, AMBA Bus and
based Design

" C.W.Jen iz)3

cwjen(@twins.ee.nctu.edu.tw

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Outline

VCI Interface Standards
AMBA - On Chip Buses
Platform-based SoC Design
SoC Design Flow

<

1/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Outline

Single VCI Interface Standards
AMBA - On Chip Buses

Platform-based SoC Design
« SoC Design Flow

<

2/42

Virtual Component Interface - VCI

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

* What is VCI

— A request-response protocol, contents and coding, for
the transfer of requests and responses

. Why VCI

— Other IP blocks not available ‘wrapped’ to the on-chip
communications may work with IP wrappers. VCl is the
best choice to start with for an adaptation layer

« VCI specifies

— Thee levels of protocol, compatible each other
« Advanced VCI (AVCI),
. Basic VCI (BVCI)
 Peripheral VCI (PVCI)

— Transaction language

<

3/42

VCI Point-to-Point Usage 44

« Simplicity: small footprint and high bandwidth
— Initiator only request
— Target only respond
— If a VC needs both, implement parallel initiator and

target interfaces

« Star topology

Request

Response

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Point-to-point usage

4/42

VCI Usage with a Bus 44

« Used as the interface to a wrapper (a connection to a bus)
— OCB suppliers provide VCI wrappers.
— EDA vendors provide tools to create wrapper automatically

Initiator VC Target VC

VCI Initiator VCI Target

VCI Point to Point

VCI Target VCI Initiator

Initiator Target
Wrapper Wrapper

t Any Bus t

VCI usage with a bus

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

5/42

Split Protocol 44

* The timing of the request and the response are
fully separate. The initiator can issue as many
requests as needed, without waiting for the
response.

BVCIl order kept
AVCI request tagged with identifiers, allow different order
PVCI no split protocol

each request must be followed by a response
before the initiator can issue a new request

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

6/42

Initiator — Target Connection (PVCI) 44

* The request contents and the response contents
are transferred under control of the protocol: 2-
wire handshake Valid (VAL) and Acknowledge
(ACK)

contents

[——

request

Initiator *‘% Target

contents

-

responsc

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

7/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Control Handshake

* Asynchronous

Sample Sample Sample
co

<

8/42

Request and Response Contents

<

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

System Signals {

Handshake {

Contents <

Initiator

CLOCK RESETN
VAL -
EOP

ACK

<
<

ADDRESS[n-1:0]

BE[b-1:0 | 0:b-1]

WDATA[8b-1:0]
RERRORJE:0]

RDATA[8b-1:0]

Target

« Main PVCI features

Up to 32-bit Address
Up to 32-bit Read Data
Up to 32-bit Write Data
Synchronous

Allows for 8-bit, 16-bit, and
32-bit devices

8-bit, 16-bit, and 32-bit
Transfers

Simple packet, or ‘burst’
transfer

9/42

PVCI Protocol 44

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

* Transfer Request
— Read8, Read16, Read32, Read N cells
— Write8, Write16, Write32, Write N cells

* Transfer Response
— Not Ready
— Transfer Acknowledged
— Error

 Packet Transfer

— The packet (burst) transfer makes is to transfer a block of
cells with consecutive addresses

— While the EOP signal is de-asserted during a request, the
address of the next request will be ADDRESS+cell_size

10/42

Initiator — Target Connection (BVCI) 44

* The request and response handshakes are
Independent of each other
— Request handshake: CMDVAL and CMDACK
— Response handshake: RSPVAL and RSPACK

L handshake -

Initiator Target
contents

ﬁ

request

" handshake)

contents

il —

response

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

11/42

Cells, Packets, and Packet Chains 44

 Each handshake transfers a cell across the interface. The
cell size is the width of the data passing across a VCI.
- 1,2, 4, 8, or 16 bytes for BVCI
- 1, 2, 4, bytes for PVCI

» Cell transfers can be combined into packets, which may
map onto a burst on a bus.

— A VCI operation consists of a request packet and a response
packet

— Packets are atomic
— Packets are similar in concept to “frames” in PCI

» Packets can be combined into chains, to allow longer
chains of operations to go uninterrupted.

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

12/42

Request and Response Contents

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

* Request contents are partitioned into three signal
groups and validated by the CMDVAL signal

— Opcode, specify the nature of the request (read or
write)

— Packet Length and Chaining
— Address and Data

 Response contents validated with the RSPVAL.
Each request has its response.

— Response Error
— Read Data

<

13/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

BVCI Signals

System Signals {

Request Handshake {

Request Contents <

-

Response Handshake{

Response Contents

Initiator

CLOCK RESETN
S —
CMDVAL .
) CMDACK
ADDRESS[n-1:0]
BE[b-1:0 | 0:b-1] >
CFIXED t
CLEN[g-1:0] g
CMDI[1:0] >
CONTIG t
WDATA[8b-1:0]
EOP t
CONST g
PLEN[k-1:0] >
WRAP t
RSPACK .
) RSPVAL
) RERRORIE:0]
f REOP
b RDATA[8b-1:0]
<

Target

<

14/42

BVCI Protocol 44

* The protocol has three stacked layers: transaction layer,
packet layer, and cell layer

« Transaction layer: A pair of request and response
transfers

Initiator Target
request

VCI

response

— Above hardware implementation

— A series of communicating objects that can be either hardware or
software modules

— The information exchanged between initiator and target nodes is in
the form of a request-response pair

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

15/42

Packet Layer 44

* The packet layer adds generic hardware constraints to the
system model

 In this layer, VCI is a bus-independent interface, just
physically point-to-point

Initiator Target

Request packets
VCI packet VCI packet VCI packet

V(I

e VCI packet VCI packet VCI packet
Response packets

« A transaction is called a “VCI operation” if the information

IS exchanged using atomic request and response transfers.

