
C. W. Jen 任建葳任建葳任建葳任建葳
cwjen@twins.ee.nctu.edu.tw

Chapter 4
 IP Core Design,
 Modeling and Verification

1/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Outline

• IP Core Designs
• IP Core Verification
• IP Core Modeling and Deliverables
• System-Level Verification

2/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Outline

• IP Core Designs
• IP Core Verification
• IP Core Modeling and Deliverables
• System-Level Verification

3/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Problem in SoC Era

• Productivity gap
• Time-to-market pressure
• Increasing design complexity

– HW/SW co-development
– System-level verification
– Integration on various levels and areas of expertise
– Timing closure due to deep submicron

Solution: Platform-based design with reusable IPs

4/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Design for Reuse IPs

• Design to maximize the flexibility
– configurable, parameterizable

• Design for use in multiple technologies
– synthesis script with a variety of libraries
– portable for new technologies

• Design with complete verification process
– robust and verified

• Design verified to a high level of confidence
– physical prototype, demo system

• Design with complete document set

5/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Parameterized IP Design

• Why to parameterize IP?
– Provide flexibility in interface and functionality
– Facilitate verification

• Parameterizable types
– Logic/Constant functionality
– Structural functionality

• Bit-width、depth of FIFO、regulation and selection of sub-
module

– Design process functionality (mainly in test bench)
• Test events
• Events report (what, when and where)
• Automatic check event

– Others✱ (Hardware component Modeling, 1996)

✱Authors: Vicktor Preis and Sabine Marz-Rossel, Modeling Highly Flexible and Self-generating Parameterizable Components In VHDL
 Collected in book "Hardware component Modeling", 1996, by Jean-Michel Berge, Oz Levia and Jacques Rouillard

6/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

IP Generator/Compiler

• User specifies
– Power dissipation, code size, application performance,

die size
– Types, numbers and sizes of functional unit, including

processor
– User-defined instructions.

• Tool generates
– RTL code, diagnostics and test reference bench
– Synthesis, P&R scripts
– Instruction set simulator, C/C++ compiler, assembler,

linker, debugger, profiler, initialization and self-test code

7/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Logic/Constant Functionality
• Logic Functionality

– Synthesizable code
always @(posedge clock) begin
 if (reset==`ResetLevel) begin
 …
 end
 else begin
 …
 end
end

• Constant Functionality
– Synthesizable code

 assign tRC_limit=
 (`RC_CYC > (`RCD_CYC + burst_len)) ?

 `RC_CYC - (`RCD_CYC + burst_len) : 0;

– For test bench
always #(`T_CLK/2) clock = ~clock;
…
initial begin
#(`T_CLK) event_1;
#(`T_CLK) event_2;
…
end

8/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Reusable Design - Test Suite
• Test events

– Automatically adjusted when IP design is changed
– Partition test events to reduce redundant cases when test for all

allowable parameter sets at a time
• Debug mode

– Test for the specific parameter set at a time
– Test for all allowable parameter sets at a time
– Test for the specific functionality
– Step control after the specific time point

• Display mode of automatic checking
– display[0]: event current under test
– display[1]: the time error occurs
– display[2]: expected value and actual value
– ...

9/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Reusable Design - Test Bench

• Use Global Connector to configure desired test
bench
– E.g.: bus topology of IEEE 1394

Device 0

Device 1

Device 2

Device 3

Device 0

Device 1

Device 2

Device 3

10/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Traditional ASIC Design Flow

 Hardware and software development are mostly serialized

Specification development

Prototype build and test

RTL code development

Functional verification

Synthesis

Timing verificaiton

Place and route

Deliver to system integration and software test

 Source: Michael Keating and Pierrr Bricaud, Reuse Methodology Manual, 2nd ed. 1999.

