
IEE 5004 IP Core Design, 2001 1/5

IP Core Design
Homework 1

Baseline JPEG Software Encoder
Instructor: Prof. Chein-Wei Jen

Announcement: 2001.10.29

Design a baseline JPEG software encoder and then optimize it for ARM7TDMI
processor. You can either write your own design or modify an existing reference code
such as those listed in [1]. Be aware of the differences between the PC environment
and the final target platform (i.e., ARM development boards) because this JPEG
software encoder will be ported to ARM development boards in homework 2. Also,
the data structures and the partition of functional calls should be carefully defined
because portions of this JPEG encoder will be modeled as hardware components in
homework 3 and mapped to FPGA in homework 4.

The benefits of such baseline JPEG software encoder include
• Be familiar with writing code (driver) for ARM processor
• Be familiar with using ARM software tools
• Verify algorithms used for hardware IPs
• Generate test pattern and/or files for hardware IPs

Try to improve the performance and memory requirement of your JPEG encoder
without sacrificing the image quality. Memory requirement includes the program itself
and the temporal memory for data processing. The following approaches may possibly
be helpful in such improvement.
• Select or modify the algorithms or the code segments used in JPEG to fit to

ARM's architecture. By taking constraints of the ARM core hardware resources
into consideration, some algorithms may be more suitable for ARM core than
others. An example of such consideration can be found in [2].

• Create SIMD operations. Though current ARM architecture has no specific
instructions to support single-instruction, multiple-data (SIMD) operation, certain
SIMD operations can be synthesized using a sequence of normal ARM instructions
[3].

• Use ARM/Thumb mode for different code segments.

[1] JPEG image compression FAQ, part 2/2, http://www.faqs.org/faqs/jpeg-faq/
[2] Tadashi Sakamoto and Tomohiro Hase, “Software JPEG for a 32-bit MCU with

dual issue,” IEEE Transactions on Consumer Electronics, Vol. 44 Issue: 4, Nov.
1998, pp. 1334 -1341.

[3] Alan Lewis and Paul Carpenter, “Optimizing digital video codecs in ARM
cores,” EE Times, Sep. 20, 2001.

IEE 5004 IP Core Design, 2001 2/5

Deliverable
Your deliverable has to include:
1. Report that describes your idea and result.
2. Source code of your JPEG encoder.
3. All setting and information required for regenerating the result shown in your

report.

Please specify the memory requirement, profiling and statistics (Section 5.5.8
Debugger Internals System View, ADS Debuggers Guide v1.1). Separate the result of
statistics for file I/O routines and JPEG kernel. State your approaches, key ideas and
results clearly and formally, and void redundant description. Your report can be
written in Chinese or English. However, make sure your report is readable. A manual
report won’t degrade your score, unless it is scrabbled.

If your JPEG encoder is modified from an existing reference code, please
acknowledge in the last section of your documentation that you've used the reference
code.

Important Date
Due : 5:00 p.m. Nov. 12, 2001

For more information
• The contents of this document: Kun-Bin Lee
• ARM development tools: contact the TA with the number = your team number %5

No. Email Ext.
0 Kun-Bin Lee kblee@yankees.ee.nctu.edu.tw 54225
1 Yuan-Chung Lee yzlee@yankees.ee.nctu.edu.tw 54225
2 Jih Yiing Lin jinlin@yankees.ee.nctu.edu.tw 54243
3 Nelson Yen-Chung Chang ycchang@yankees.ee.nctu.edu.tw 54243
4 Tzung-Shian Yang tsyang@yankees.ee.nctu.edu.tw 54243

IEE 5004 IP Core Design, 2001 3/5

JPEG encoder specification
Basic requirement
• baseline JPEG
• The input is a BMP file and the output is a standard JFIF file, which starts with the

four bytes (hex) FF D8 FF E0, followed by two variable bytes (often hex 00 10),
followed by 'JFIF' (i.e., FF D8 FF E0 00 10 4A 46 49 46).

• 24 bits per pixel for color images and 8 bits/pixel for grayscale image
• Maximum image size is 2048 × 1536 (e.g., Nikon Coolpix E995)
• Huffman coding for the final coding stage
• Quality: using the default huffman and quantization tables shown in the later

section.

In addition to the basic requirement listed above, you may add a variety of features to
your JPEG encoder and implement them into your hardware in the next homework.

IEE 5004 IP Core Design, 2001 4/5

Default huffman and quantization tables
The source of the following tables is Independent JPEG Group's JPEG software
release 6b.

luminance quantization table {
 16, 11, 10, 16, 24, 40, 51, 61,
 12, 12, 14, 19, 26, 58, 60, 55,
 14, 13, 16, 24, 40, 57, 69, 56,
 14, 17, 22, 29, 51, 87, 80, 62,
 18, 22, 37, 56, 68, 109, 103, 77,
 24, 35, 55, 64, 81, 104, 113, 92,
 49, 64, 78, 87, 103, 121, 120, 101,
 72, 92, 95, 98, 112, 100, 103, 99
};

chrominance quantization table {
 17, 18, 24, 47, 99, 99, 99, 99,
 18, 21, 26, 66, 99, 99, 99, 99,
 24, 26, 56, 99, 99, 99, 99, 99,
 47, 66, 99, 99, 99, 99, 99, 99,
 99, 99, 99, 99, 99, 99, 99, 99,
 99, 99, 99, 99, 99, 99, 99, 99,
 99, 99, 99, 99, 99, 99, 99, 99,
 99, 99, 99, 99, 99, 99, 99, 99
};

//---
// standard Huffman tables
// (cf. JPEG standard section K.3)
//---
 bits_dc_luminance[17] =
 { 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
 val_dc_luminance[] =
 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };

 bits_dc_chrominance[17] =
 { 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
 val_dc_chrominance[] =
 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };

 bits_ac_luminance[17] =
 { 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
 val_ac_luminance[] =
 { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,

IEE 5004 IP Core Design, 2001 5/5

 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
 0xf9, 0xfa };

 bits_ac_chrominance[17] =
 { 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
 val_ac_chrominance[] =
 { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
 0xf9, 0xfa };