In a packet layer, a VCI transaction decomposes into one
or more operations.

16/42

Packet

Packet is the basic unit of information that can be
exchanged over the VCI in an atomic manner.

Multiple packets can be combined to form larger,
non-atomic transfer units called packet chains.

A VCI operation is a single request-response
packet pair.

Packet length is the number of bytes transferred

The content of a packet depends on whether it is
a request or response packet and the type of
operation being carried out - such as read, write,
etc.

<

17/42

Cell Layer 44

* The cell layer adds more hardware details such
as interface width, handshake scheme, wiring
constraints, and a clock to the system.

* A cell is the basic unit of information, transferred
on rising CLOCK edges under the VAL-ACK
handshake protocol, defined by the cell layer.
Multiple cells constitute a packet.

* Both request and response packets are
transferred as series of cells on the VCI. The
number of cells in a packet depends on the
packet length and the interface width.

18/42

BVCI Operations

<

« The basic transfer mechanism in VCI is packet transfer. A
packet is sent as a series of cells with the EOP field in the
last cell set to value 1. Each cell is individually
handshaken under the VAL-ACK handshake. Either the
initiator or the target can insert wait cycles between cell
transfers by de-asserting VAL or ACK.

* Transfer Requests * Transfer Responses

— Read/Write a cell -

— Read/Write a packet from
random/contiguous addresses —

— Read/Write a packet from one
address —

— Issue a chain of packets —

Read/Write cell/packet
successful

Read/Write packet general
error

Read/Write bad data error

Read/Write Abort
disconnect

19/42

Advanced VCI 44

« AVCI supports out-of-order transactions and an
advanced packet model

 Advanced Packet Model

— Request and response packets do not have the same size
— Need

* request packet: one cell, set the start address and address
behavior

* response packet: many cells, read data return
 Arbitration hiding
— pipelines of both the request and response packets

« Source ldentification
— a unique identifier for each initiator

20/42

AVCI Protocol

« Still 3 layers similar to BVCI. No difference in the
transaction layer, slightly differ in the packet and
cell layers

« Packet layer

Initiator Target
VCI packet VCI packet VCI packet

—1 | [] -
vl

-q—lVCI packet I—I\/Cl packet I—IVCI packet |—

Response packets

« Cell layer

— AVCI cell layer differs from BVCI with some additional
fields, with side band signals for arbitration hiding

— Arbitration hiding signals are separately handshaken

<

21/42

Concept of the Bus

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

» A group of lines shared for interconnection of the
functional modules by a standard interface

— E.g., ARM AMBA, IBM CoreConnect

 |nterconnection structure
— Point-to-Point
— On-chip bus
— On-chip network

<

22/42

Differences Between Traditional Bus/OCB <44

* The root: I/O pins are limited and fixed

* The characteristics of a traditional bus
— Shared /O
— Fixed interconnection scheme
— Fixed timing requirement
— Dedicated address decoding

« Fora OCB

— Routing resource in target device (e.g. FPGA, ASIC)
— Bandwidth and latency are important

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

23/42

Shared /O 44

« Three-state I/O. E.g. multiple masters,
input/output
— Slower than direct interconnection

— Limited by bus keeper or quality of routing resource in
the target device

— Solution in OCB: multiplexer logic interconnection

— Xilinx design guideline: We recommend using
multiplexer-based buses when designing for reuse
since they are technology-independent and more
portable.

« Multiplexed functional I/O. E.g. address/Data.
— Need more time to transfer the same amount of data
— Solution in OCB: separate buses

25 Xilinx Design Reuse Methodology for ASIC and FPGA Designers, http://www xilinx.com/ipcenter/designreuse/index.htm 24/42

Physical View of Shared |/O

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

DI
Master 1
DO

A

DO
Master 2
DI

DO
Slave 1
DI

\ 4

A

Multiplexer-based buses

DI
Slave 2
DO

three-state control

clock

—

—

D
CE

CE

AN

VCC

Three-state 1/0O

resister
or
current soucre

<

25/42

Physical Constraints

 Fixed Interconnection Scheme

— Traditional buses usually routed across a standard
backplane

— OCB allowed a variable interconnection scheme that

can be defined by the system integrator at the “fool
level’

* Fixed Timing Requirement

— Traditional buses have fixed timing requirements:
« They are both tested as sub-assemblies
« They have highly capacitive and inductive loads
« They are designed for the worst-case operating conditions when
unknown bus modules are connected together
— OCB has a variable timing specification that
« Can be enforced by place & route tools (tool level)
» Usually does not specify absolute timing

» Possibly only specifies a single timing specification (WISHBONE,
Silicore)

<

26/42

Address Decoding

« Standard microcomputer buses usually use the
full address decoding technique

— That's because the interconnection method does not
allow the creation of any new signals on the interface

* OCB can only use partial address decoding
— Higher speed address decoder
— Less redundant address decoding logic

— Integrator must define part of the address decoder logic
for each IP core (disadvantage)