11/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

SoC Design Flow Characteristics

• Parallel, concurrent development of hardware and
software

• Parallel verification and synthesis of modules
• Floorplanning and place-and-route included in the

synthesis process

12/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Spiral SoC Design Flow

Top-down, bottom-up, meet at the middle

System Design and Verification

Physical
Specification:
area, power,
 clock design

Preliminary
floorplan

Updated
floorplans
Updated
floorplan

Trial
placement

Physical

Hardware
Specification:

algorithm
development

& macro
decomposition

Block
selection/design

Block verification

Top-level RTL

Top-level
verification

Hardware

Software
Specification:

application
prototype

development

Application
prototype

testing
Application

development
Application

testing
Application

testing

Software

Timing
Specification:

I/O timing,
frequency

Block timing
specification

Block synthesis
Updated

Top-level
synthesis

Timing

Final floorplan, place and route - Tapeout

 Source: Michael Keating and Pierrr Bricaud, Reuse Methodology Manual, 2nd ed. 1999.

Time

13/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

IP Core Macro Design Process

DEVELOP functional specification

Block specification

DEVELOP behavioral model DEVELOP testbench

TEST behavioral model
CERETE BEHAVIROAL MODEL

PARTITION design into subblocks

WRITE functional specification

WRITE technical specification

DEVELOP timing constraints WRITE RTL
RUN Lint

DEVELOP testbench

SYNTHESIS SIMULATE

MEASURE test coverage

PASSES - READY FOR INTEGRATION

PERFORM power analysis

Completed behavioral
model for HW/SW
cosimulation and test

development

Coverage tool passesMeets timing, power, & area requirements

Perform these steps
for each subblock

 Source: Michael Keating and Pierrr Bricaud, Reuse Methodology Manual, 2nd ed. 1999.

14/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Macro Integration Process

DETERMINE configuration and
 GENERATE top-level HDL

Subblock 1 Subblock 1 Subblock 1

RUN lint GENERATE
 synthesis scripts

FUNCTIONAL
VERIFICATION

with reference simulator
SYNTHESIZE

with reference library

Scan insertion, ATPG,
fault simulation

PERFORM final timing
and power analysis

READY FOR PRODUCTION

PRODUCTIZE as soft macro

PRODUCTIZE as hard macro

DEVELOP and RUN
multiple configuration tests

MEASURE
test coverage

 Source: Michael Keating and Pierrr Bricaud, Reuse Methodology Manual, 2nd ed. 1999.

Top-level HDL

15/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Four Major Phases

• Design top-level macro
– macro specification; behavior model
– macro partition

• Design each subblock
– specification and design
– testbench; timing, power check

• Integration subblocks
• Macro procuctization

16/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Specification at Every Level

• Overview
• Functional requirements
• Physical requirements
• Design requirements
• Block diagram
• Interface to external system
• Manufacturing test methodology
• Software model
• software requirement
• Deliverables
• Verification

17/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Top-Level Macro Design Flow

DEVELOP detailed
technical specification

Macro specification

CODE behavioral model
C/Verilog/VHDL

CODE testbench
C/Verilog/VHDL/Vera/Specman

TEST behavioral model

CERETE BEHAVIROAL MODEL

PARTITION
the block into subblocks

Completed behavioral
model for HW/SW
cosimulation and test

development

 Source: Michael Keating and Pierrr Bricaud, Reuse Methodology Manual, 2nd ed. 1999.

18/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Top-Level Macro Design

• Updated macro hardware specification
– document

• Executable specification
– language description
– external signals, timing
– internal functions, timing

• Behavioral model
– SystemC, HDL

• Testbench
– test vector generation, model for under test unit,

monitoring and report
• Block partition

19/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Subblock Design Flow

WRITE functional specification

WRITE technical specification

DEVELOP timing constraints WRITE RTL
RUN Lint

DEVELOP testbench

SYNTHESIS
Design Compiler

SIMULATE
Verilog/VHDL

MEASURE testbench coverage
VHDLCover/VeriSure/CoverMeter

PASSES - READY FOR INTEGRATION

PERFORM power analysis
PowerCompiler/QuickPower

Coverage tool passesMeets timing, power, & area requirements

 Source: Michael Keating and Pierrr Bricaud, Reuse Methodology Manual, 2nd ed. 1999.

