 3 (EXPM)
SSRAM
Flash

Boot ROM

256MB

512MB

768MB

1GB

64MB

128MB

192MB

256MB

0x9000_0000

0xA000_0000

0x8000_0000

0xB000_0000

0x0FFF_FFFF

0x0000_0000

0x2000_0000

0x2400_0000

0x2800_0000

0x2C00_0000

0x8000_0000

0x4000_0000

0x1000_0000

0x2000_0000

0x3000_0000

Figure 5 System memory map of ARM Integrator.

Organization of this material
The rest of this material is organized as follows. In Lab 1, The ARM development
tools and environment are introduced to familiarize students with software
development environment, writing code (driver) for ARM-based platform design and
software cost (code size) estimation. The debug environment can also be used to
debug both software and hardware design running at the target platform, which is
ARM Integrator platform in this course. Mixed instruction sets, ARM and Thumb
interworking, is learned to balance the performance and code density of an application.

IEE 5004 IP Core Design, 2001 5

Profiling utility can be used to estimate percentage time of each function in an
application. This information can be used as one of the references to decide which
portion of the application should be designed as hardware to meet performance
constraints. The cost of a program includes Read Only (RO) data, Read Write (RW)
data and Zero-Initialized (ZI) data. Embedded systems often implement complex
memory configurations. For example, an embedded system might use fast, 32-bit
RAM for performance-critical code, such as interrupt handlers and the stack, slower
16-bit RAM for application RW data, and ROM for normal application code.

In Lab 2, the resource of target platform, ARM Integrator, is introduced, as shown in
Figure 4 and Figure 5. This platform has the general characteristics of platform-based
design, i.e., a set of pre-built, well-defined, well-verified hardware and software
components. While the hardware components is clearly showed in Figure 4, the
software components include:
 the hardware abstraction layer, uHAL library, of those hardware shown in Figure

4
 a set of Application Programming Interface (API), including API for Flash

memory and PCI
 a ported OS, uC/OS-2
 basic applications, e.g., boot monitor, and example codes to make use of ARM

Integrator

Lab 2 also introduces the booting procedure and interrupt handler of an
embedded system, hardware/software communication through memory mapped I/O or
uHAL library, and the real condition of the use of difference memory organization,
which has to be taken the following considerations into account:
• performance & constraint of different types of memory (SSRAM, SDRAM, and

Flash, and possible the cache)
• data alignment and data layout (in which type of memory)
• available data bus and memory bandwidth

ARM Integrator platform enables the integration of software and hardware IP and
associated drivers, and reduces development times and increases levels of confidence
in the final silicon by allowing early prototyping of an environment similar to the final
system (using programmable and standard components). To extent the functionality of
ARM Integration, three approaches can be applied: semihosting, user-programmable
logic elements, and General Purpose Input/Output (GPIO). Semihosting, a mechanism
whereby the target communicates I/O requests made in the application code to the host
system, rather than attempting to support the I/O itself, is introduced in lab 2.
Extension using user-programmable logic elements is introduced in Lab 4. The use of
GPIO is not included in this course.

In Lab 3, high-level modeling for design and verification is introduced to help
detect integration problems earlier in the design cycle. Virtual prototype, one types of
HW/SW co-verification environments, is chosen in this course to make best use of
available tools, ARM Developer Suite (ADS). In virtual prototype, the processor is
modeled as an Instruction Set Simulator (ISS) and hardware functional blocks are
represented with C models. The virtual prototype allows designers to do the
following:

• Make trade-offs by modifying system parameters and checking the results
• Test interrupt handlers

IEE 5004 IP Core Design, 2001 6

• Develop and test drivers for your IPs
• Test the correctness of the application algorithms.

Using the ARMulator, it is possible to build a complete, clock-cycle accurate software
model of a system including MMU, physical memory, peripherals, and OS. Since this
is likely to be the highest-level model of the system, it is one of the best places to
perform the initial evaluation of design alternatives before detailed RTL design. Once
the design is reasonably stable, hardware development will probably move into a
timing-accurate design environment, but software development can continue using the
ARMulator-based model.

In Lab 4, value-added IP is attached to the AMBA™ backbone and ARM Integrator
system infrastructure by using the user-programmable logic elements. This allows
users to prototype, test and integrate their own HDL hardware IP and associated
drivers before final silicon. While the FPGA design is relatively mature, this lab
focuses on the design flow for ARM-based design environment, AMBA-compliant IP
and hardware/software coordination.

Each Lab has its corresponding exercises and homework. The exercises are designed
to familiarize students with the content of the Lab, while the homework is designed to
familiarize them with the design flow shown in Figure 1 by using JPEG as an example:
hardware/software partition through profiling (homework 1), make use of existing
hardware resource and hardware/software communication mechanism (homework 2),
hardware IP modeling and software driver authoring (homework 3), and finally
FPGA-proven AMBA-complaint IP authoring (homework 4).