<

27/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Bus Components

« Switch or node
— arbitration,routing

« Converter or bridge (type converter)
— from one protocol to another

* Size converter
— buffering capacity

<

28/42

Bus Transaction

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

* Bus cycle
— one bus clock period

* Bus transfer
— read or write operation, 1 or more bus cycles

— terminated by a completion response from the addressed
slave

« Burst operation
— one or more data transaction, initiated by a bus master

<

29/42

Bus Transfer

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

« A means to transfer data on the shared communication
lines between VCs

* Protocol: guarantee the correct transfer
— request arbiter to use bus

— request sender to send data — sender ACK —send data —
receiver ack to receipt

— if error, re-send
— release bus
* Transfer modes
— read or write
— asynchronous or synchronous
— transfer size 8, 16, 32, 64, 128 bits
— transfer operations

<

30/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Bus Signals

* Address and data
 |nterface controls
 Arbitration
 |Interrupt

* Error reporting

¢ System level

« Test/Boundary scan
* Others

<

31/42

Bus Hierarchy

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

 The structure of multiple =
buses within a system, i

organized by bandwidth | i
* Local processor bus -

— highly processor-specific

— processor, cache, MMU,
coprocessor

« System bus (backbone)
— RISC processor, DSP, DMA (masters)
— Memory, high resolution LCD peripheral

« Peripheral bus

— Components with other design considerations (power, gate count,
etc.)

— Bridge is the only bus master

32/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Outline

VCI Interface Standards
AMBA - On Chip Buses
Platform-based SoC Design
SoC Design Flow

<

33/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

ARM OCB - AMBA

 Advanced Microcontroller Bus Architecture
(AMBA)

 AMBA 2.0 specifies
— the Advanced High-performance Bus (AHB)
— the Advanced System Bus (ASB)
— the Advanced Peripheral Bus (APB)
— test methodology

ARM Core

| AuBiAsE |

EBI/TIC

A typical AMBA system

<

34/42

Features of AMBA

<

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

* AHB is superior to ASB in

— performance and synthesizibility and timing verification

Advanced High-performance Bus (AHB) Advanced System Bus (ASB)

High performance High performance

Pipelined operation Pipelined operation

Multiple bus master Multiple bus master

Burst transfers Burst transfers

A single centralized decoder A single centralized decoder

Split transactions

single-cycle bus master handover

single-clock edge operation

non-tristate implementation

wider data bus configurations (8/16/32/64/128 bits)

Advanced Peripheral Bus (APB)
Low power
Simple interface

APB access MUST take 2 PLCK
cycles

35/42

Notes on the AMBA Specification

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

« Technology independence
— The specification only details the bus protocol at the
clock cycle level
 Electrical characteristics
— No information regarding the electrical characteristics is
supplied
* Timing specification
— The system integrator is given maximum flexibility in

allocating the signal timing budget amongst the various
modules on the bus

— More free, but may also be more danger and time-
consuming

<

36/42

Notes on AMBA (1/3)

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

« Split transaction

— NOT truly split transaction - the arbiter only masks the access of
the master which gets a SPLIT transfer response

— Master does not need extra slave interface
— Only allows a single outstanding transaction per bus master

 NOT support Sideband signals

— Sideband signals: reset, interrupts, control/status, generic flags,
JTAG test interface, etc.

— Require the system integrator to deal with them in an ad-hoc way
for each system design.

— Good references of sideband signals: VSIA VCI or Sonics OCP

&< OCP: Open Core Protocol

<

37/42

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

Notes on AMBA (2/3)

« DMA channels

— Use AHB protocol
» E.g. PrimeCell SDRAM Controller

« Easy to connect to another AHB bus

AHB bus

DMA bus 2

AMBA AHB
main bus interface

Address/data

Access request
Data mask

Control regs

eqgister in

| Port 3

Address/data

Access request

PrimeCell
SDRAM
control engine

Port 2

DMA bus 1

AHB (DMA) 2

Data mask

Address/data

DMA bus 0

AHB (DMA) 1 : Data mask

Access reguest

Address/data

AHB (DMA) 0

Optional
ports

L Access request
L _Data mask

' Port1

v Port 0

Address

Control

Data in

Data out

— Adopt user defined protocol
» Lower the complexity of the DMA interface

Pad
interface

Address

Control

Data in

Data out

<

38/42

Notes on AMBA (3/3)

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

* APB does not support WAIT transaction
— Access status register first, then access data register
— Alternative: designed as AHB slaves

Wipro's
SOC-RaPtor™
Architecture

<

39/42

AHB Interconnect

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Decoder

Arbiter
HADDR
HADDR HWDATA Slave
Master | HWDATA HRDATA #
1 HRDATA
HADDR
HADDR) HWDATA [Slave
#2
Master | HWDATA Address and HRDATA
#H2 control mux
HRDATA [~
T HADDR
HADDR) HWDATA | Slave
#3
Master | HWDATA Write data mux HROATA
#3
HRDATA Read data mux
r HADDR
HWDATA Slave
#4
HRDATA

 Bus master drives the
address and control

» Arbiter selects one of the
master

<

40/42

AHB Operation (1/2) 44

 Master asserts a request signal to the arbiter. Arbiter then
gives the grant to the master.

« A granted bus master starts an AHB transfer by driving

. WRAP4
address and control signals: 0x10
— address 0x14 (\
— direction 0xT8
— width X Y
— burst forms 0x1C
 Incrementing burst: not wrap at address boundaries 0x20
« Wrapping burst: wrap at particular address boundaries v 0x24

« Write data bus: move data from the master to a slave 'NCR4
- Read data bus: move data from a slave to the master Address

wrap in 4-
word
boundary

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

41/42

AHB Operation (2/2) 44

« All slaves sample the address

Data can be extended using the HREADY signal, when LOW,
wait states be inserted and allow extra time for the slave to
provide or sample data

* During a transfer the slave shows the status using the
response signals HRESP[1:0]
— OKAY: transfer progressing normally

when HREADY is HIGH, transfer has completed successfully
— ERROR: transfer error

— RETRY and SPLIT: transfer can’t complete immediately, but the bus
master should continue to attempt the transfer
* As burst transfer, the arbiter may break up a burst and in
such cases the master must re-request for the bus.