20/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Subblock Design

• Design elements
– Specification
– Synthesis script
– Testbench
– Verification suite
– RTL that pass lint and synthesis

21/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Linter

• Fast static RTL code checker
– preprocessor of the synthesizer
– RTL purification

• syntax, semantics, simulation
– timing check
– testability checks
– reusability checks

• Shorten design cycle by avoiding lengthy iterations

22/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Subblock Integration Flow

DETERMINE configuration and
 GENERATE top-level HDL

Subblock 1 Subblock 1 Subblock 1

RUN lint
Verilint,

 VHDLlint

GENERATE
top-level synthesis scriptsFUNCTIONAL

VERIFICATION
Verilog/VHDL simulator

ModelSim, VSS, VCS SYNTHESIZE
with reference library

Design Compiler

Scan insertion, ATPG,
coverage analysis

Test Compiler, DFTAdvisor,
FastScan/FlexTest

PERFORM analysis
QuickPower, Power Compiler

READY FOR PRODUCTION

PRODUCTIZE as soft macro

PRODUCTIZE as hard macro

DEVELOP and RUN
multiple configuration tests

Verilog/VHDL simulator
ModelSim, VSS, VCS

Top-level HDL

23/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Subblock Integration

• Integration process is complete when
– top-level RTL, synthesis script, testbench complete
– macro RTL passes all tests
– macro synthesizes with reference library and meets all

timing, power and area criteria
– macro RTL passes lint and manufacturing test

coverage

24/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Macro Productization

DEVELOP specification
for prototype chip

From block integration

DESIGN chip

SYNTHESIS chip

Scam insertion, ATPG
and coverage analysis

FLOORPLAN

PLACE and ROUTE

VERIFY timing

FABRICATE

TEST chip in demo board

TRANSLATE
Verilog ↔↔↔↔ VHDL

REGRESSION TEST
on translated code

RUN TESTS
on multiple simulators

SYNTHESIS to
multiple technologies

RUN Pre-sim
on one technology

Formal Verification
RTL vs. gates

CREATE
user documents: e.g.,

user guide
Verification guide
Integration guide

Test guide

Release

25/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Soft Macro Production

• Produce the following components
– Verilog version of the code, testbenches, and tests
– Supporting scripts for the design

• installation script
• synthesis script

– Documentation

26/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Principles of RTL Coding Styles

• Readability
• Simplicity
• Locality
• Portability
• Reusability
• Reconfigurability

27/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Naming Conventions

• Lowercase letters for signal names
• Uppercase letters for constants
• Case-insensitive naming
• Use clk for clocks, rst for resets
• Suffixes

– _n for active-low, _a for async, _z for tri-state, …
• Identical names for connected signals and ports
• Do not use HDL reserved words
• Consistency within group, division and corporation

28/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

File Header

• Should be included for all source files
• Contents

– author information
– revision history
– purpose description
– available parameters
– reset scheme and clock domain
– critical timing and asynchronous interface
– test structures

• A corporation-wide standard template

29/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Ports

• Ordering
– one port per line with appropriate comments
– inputs first then output
– clocks, reset, enables, orator controls, address bus,

then data bus
• Mapping

– use named mapping instead of positional mapping

30/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Coding Practices

• Little-endian for multi-bit bus
• Operand sizes should match
• Expression in condition must be a 1-bit value
• Use parentheses in complex statements
• Do not assign signals don’t-case values
• Reset all storage elements

31/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Portability

• Do not use hard-coded numbers
• Avoid embedded synthesis scripts
• Use technology-independent libraries
• Avoid instantiating gates

32/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Clocks and Resets

• Simple clocking is easier to understand, analyze,
and maintain

• Avoid using both edges of the clock
– duty-cycle sensitive
– difficult DFT process

• Do not buffer clock and reset networks
• Avoid gated clock

– Avoid internally generated clocks and resets
• limited testability

33/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Low Power (1/2)

• Memory
– low-power memory circuit design
– parathion a large memory into several small blocks
– gray-coded interface

64KB

32KB

32KB

34/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Low Power (2/2)

• Clock gating
– 50% - 70% power consumed in clock network reported
– gating the clock to an entire block
– gating the clock to a register

always @(posedge clk)
 if (en)
 q <= q_nxt;

Assign clk1 = clk & en;
always @(posedge clk1)
 if (en)
 q <= q_nxt;

D Q

en
clk

D Q

en
clk

Clock generation
and gating

Block A

Block A

35/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Synchronicity

• Infer technology-independent registers
– (positive) edge-triggered registers

• Avoid latches intentionally
– except for small memory and FIFO

• Avoid latches unintentionally
– avoid incomplete assignment in case statement
– use default assignments
– avoid incomplete if-then-else chain

