
IEE 5004 IP Core Design, 2001 1/3

IP Core Design
Homework 3

Virtual Prototype
Of

Baseline JPEG Software Encoder
Instructor: Prof. Chein-Wei Jen

Announcement: 2001.11.26

Many problems can arise during the system integration process. Moving the system
integration phase forward in the design cycle would help in detecting these integration
problems earlier. This can be achieved by creating a HW/SW co-verification
environment (Figure 1 (a)) early in the design cycle. Soft (or virtual) prototype (Figure
1(b)) is one kind of such environment that it is a software design representation of the
design being verified. Another example of such environment is Mentor Graphics
Seamless Co-Verification Environment (CVE). In this homework, we make use of
virtual prototype that the processor is modeled as an Instruction Set Simulator (ISS)
and hardware functional blocks (especially those IPs you will do synthesizable HDL
design in homework 4) are represented with C models. The virtual prototype allows
designers to do the following:
• Make trade-offs by modifying system parameters and checking the results
• Test interrupt handlers
• Develop and test drivers for your IPs
• Test the correctness of the application algorithms.

Figure 1. HW/SW co-verification environments.

Source Level Debugger

Processor Model
(ISS, RTL code, etc.)

System Interface

Peripherials
(C models, RTL code,

 real chips, etc.)

Source Level Debugger

Processor Model
(ISS)

System Interface

Peripherials
(C models)

Source Level Debugger

Processor Model
(ISS)

System Interface
(BFU)

Peripherials
(RTL code)

(b)
Soft Prototpe Environment

(e.g., ARM ADS)

(a)
General HW/SW Co-

verification Environment

(c)
Co-Verificaiton Environment

(e.g., Mentor Graphics
Seamless CVE)



IEE 5004 IP Core Design, 2001 2/3

The software/firmware developed using the virtual prototype can be reconfigured for
emulation and downloaded through an ICE to the rapid prototype or target hardware
system for testing. Two of the limitations of the virtual prototype we have to know
are:
• Accuracy of models. The hardware models are functionally correct but not pin-

accurate. Also, it is often difficult to model exact cycle-accurate hardware designs.
• Synchronization. It is usually difficult to resolve the synchronization

requirements of the peripheral data dependencies.

As the design evolves it is important to keep the software model in step so that the
software development is based on the most accurate estimates of timing that are
available. If the timing assumption built into the original software model is proved
impossible to meet in the course of the detailed hardware design (e.g., homework 4),
consistency between the models should be maintained.

Using the ARMulator, it is possible to build a complete, clock-cycle accurate software
model of a system including MMU, physical memory, peripherals, and OS. Since this
is likely to be the highest-level model of the system, it is one of the best places to
perform the initial evaluation of design alternatives before detailed RTL design. Once
the design is reasonably stable, hardware development will probably move into a
timing-accurate design environment, but software development can continue using the
ARMulator-based model.



IEE 5004 IP Core Design, 2001 3/3

Deliverable
Your deliverable has to include:
1. Report that describes your idea and result.
2. Source code of your JPEG encoder, hardware models, and drivers.
3. All setting and information required for regenerating the result shown in your

report.

Design and model those portions of JPEG baseline encoder that you want to improve
the coding process through hardware accelerators. All the details of the registers,
memory addresses of these registers, bit definitions, and drivers (initialization and
interrupt behavior) of your IP(s) should be included in the C models. To facilitate
testbench migration from this functional level to lower levels, use the bit-true, fixed-
point representations in the functional testbench.

Your report should include the description of the functionality of the IPs, the
programmer’s model (e.g., Section 4.6 of Integrator/AP User Guide), the behavior of
the driver (initialization and interrupt behavior), and the coordination of hardware
and software.

State your approaches, key ideas and results clearly and formally, and void redundant
description. Your report can be written in Chinese or English. However, make sure
your report is readable. A manual report won’t degrade your score, unless it is
scrabbled.

If your JPEG encoder is modified from an existing reference code, please
acknowledge in the last section of your documentation that you've used the reference
code.

Important Date
Due : 5:00 p.m. Dec. 10, 2001

For more information
• The contents of this document: Kun-Bin Lee
• ARM development tools: contact the TA with the number = your team number %5

No. Email Ext.
0 Kun-Bin Lee kblee@yankees.ee.nctu.edu.tw 54225
1 Yuan-Chung Lee yzlee@yankees.ee.nctu.edu.tw 54225
2 Jih Yiing Lin jinlin@yankees.ee.nctu.edu.tw 54243
3 Nelson Yen-Chung Chang ycchang@yankees.ee.nctu.edu.tw 54243
4 Tzung-Shian Yang tsyang@yankees.ee.nctu.edu.tw 54243