42/42

Address Decoding 4

* A central address decoder provides HSELX for each slave

 Minimum address space that can be allocated to a single
slave is 1K Byte

— No incrementing transfers can over a 1K Byte boundary

Slave
#1
Mzs}er R
HADDR_M1[31:0]
j HADDR to all slaves
HADDR_M2[31:0]) Slave
#2
Master Address and —-
#2 control mux
HSEL S1 .
HSEL S2 ave
Decoder HSEL S3 - #3

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

43/42

AHB Master

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

* Initiate read and write by providing an address and control
iInterface

 Processor, DMA, DSP test interface

HBUSREQx -
HLOCKXx Arbiter
Arbiter HGRANTX - -
grant .
HIRANSIT0 Transfer type
T ; HREADY :
ransfer _
response HRESP[1:0] . HADDR[31:0]
AHB
master HWRITE
Reset HRESETn o > Adé!ress
HSIZE|2:0| an
Clock HCLK control
- HBURST[2:0]
HPROT[3:0] . J
Data HRDATA[31:0] HWDATA[31 > Data

<

44/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

AHB Slave

* Respond to a read or write operation within a given
address-space range

« Back to the master the success, failure or waiting

Select HSELx

HADDR[31:0]

Address HWRITE
and < HTRANS[1:0] HREADY.
control — HRESP[1:0] Transfer

HSIZE[2:0] AHB
> slave
_ HBURST[2:0]

HPROT[3ZO] >
Data HWDATA[31:0] HRDATA[31:0] > Data

Reset HRESETn -

Clock HCLK > < HREADY _in

AMASTER[3D, split-capable HSPLITX[15:0]
HMASTLOCK _ | slave

response

<

45/42

Basic Transfer

<

- Address phase - Data phase
5 HCLK
2 | Master action
% HADDR[31 :0] [X—-@C Slave act|on
= — Drive action
m Sample action
®
Q Control ><:><:
o
b HWDATA[31:0] ':Ef\t)a ><:<:
> Address &
.- &S Control
) HREADY /\
S L Data &
e = Response
S-’ HRDATA[31:0] %ﬁ?&:[
Q
o
. Address phase : one cycle
a Data phase . one or several cycles
8« 1stclock : master drives address and control
<
) « 2" clock : slave samples address and control
m b
g « 3 clock : bus master sample the slave’s response

46/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Multiple Transfers

Three transfers to run related address A, B, and C

HCLK

HADDR[31:0]

Control

HWDATA[31:0]

HREADY

HRDATA[31:0]

Address &
control

Data &
Response

C

Control

(A)

Control

(C)

1 wait cycle for address B

<

47/42

Transfer Type (1/2) 4

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

HTRANS[1:0]
00

01

10

11

Type
IDLE

BUSY

NONSEQ

SEQ

Descripton

Slaves must always provide a zero wait state OKAY response to
IDLE transfers and the transfer should be ignored by the slave

Masters cannot take next trnsfer place immediately during a burst
transfer.
Slaves take actions as they take for IDLE.

Indicates the first transfer of a burst or a single transfer

The remaining transfers in a burst are SEQUENTIAL.
The control information is identical to the previous transfer.

48/42

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

Transfer Type (2/2) 44

HCLK

HTRANS[1:0]

HADDR[31:0]

HBURST[2:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

« During T2-T3, master is unable to perform the second transfer of burst immediately

and therefore the master uses BUSY transfer to delay the start of the next transfer.

« During T5-T6, slave is unable to complete access immediately, and uses HREADY
to insert a single wait state.

49/42

Burst Operation 44

 4- 8-, 16-beat WRAP4
2 * e.g., 4-beat, start address 0x34, wrapping burst 0x30 =7
c
3 =>four transfers: 0x34, 0x38, 0x3C, 0x30 0x34
m « Burst length 0x38
(2)
g_ HBURST[1:0] Type Descripton 0x3C L
@ 000 SINGLE |Single Transfer 0x40
5 001 INCR Incrementing burst of unspecified length
g' 010 WRAP4 | 4-beat wrapping burst 0x44
9 011 INCR4 4-beat incrementing burst
g 100 WRAP8 | 8-beat wrapping burst
o 101 INCRS 8-beat incrementing burst
.::-" 110 WRAP16 | 16-beat wrapping burst
‘é 111 INCR16 | 16-beat incrementing burst
z Limitation: bursts must not cross a 1k Byte address
®
: boundary
=

50/42

Four-beat Wrapping Burst 44

- T1 T2 T3 T4 T8 TG 7
=

(7]

= HOLK _ [~ | | A s I s T
o

f_nh HTRANS[1:0] X}(NONSEQ)O{ SEQ)Q(SEQ }O(SEQ }{)OIC
D

% HADDR[31:0])C(0x38)O(xac 0x30)}(0x34 }O{)OC
= .