• Avoid combinational feedback loops
– STA and ATPG problem

36/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Combinational and Sequential Blocks

• Combinational block
– use blocking assignments (= in Verilog)
– minimize signals required in sensitivity list
– assignment should be applied in topological order

• Sequential block
– use non-blocking assignments (<= in Verilog)
– avoid race problems in simulation

• Comb./Seq. Logic should be separated

37/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Coding for Synthesis (1/2)

• Specify complete but no redundant sensitivity lists
– simulation coherence
– simulation speed

• If-then-else often infers a cascaded encoder
– inputs signals with different arrival time

• Case infers a single-level MUX
– case is better if priority encoding is not required
– case is generally simulated faster than if-then-else

• Conditional assignments
– infer a MUX, with slower simulation performance

38/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Coding for Synthesis (2/2)

• FSM
– partition FSM and non-FSM logic
– partition combinational part and sequential part
– use parameter to define names of the state vector
– assign a default (reset) state

• No # delay statements
• Use full_case and parallel_case judiciously
• Explicitly declare wires
• Avoid glue logic at the top-level
• Avoid expressions in port connections

39/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Partitioning (1/2)

• Register all outputs
– make output drive strengths and input delay predictable
– ease time budgeting and constraints

• Keep related logic together
– improve synthesis quality

• Partition logic with different design goals
• Avoid asynchronous logic

– technology dependent
– more difficult to ensure correct functionality and timing
– as small as possible and isolation

• Keep sharable resources in the same block

40/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Partitioning (2/2)

• Avoid timing exception
– point-to-point,false path, multi-cycle path

• Chip-level partitioning
– level 1: I/O pad ring only
– level 2: clock generation, analog, memory, JTAG
– level 3: digital core

Clock
Generation

JTAG
Core Logic

TOP

MIDDLE

PADs

41/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Coding for DFT

• Avoid tri-state buses
– bus contention, bus floating

• Avoid internally generated clocks and resets
• Scan support logic for gated clocks
• Clock and set/reset should be fully externally

controllable under the test mode

42/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Outline

• IP Core Designs
• IP Core Verification
• IP Core Modeling and Deliverables
• System-Level Verification

43/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

IP Core Verification

• To ensure the IP macro is 100 percent correct in
its functionality and timing.

• Testbench and test suites must be reusable by
other teams and compatible with verification tools

44/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Verification Plan (1/2)

• Develop the verification environment
– the set of testbench components such as bus functional

models, bus monitors, memory models and the
structural interconnect of such components with the
DUT

• The verification plan include
– a description of the test strategy, both at the block and

the top level
– a description of the simulation environment, including a

block diagram
– a list of testbench components
– a list of required verification tools, including simulators

and testbench creation tools

45/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Verification Plan (2/2)

– a list of specific tests, along with the objective and
estimated size of each

– an analysis of the key specification of the IP and
identification of which tests verify each specification

– a specification of what functionality of the IP will be
verified at the block level, and what will be verified at
the IP level

– a specification of the target code coverage for each
block and for the top-level IP

– a description of the regression test environment and
regression procedure

46/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Verification Strategy

• Macro verification: 3 phases
– verification of individual subblocks
– macro verification
– prototyping

• Basic types of verification tests include
– compliance test

• PCI interface, IEEE 1394
• complies with the specification

– corner case test
– random test
– real code test
– regression test

47/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Verification Tools

• Simulation
• Testbench automation tools
• Code coverage tools
• Hardware modeling
• Emulation
• Prototyping

48/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Verification Support

• Protocol Checker
– Monitor the transactions on an interface and check for

any invalid operation
• Embedded in the test bench
• Embedded in the design

– Error and/or warning messing of bus protocol
• Expected results checker

– Embedded in the test bench
– Checks the results of a simulation against a previously

specified, expected response file.
• Performance monitor

– Number of transfers, idle cycles...