=

% HBURST[2:0] [} WRAPS 4 N
2 HWRITE

- . Contral for burst

s o G V-
g HWDATA[31:0] _ [} X Team [Xoalh homit Kea[o
Q

o

. HREADY [\/ W L % Y Y WV
=

«Q

c HRDATA[31:0] |} i }{ﬂ,lg}()ﬁf&%){Ef_;F,(}{EEPOC
c_Egl

é

51/42

Control Signals 44

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

 Have exactly the same timing as the address bus
* Must remain constant throughout a burst of transfers

* Types
— HWRITE . Transfer direction
— HSIZE[2:0] . Transfer size

— HPROTI[3:0]) : Protection control

indicate if the transfer is:
* An opcode fetch or data access
» A privileged mode access or user mode access

» Access is cacheable or bufferable (for bus masters with a memory
management unit)

52/42

Transfer Responses (from slave) 44

Select HSELx

HADDR[31:0]

Address HWRITE :
and > : | HREADY >
HTRANS[1:0] : :
control > AHB : | HRESP[1:0] : Transfer
HSIZE[2:0] : > : response
P slave %lecoccccccssccccccccnal
HBURST[2:0] |
HPROT[3:0] >
Data HWDATA[31:0] HRDATA[31:0] Data
Reset HRESETn -
Clock HCLK > < HREADY _in

HMASTER][3:0 .
LUASIERIOL spiit-capable HSPLITX[15:0]
HMASTLOCK slave

S
7]
=7
[gl
c
(=g
o
o
=h
o
o
0
-
q
o
=i
0
b
<
)
=
)
=
-
(2}
=
]
©
-
=
=
«Q
G
=
<
(1)
‘
-
(5
<

53/42

Transfer Responses

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

« HREADY
« HRESP[1:0] Response
00 OKAY
01 ERROR
10 RETRY
11 SPLIT

* Two-cycle response
— ERROR & RETRY & SPLIT
— To complete current transfer, master can take following
action
Cancel for RETRY

Cancel for SPLIT
Either cancel or continue for ERROE

<

54/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Examples of Two-cycle Response

* Retry response

HCLK

HTRANS[1:0]

HADDR[31:0]

HWDATA[31:0]

HREADY

HRESP[1:0]

T3
Cancel

T4

NONSEQ)CX SEQ X:X IDLE

i
L&)

X
//

X

* Errorresponse

HCLK

HADDR[31:0]

Control

Wait Error Error
L] |]
Ko A X
X:X Control X:X
N S

HWDATA[31:0]

HREADY

HRESP[1:0]

X X ERROR

HRDATA[31:0]

Ci[jiiii

A
X OKAY X:X ERROR|
XX

X

22223

<

55/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Data Buses

HCLK

HADDR[31:0])()(A Y

Control

HWDATA[31:0]

HREADY

HRDATA[31:0]

HWDAA : 32 bits
RDATA : 32 bits

Address phase
- et

Data phase
>

Control

Siale

o D O (€D

-
1

Endianness : fixed, lower power; higher performance

<

56/42

Narrow Slave on A Wide Bus 44

Address
and control

HREADY

Transfer
HRESP[1:0] _, response

AHB
HWDATA[64:32]Y ™ slave

HRDATA[64:32]
WDATA[31:0]

RDATA[31:0]

HWDATA[31:0]

HRDATA[31:0]

HADDR[2] —Ip q
HREADY —CE
HCLK — >

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

57/42

Wide Slave on A Narrow Bus

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

HWDATA[31:0

Address
and control

HWDATA[64:32]

HWDATA[31:0]

HREADY

AHB
slave HRDATA[64:32]

HRDATA[31:0]

HADDR[2] —Ip Q
HREADY ——|CE
HCLK — >

™S

™ Transfer

HRDATA[31:0]

<

58/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Arbitration

Arbiter
requests
and locks

Address
and control

Reset
Clock

<

HBUSREQx1
HLOCKXx1
HBUSREQx2
HLOCKXx2
HBUSREQx3
HLOCKXx3

Y Y VvV VY Y Y

HADDR[31:0]

HSPLITx[15:0]

HTRANSI[1:0] >

HBURST[2:0] .

HRESP[1:0]
HREADY

L

HRESETn

L
HCLK

AHB
arbiter

HGRANTx1 > '
HGRANTx2 Arbiter
grants
HGRANTx3
>
HMASTER([3:0]

HMASTLOCK >

<

59/42

Granting Bus Access With No Wait States««4

S
7]
=r
[y
c
(=g
o
o
=h
m
®
0
-~
q
o
=)
0
=
<
)
=
)
=
a
0
=
o
©
-
=
=
(-]
Cc
=
<
=
A
(5
<

HCLK
HBUSREQx
HGRANTX
HMASTER[3:0]
HADDR[31:0]

HWDATA[31:0]

_

T2

{C

T3

T4

T5 T6

»

£C

[

P
{C

{(

o

)
{C

P
{(

o

P}
{(

P
(4
\Y

Y YData (A)X:X:

60/42

Granting Bus Access 44

= ™ T2 T3 T4 15 T6 T7 T8 9

g,: Master asserts Anumber oi cycles later Master drives agdress after bqth Address sampled and dgta

;_: - request g arbiter asgerts grant - EGRANT and HREADY are hl&h‘* starts when HREADY high -

a M
= HCLK

=—h

m 5

o HBUSREQx 1/

3 D

5 HGRANTxX ve I/ NS

" | HMASTER[3:0] 2 #

g 5

% HADDR[31:0] p A ﬂ h+ 4 [x:
= 1| HWDATA[31:0] g & | b N
-

Ty £«

o HREADY , Vi V7 B WY
:-:I " ~—

e Wait Wait

(o=

El

<

=

(1]