49/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Testbench Design

• The testbench design differs depending on the
function of the macro

– microprocessor macro, test program,
– bus-interface macro, use bus functional models and

bus monitors
• Subblock testbench

Input
Transaction
Generator

Output
Transaction

Checker

Input Interface
O

ut
pu

t I
nt

er
fa

ce

50/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Macro Testbench

PCI Bus
Functional Model PCI Macro

Application
Software

Drivers

Translator

Application Bus
Functional Model

PCI Bus
Monitor

Application
Bus

Monitor

HW/SW cosim
Environment

51/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Bus Functional Models (BFM)

• To model the bus transactions on the bus, each read
and write transaction is specified by the test
developer.

• BFM is written is RTL, C/C++, or testbench
automation tools and uses some form of command
language to create sequences of transaction on the
bus.

• BFM and monitor must be designed and coded with
the same care as the macro RTL, all are deliverables

52/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Automated Response Checking

• Compare the output response with a reference
design

Stimulus

8051 chip

Hardware Modeler

8051 macro
(RTL)

Compare response

• Bus monitors and checkers
• On-the-Fly checker

53/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Verification Suite Design

• Once built the testbench , we can develop a set of
tests to verify the correct behavior of the macro

• Test sets
– functional testing
– corner case testing
– code coverage
– random testing

54/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Outline

• IP Core Designs
• IP Core Verification
• IP Core Modeling and Deliverables
• System-Level Verification

55/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

The Intent of Different Level of IP Model

• Design exploration at higher level
– Import of top-level constraint and block architecture
– Hierarchical, complete system refinement
– Less time for validating system requirement
– More design space of algorithm and system

architecture
• Simple and efficient verification and simulation

– Functional verification
– Timing simulation/verification
– Separate internal and external (interface) verification
– Analysis: power and timing

• Verification support: e.g., monitor, checker...

56/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

General Modeling Concepts

• Interface model
– Synonym: bus functional, interface behavioral

• Behavioral model
– Behavior = function with timing
– Abstract behavioral model
– Detailed behavioral model

• Structural model

Behavioral
Model

out=AxB

In
te

rfa
ce

Structural
Model

In
te

rfa
ceB

B

B

B

S

Clock

M-Bus

Abstract
Behavioral

Model

out=AxB

In
te

rfa
ce

Detailed
Behavioral

Model

out=AxB

In
te

rfa
ce

Data_Bus

Addr_Bus
Clock

16

20 W_En
CS

Interface
Model

In
te

rfa
ce

57/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Issues of IP Modeling

• Attributes
– What is the sufficient set of model attributes?
– How are these model attributes validated?
– How is the proper application of an abstract model

specified?
• Two important dimensions of time

– Model development time is labor intensive: model
reusability

– Simulation time depends upon strategy chosen for
mixed domain simulations

58/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

From Requirement to Delivery

Customer
Needs

Product
Deliver

Abstract Real

System Function

Hierarchy
Refinemenet

Hierarchy
Validaton

System Function

Fab

Mask WaferLayout
Logical Netlist Logical Device

RTL

Behavioral

Architecture

Behavioral

Architecture

Test
Patern

Verification

System Vaildation "Pattern"

59/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Example: Hierarchical Design Refinement

F1 F2 F3

F4 F5 F6

CPU MEM Co-P

In 1 In 2 Out 1

CPU MEM Co-P

In 1 In 2 Out 1

Vertical refinement Horizontal refinement: Partition

F1 F2 F3

F4 F5 F6

F1 F2 F3

F4 F5 F6

60/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Example: Manage Size and Run-Time

RTL Coding RTL Test Synthesis

Integration Test

RTL Coding RTL Test Synthesis

Behavioral Level Coding

Behavioral Level Test

P&R

P&R

Integration Test

Start at RTL

Start at behavioral level

61/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

IP Modeling

System Models
Executable Specification
Mathematical-Equation
Model
Algorithm Model

Architecture Models
Token-based Performance Model

Abstract-Behavioral Model

Data Flow Graph (DFG) Task Primitive

Instruction Set Architecture (ISA) Model

Hardware Models
Detailed-Behavioral Model

Register Transfer Level (RTL) Model

Logic-Level Model

Circuit-Level Model

Switch-Level Model

Gate-Level Model

Software Models
Pseudo-Code

High Level Language (HLL)

Assembly code

Object Code

Micro-Code

General Modeling Concept
Primary Model Classes:

Behavioral Model

Functional Model

Structural Model

Specialized Model Classes:

Performance Model

Interface Model

Hybrid Model

Computational Model Classes:

Data Flow Graph Model

Other Models

Precision Axis
 Temporal Precision Axis
 Data Precision Axis
 Functional Precision Axis
 Structural Precision Axis
 Software Programming Precision Axis

62/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

CPU Model
• CPU model enable

– Estimate software performance
– Analyze system trade offs

• CPU model
– Bus functional model

– Instruction set simulator (SMM)
• Instruction accurate
• Cycle accurate

– Virtual processor model (Cadence VCC technology)

Application code Compile to
host processor

Bus functional
model

Hardware
simulator

I/O
transactions

Bus
Events

63/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

ARM Modeling (1/4)

Concept

Silicon

Instruction set simulators (ISS)
Co-verification model

Gate Level netlist model

Hardware modeling

System model

Design signoff models
Behavioral/RTL model
Bus Interface model

Accuracy

Efficiency

64/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

ARM Modeling (2/4)

• System Model
– Provision of customized

Software Debugger/ARMulator
packages, suitable for dataflow
simulation environments.

– Cadence Signal Processing
Worksystem (SPW) and
Synopsys COSSAP Stream
Driven Simulator

• Co-verification model
– Each ARM processor core

contains a co-verification
simulator component and a
bus interface model
component

– Co-verification simulator:
combines the properties of
an advanced ISS with the
bus cycle accurate pin
information capability
required to drive a hardware
simulator

– CoWare N2C Design
System, Synopsys Eaglei, to
name a few.

65/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

ARM Modeling (3/4)

• Bus interface models (BIM)
– Run a list of bus transactions

to stimulate simulated
hardware under test

– Allowing the designer to
concentrate on the hardware
design without waiting for the
ARM control software to be
developed.

– Generated using ModelGen

• Design signoff models
– Full architectural

functionality and full timing
accurate simulation

– Accept process specific
timing and back annotated
timing

– Used to ‘sign off’’ design
before committing silicon

– Be compiled 'C' code which
enables protection of the
inherent IP and superior
simulation execution speed
over pure HDL models

– Generated using ModelGen

66/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

ARM Modeling (4/4)

• Hardware Modeling
– Real chip-based products,

based on real silicon
– For logic and fault

simulation
– Synopsys ModelSource

hardware modeling systems

• Fault grading netlist
– Full custom marcocells

yields models suitable for
hardware accelerated fault
grading, system simulation
and emulation

– Emulator: IKOS, Mentor
Graphics and Quickturn;
Simulation: IKOS

67/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Intent of ModelGen

• Key requirements for ARM’s modeling
environment:
– Deliver highly secure models
– Minimize time spent creating, porting and re-verifying

models
– Support mixed-source languages—HDL, C and full

custom modeling
– Support multiple design and verification environments
– Enable efficient simulation
– Provide a timing annotation solution that does not

compromise IP security

68/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

“ModelGen” Timing Shell

• Overview:
– Black-box model

• Obscured IP
– User supplied timing

(SDF)
– Single model

• Easily verifiable
– Exported State
– Programmer model

• Nine-value Logic/Full
– Supports checkpointing

ModelGen Source
 (MGS)

69/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Example of Model Generation Flow

Synopsys VMC/VhMC based model generation flow

VMC: Verilog Model Compiler, VhMC: VHDL Model Compiler

70/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Behavioral Model for A/MS

• Describes the functionality and performance of a VC block
without providing actual detailed implementation.

• Needed for system designers to determine the possibility
of implementing the system architecture

• It is a kind of abstract behavioral model

Signal

Frequency

Signal

Frequency

Actual behavioral
Bounds of actual behavioral

Behavioral Model Block Detail Model

71/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Functional/Timing Digital Simulation Model

• Used to tie in functional verification and timing simulation
with other parts of the system

• Describes the functionality and timing behavior of the
entire A/MS VC between its input and output pins.

• Pin accurate not meant to be synthesizable
• It is a kind of detailed-behavioral model
• Example of PLL: represent the timing relationship of

reference clock input vs. generate output clock.
– Model it by actually representing the structure of the PLL, or
– Model it as just a delay value based on a simple calculation from

some parameters.