=

<

61/42

Bus Master Grant Signals

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Arbiter

HMASTER([3:0]
HGRANT_ M1 Master HADDR_M1[31:0]
o
#1
Ry
HGRANT_M2_| Master | HADDR M2[31:0] j HADDR to all slaves
#2)
Address and
control
multiplexor
HGRANT M3 Master HADDR_M3[31:0]
" #3

<

62/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Select

Address
and
control

HPROT[3:0]
Data

Reset

Clock

Split Transfer

HSELx

HADDR[31:0]

HWRITE
» HREADY -
HTRANS[1:0] |
HRESP[1:0]
HSIZE[2:0] AHB >
> slave
HBURST[2:0] |
>
HWDATA[31:0] HRDATA[31:0]
HRESETn |
HCLK <
HMASTER[3:0 .
HMASERETL, spiit-capable HSPLITx[15:0]
slave

HMASTLOCK >

Transfer
response

Data

HREADY _in

<

63/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

HCLK

HGRANT

HTRAN[1:0]

HADDR[31:0]

HBURST[2:0]
HWRITE
HSIZE[2:0]
HPROT[3:0]

HREADY

HRESP[1:0]

Split Transfer

Slave
signals

T2 split T3 grant

Arbiter
changes

New master
drives

T4 address T5

L

[1

NONSEQ

X:X NONSEQ

XX ave

EE

Cq

ntrol (A)

KX Control (B

\\

V

===

X X SPLIT

X X OKAY

§F§§§§§§

<

64/42

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

AHB-Lite

* Requirement
— Only one master
— Slave must not issue Split or Retry response

« Subset of AHB Functionality

— Master: no arbitration or Split/Retry handling
— Slave: no Split or Retry responses

 Standard AHB masters can be used with AHB-Lite
« Advantage

— Master does not have to support: the following cases:
» Losing bus ownership
« Early bus termination
» Split and Retry response

— No arbiter

— No Master-to-slave mux

— Allows easier module design/debug

<

65/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

AHB-Lite Interchangeability

Component Full AHB system AHB-Lite system
Full AHB master v v
AHB-Lite master Use standard AHB master 4
wrapper
AHB slave (no Split/Retry) v v
AHB slave with Split/Retry 4 Use standard AHB slave

wrapper

<

66/42

AHB-Lite Master 44

=3
(7))
= HBUSREQx l
% HLOCKXx Arbiter
o Arbiter HGRANTX -
m grant - :
m : .
§ . RHIRANSITOlL Transfer type
] HREADY -
o Transfer >
: -
o response HRESP[1:0] | HADDR([31:0]
& AHB
master HWRITE
5 Reset HRESETn o > Adcc!!ress
= HSIZE[2:0] an
() Clock HCLK control
5 > HBURST[2:0]
(2] HPROTI[3:0]
3. > J
°
= Data HRDATA[31:0] HWDATA[31:0] Data
<
=
@
c
El
<
®
‘
(7]
2,
<

67/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

AHB-Lite Slave

Select

Address
and
control

HPROTI[3:0]
Data

Reset

Clock

HMASTLOCK >

HSELx >
HADDR[31:0]
HWRITE
» HREADY -
HTRANS[1:0] |
AHB HRESP[1:0]
HSIZE[2:0]
> slave
HBURST[2:0]
>
HWDATA[31:0] HRDATA[31:0]
HRESETn |
<
HCLK .
HMASTER][3:0 .
HMASERETL, spiit-capable HSPLITx[15:0]
slave

Transfer
response

Data

HREADY_in

<

68/42

A)isiaAiun Bun] oeiys [euoijeN ‘so1uoJjds|g Jo ajnjisuj

Multi-layer AHB (1/2)

Master
#1

Master

#2

Interconnect
Matrix

<

69/42

Multi-layer AHB (2/2) 44

Interconnect
Matrix

 Local slaves
* Multiple slaves on one slave port

AHB « Multiple masters on one layer
Master #2

AHB Lite
Master #3

AHB Lite
Master #4

Mixed implementation of
AHB and AHB-Lite in a
multi-layer system.

A)isiaAiun Bun] oeiys [euoijeN ‘so1uoJjds|g Jo ajnjisuj

70/42

Comparison among AMBA and other OCBs¢«

=]
()
—-
-~
c
-
®
(©)
e
o
o
0
[g
=
(©)
=
0
e

Source - Black :0CB11.0
- Other colors : Update
71/42

ARM Cores and Their Bus Interfaces 444

=]
()
—-
-~
c
-
®
(©)
e
o
o
0
[g
=
(©)
=
0
e

25 ARM System-on-Chip Architecture, by Steve Furber, Addison-Wesley, 2000 72/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Outline

VCI Interface Standards
AMBA - On Chip Buses
Platform-based SoC Design
SoC Design Flow

<

73/42

The New System Design Paradigm

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Memory 'DSP CPU | Differentiation

Core Core Software
110

IEEE1394

.. BlueTooth rTOS Application
BlueTooth :
Driver -Specific
Hardware

. Driver

Block-Based Design Platform-Based Design

Orthogonalization of concerns: the separation
of function and architecture,
of communication and computation

74/42

Terms 44

 Function

— A function is an abstract view of the behavior of the system.

— It is the input/output characterization of the system with respect to
its environment.

— It has not notion of implementation associated to it.

* Architecture

— An architecture is a set of components, either abstract or with a
physical dimension, that is used to implement a function.

* Architecture platform

— A fixed set of components with some degrees if variability in the
performance or dimensions of one or more of its components

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

75/42

Communication

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

« Communication provides for the transmission of
data and control information between functions
and with the outside world.