72/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Interface Model

• Describes the operation of a component with respect to its
surrounding environment.

• The external connective points (e.g ports or parameters),
functional and timing details of the interface are provided
to show how the component exchanges information with
its environment.

• Also named as bus functional model and interface
behavioral model

• For A/MS VC
– Only the digital interface is described
– Analog inputs and outputs are not considered

73/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Peripheral Interconnect Model

• Specifies the interconnection RCs for the peripheral
interconnect between the physical I/O ports and the
internal gates of the VC

• Used to accurately calculate the interconnect delays and
output cell delays associated with the VC

• Used only for the digital interface of the A/MS VC

Block
Internal
Model

VCVC

VC

Peripheral
Interconnection

Peripheral
Interconnection

74/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Power Model

• Defines the power specification of the VC
• Should be capable of representing both dynamic

power and static power
– Dynamic power may be due to capacitive loading or

short-circuit currents
– Static power may be due to state-dependent static

currents
• Required for all types of power analysis: average,

peak, RMS, etc.
• Abstract level

– Black/gray box, RTL source code and cell level

75/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Basic Power Analysis Requirements

• Any power analysis should include effects caused
by the following conditions and events:
– Switching activity on input ports, output ports, and

internal nodes
– State conditions on I/O ports and optionally internal

nodes
– Modes of operations
– Environmental conditions such as supply voltage and

external capacitive or resistive loading.

76/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Physical Modeling
• Physical block implementation of hard, soft and firm VCs.
• Two models for hard VCs

– Detailed model
• Description of the physical implementation of the VC at the polygon

level
• The preferred data format is GDSII 6.0.0

– Abstract model
• Contains enough information to enable floorplanning, placement, and

routing of the system level chip
– Footprint
– Interface pin/port list, shape(s), and usage
– Routing obstructions within the VC
– Power and ground connections
– Signature

• The preferred data format is the MACRO section of VC LEF 5.1

77/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Deliverables

• Deliverables in different processes
– VC transfer process

• To find, evaluate and deliver VC
– VC Integration process

• Different abstract-level models
• Comprehensive documentation

– Application notes, known bugs, system-level verification
and testing strategy, installation guides and scripts

• VC delivery specifications
– Nomenclature/Taxonomy, formats, attributes, and

structure for of VC design data and documentation
– Encryption, archive format, directory structure, etc.

78/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

RMM Soft Macro Deliverables
– Product files

• Synthesizable source code
• Application notes with HDL design example
• Synthesis scripts & timing constraints
• Scripts for scan insertion and ATPG
• Reference library
• Installation scripts

– Verification files
• Bus functional model/monitors used in testbench
• Testbench files including representative verification tests

– Documentation
• User guide/Functional specification
• Datasheet

– System integration files/tools
• Cycle-based/emulation models as appropriate for macro and/or its

testbenches and BFMs
• Compilers, debuggers, real-time operating systems and software

drivers for programmable processor IP

 Source from OpenMORE Assessment Program

79/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

RMM Hard Macro Deliverables

– Product files
• Installation scripts

– Documentation
• User guide/functional specification
• Datasheet
• Documentation contains version of library used and tools used

– System integration files /tools
• ISA and/or behavioral model
• Bus functional model
• Cycle-based/emulation models as appropriate for macro and/or

its testbenches and BFMs
• Compilers, debuggers, real-time operating systems and

software drivers for programmable processor IP

80/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

OpenMORE

• Open Measure of Reuse Excellence (Open
MORE)
– A collaboration between Mentor Graphics and

Synopsys
– Based on Reuse Methodology Manual (RMM)
– IP providers use OpenMORE for self-evaluation
– Designers can ensure that each portion of a design is

workable and reusable
– Help the IP industry move to a higher quality level
– Supported by industry groups - VSIA,VCX, RAPID and

Design and Reuse

81/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Motorola's SRS

• Semiconductor Reuse Standards (SRS)
– An efficient design methodology that will enable rapid and

effective plug-and-play integration of reusable silicon IP into
system-on-a-chip solutions.