« Communication layers

— Transaction: Point-to-point transfers between VCs.
Covers the range of possible options and responses
(VC interface).

— Bus Transfer: Protocols used to successfully transfer
data between two components across a bus.

— Physical: Deal with the physical wiring of the buses,
drive, and timing specific to process technology.

<

76/42

How Platform-Based Design Works?

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Reference design

Derivative design

Removed

Modified

<

77/42

Platform-based integration

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

A fully defined architecture with
— Bus structure

— Clocking/power distribution
- 0S

* A collection of IP blocks
 Architecture reuse

The definition of a hardware platform is the result of a
trade-off process involving
reusability, production cost and performance optimization.

<

78/42

Ingredients of A Platform

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Cores

— Processor IP

— Bus/Interconnection

— Peripheral IP

— Application specific IP
Software

— Drivers

— Firmware

— (Real-time) OS

— Application software/libraries

 Validation

HW/SW Co-Verification
Compliance test suites

* Prototyping

HW emulation
FPGA based prototyping

Platform prototypes (i.e.
dedicated prototyping
devices)

SW prototyping

<

79/42

How to Build A Platform 44

 Architecture constraints for an integration platform:
— first pick your application domain

— then pick your on-chip communications architecture and structure
(levels and structure of buses/private communications)

— then pick your Star IP (e.g. processors) — processors ‘drag’ along
detailed communications choices e.g. processor buses,

— dedicated memory access, etc. - ARM-AMBA, etc. Also limit e.g.
RTOS

pick application specific HW and SW IP

— other IP blocks not available ‘wrapped’ to the on-chip
communications may work with IP wrappers. VSI Alliance VCl is the
best choice to start with for an adaptation layer

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|
I

80/42

Pros & Cons of Platform-based Design Design ««¢4¢

« Advantages
— Can substantially shorten design cycles

— Large share of pre-verified components helps address
the validation bottleneck for complex designs

— Enables quick derivative designs once the basic
platform works

— Rapid prototyping systems can be used to quickly build
physical prototypes and start S/\W development
« Limitations

— Limited creativity due to predefined platform
components and assembly

— Differentiation more difficult to achieve, needs to be
primarily in application software

S
7]
[
-~
c
(=g
o
o
=—h
m
®
0
-~
q
o
=)
0
e
<
)
=
)
=
a
0
=
9
©
-
=
=
(-]
Cc
=
<
=
g
(5
<

81/42

Platform-summary

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

 What is a platform - a shortcut to time-to-market
— Object
 Architecture reuse
« HW/SW co-design

— Accessory: tools, design and test methodologies
* How to differentiate a platform
— Programmability, Configurability, Scalability, Robustness
— Performance, Area, Power
— Application softwares
* Intention
— Prototyping, product

<

82/42

Types of Platform 44

» According to the strength of constraints on hardware

Son9e’ Fixed Platforms
« Software-oriented: TlI's OMAP™, Philips Nexperia™.
» Application-specific: Ericsson’s BCP,
— Configurable platforms

« Bus structure, multiple processor, programmable logic device

« E.g.: Altera's Excalibur™, Triscend’s CSoC, Philips RSP, Cypress
MicroSystems’ PSoC™, E.g.: Palmchip’s PalmPak™, Wipro’s
SOC-RaPtor™ | Tality’s ARM-based SoC.

— Programmable platform
weaker ¢ Improv’s - PSA™ Jazz

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

83/42

Improv - PSA™ Jazz Platform <

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

T

.’ Programmable 10 Module
(Parallel or serial)

Custom 10 Blocks EEE

Jazz Processor

Acronym Q Bus (Queue Bus)
| : Instruction QBus-A
P: Private: Qbus-B
S: Shared Arb —

Acronym - PSA: Programmable Systems Architecture 84/42

Jazz VLIW Processor - A Sample 44

Left Private Right
Shared Memory Shared

Memorv Memorv
<L JL AHE
T TV T
[| [| [|
Control [4] <
[T JITT ontot] st 41 g
Data Communication Module < Queue v
—
IR =
32 Bit 32 Bit 32 Bit 32 Bit 64 Bit —
ALU ALU ALU MAC Shift —
=
Jazz Processor
Instruction
Memory

« 3 ALUs, 1 MAC, 1 SHIFT, 1CNT (built into control unit)

« 240 bit instruction width (memory image lower using instruction compression)
« 32-bit datapath, 16-bit address width

« 32 deep Task Queue

« 1.3 BOPS at 100 MHz (5 CU ops, counter, 7 MIU ops)

« ~100K gates

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

85/42

Features

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

State-of-the-art compilation technology that supports both
— Task level parallelism (with the multiple processors)

— Instruction level parallelism (through the Jazz VLIW processors).
Designer start at the Java level

No OS required

Configuration at three levels
— Platform - Collection of processors, data/instruction
memory and I/O resource
— Processor - Computation units and memory interfaces
— Instruction - User can create custom logic computation units

<

86/42

A)isiaAiun Bun] oeiys [euoijeN ‘so1uoJjds|g Jo ajnjisuj

TI's OMAP™ Platform

Memory SDRAM

Power
Management
for External
Modem
Interface

Clocks LCD MPU
Interface

System

<

Test/Real-Time
SW Debug

Acronym - OMAP: Open Multimedia Applications Platform g7/42

Philips - Rapid Silicon Prototyping (RSP) «¢«

Deconfigurable & Extendible
Prototype Chip Made from
Reusable Components

Deconfigured & Extended
Customer Specific Solution

Production ASIC |

Reference
Design

(M
_I_m_|

i b o e shatogy modified removed added
el (extended) (deconfigured) (integrated)