• Current four standards in SRS V2.0
– IP/VC Block Deliverables

• Data format of deliverables of soft, firm and hard core in different
phases

– 1st phase: deliverables required for instantiation and verification
– 2nd phase: deliverables required for backend-related views
– 3rd phase: deliverables required for test aspects

• Directory structure and naming convention of PC/VC deliverables

82/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Motorola's SRS

• Current four standards in SRS V2.0
– IP Interface (IPI)

• Colored line standard and signal definition
• Bus Interface operation

– Verilog HDL Coding
• Coding style and module partition for test, synthesis and reuse
• Based on IEEE 1364.1 synthesizable Verilog subset,

Synopsys/Mentor RMM and Motorola's experience in direct design
– Documentation

• Defines the content and format of documents required for IP/VC such
as Processor Cores, Analog/Mixed-Signal etc.

• Document types include Creation, Use, Integration, and Manufacturing
Test.

• Long-term goal: become as independent of software and platform

83/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

FPGA Reuse Manual
• Xilinx

– To facilitate design reuse in SoRC
– Xilinx design reuse methodology for ASIC and FPGA designers

manual
• FPGA Supplement to Reuse Methodology Manual (RMM)
• Provides an overview of FPGA system level features
• Contains general RTL synthesis coding guidelines

– Xilinx FPGA reuse field guide
• Reuse concept from perspective of project

– Project specifications, project management organization, and
project verification and qualification

• Actel
– Actel HDL coding style guide

• Provides the preferred coding styles in both VHDL and Verilog for the
Actel architecture

84/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Outline

• IP Core Designs
• IP Core Verification
• IP Core Modeling and Deliverables
• System-Level Verification

85/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

System Verification

• It begins during system specification. The
specification describes the basic test plan
including the criteria.

• As the system-level behavior model is developed,
a testbench and test suite should be developed to
verify the model.

• The system software should be developed and
tested using the behavior model.

• A rich set of test suites should be available for the
RTL and entire chip verification.

86/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Verification Strategy

• Verify the individual IPs are functionally correct as
stand-alone units

• Verify the interfaces between IPs are functional
correct, first in terms of the transaction type, and
then in terms of data content.

• Prototype the full chip and tun a set of complex
applications on the full chip.

87/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

IP-level Verification

• Use code coverage tools and a rigorous
methodology to verify the RTL version of the IP.

• A physical prototype is built to prove silicon
verification of functional correctness.

88/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Interface Verification

• Interface: address/data bus. Protocols
– permitted sequence of control and data signals
– use a bus transaction monitor to check the transaction

Bus
Transaction

Monitor

Block 4

Block 4 RTL
Interface

Block 3

Block 3 RTL
Interface

Block 2

Block 2 RTL
Interface

Block 1

Block 1 RTL
Interface

• Use BFM to check the data read and write

89/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Functional Verification (1/2)

• Two basic approaches
– increase level of abstraction so that software simulators

running on workstations faster
– use specialized hardware for performing verification,

such as emulator or rapid prototyping
• Canonical SoC abstraction

– Full RTL model for IP cores
– behavior or ISA model for memory and processor
– bus functional model and monitor to generate and

check the transactions between IPs
– generate real application code for the processor and

run it on the simulation model

90/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Functional Verification (2/2)

Memory
C/C++

I/O Interface (RTL)

Processor
C/C++

RTL Interface

Memory Controller
C/C++

RTL Interface

Compiler
Application

software/drivers/
RTOS

Bus
Monitor

Data Transformation (RTL) I/O Interface (RTL)

Communication bus
functional model

(RTL)

Sequence
generator/analyzer

Communication bus
functional model

(RTL)

Other
Peripherals

(RTL)

CHIP

91/91

Institute of Electronics, N
ational C

hiao T
ung U

niversity
IP C

ore D
esign, M

odeling and Verification

Rapid Prototyping

• FPGA prototyping
– Aptix (FPGAs + programmable routing chips

• Emulation-based testing
– FPGA-based or processor-based
– QuickTurn and Mentor Graphics

• Real silicon prototyping
– faster and easier to build an actual chip and debug it
– design features in the real silicon chip

• good debug structure
• ability to selectively reset the individual IP blocks
• ability to selectively disable various IP blocks to prevent bugs

from affecting operations of the system