I rriitips e B srapary e Il cusomeri

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

88/42

RSP7 ASIC Block Diagram 44

cache |[rra | SDRAM Ctrl
- Flash Ctrl
[wmmu || NTrace | ROM Ctrl

| romctn || oma || sramctr SRAM Ctrl

AMBA System Bus (ASB

>

EBIU

ASB2PCI Bridge AMBA Decoder ASB2VPB Bridge SDRAM
; n-Chip PCI
IIIIIIII¢IIIIIIII£III IIIfIIII II¢IIIIIII¢IIIIIII$IIIIII IIIIIIIiIIIIIII
PCI PCI2PCI
e Fast IR IDE 1284 1394 USB Host Bridge

GPIO 12C IntCtl IrDA RTC Smartcard Timer UART Consumer IR| | USB Device

RSP7+ is targeted at customer designing SOC ASICs for:
» Networking Peripherals
» Virtual Private Networks
» Systems Requiring ARM-based Control and Wired Connectivity

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

89/42

RSP7+ Emulation Board 44

PCI Expansion 2 slots are Compact PCI

El slot is Standard PCI

oL —
- = Cache
siem Por formanoe Mongor KB/ Way

Timer
wd

10/100

Ethernet

MAC/PHY

Speaker

Microphone

RJ45 RJ11 RJ11

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

90/42

Triscend - Configurable System-on-Chip ¢«

* A configurable system-on-chip (CSoC) is a single
device consisting of:

— A dedicated, industry-standard processor
» 8051-based Eba
 ARM-based for A7 device
» SuperH for the future (2001.1.22 announced, 2002 available)

— An open-standard, dedicated, on-chip bus

— Configurable logic sty Rl
— Memory i B

— Other system logic

Configurable Sy=tem
Interconnect Bus

Configurable Sy=stemn Logic
(SRAM-Dbased technology)
[l e e

91/42

Triscend ES System Highlights 44

To external memory
for initialization and

narda ctnvrann
COUT Sibiayy

it 15

=7
] ,
g Power T i Selectc PIC
® Control interface Unit Selector 4 [o]
=X | Selector PIO
T C!gck :r:d 8032 "Turbo" MCU | ASEIEET : ontﬁgu[ahIF Fi9
1} e urbo Tl | selector SYSIET 109 pio
g Control Py ERSEEH Q matrix PIO
o Timer 0 -
@ Power-On [Timer 1 w?!chdug :
5 Reset Timer 2 — Q
= ART |I“I'Iﬁﬂ_:lp'l m
o ni
5 £l |2
o Bus a o
(o) Arbiter | @ Configurable System
= Address > E Interconnect bus
) Mappers 5 socket
- b
:-:I Two-channel] Byte-wide
'3 DMA Controller) g System RAM
cC . X
Hardware
E' JTAG interface h Breakpoint Unit
(]
El
(5
<

92/42

Triscend A7 System Highlights

To external memory

(3

I Clock Synthesizer I : ey | 1
Memory Interface i] Selector | PIO
Unit ! i
I Power Control I : @ il Selector |! PIO
SDRAM and/or Static B ;
- Memories [— |i] Selector | PIO
Power-On Reset | : . ——
I | - I selector |Configurable ["pio
5 System Logic
] Selector | CSL PIO
16KBytes 5 <] ()
ScratchPad) ; i matrix PIO
ARM7TDMI] . SRAM Bl s
5 or e— — I Selector I PIO
g Trace Buffer i , i —
[< i b .
o n : o B . -
w : PN
; a| [L.—— =
Cache - p 3 i
* 8K Byt i w, -
2 +—wa¥ ggt Associative el BIU0e ‘E U='J Confi gurabfe Sy stem
* Protection Unit (=) o Interconnect socket
h Standard Peripherals
Hardware B 2 16-input
Breakpoint Unit g Interrupt Controller
< 16-bit 16-bit
R i Ahannal = 4| Timer 1 Timer
A itor DMA Controller Z/ 32-bit
Watchdog Timer
| bau L UART UART
| T g with FIFO || with FIFO
Configurable System

Interconnect (CSI) bus

<

93/42

Cypress MicroSystems - PSoC™ pp

PSoC Blocks

— M8C
= FLASH o.Bit

; LN ol =1]
=7 Program . Analog
= Memo h—, Microcontroller PSoC Blocks =)
= ry Core
P Programmable
=h - Interconnect
m Voltage Precision Oscillator ..
o Reference and Digital ”
2_ X1 — | PLL PSoC Blocks
q
(o] 32 kHz Crystal
=) X2 Oscillator T
a. emperature)
o Sensor Deci t
z Internal 32 kHz ecimator
8 | Oscillator L, Brown-out ﬂ_I\
=3 Detection \,—‘/
g MAC
8 ™ Watch Dog Multiply / Accumulate
— Timer Power-on-Reset
n Control
s, /A A & General Purpose
) > ﬁ.'ee" Addr/Data P
o imer . \,7 1/O
- =

Interrupt | Internal I/O Bus

g Controller
3 |
(= SRAM Addr/Data Pin by Pin Configurable
E. 110 Transceivers
¢<D Total /O Pin Count
a Maries by Device
:
<

Acronym - PSoC: Programmable System-on-Chip 94/42

PSoC Blocks

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

« Eight 8-bit PSoC blocks

— Four Digital Basic Type A blocks:
» Timer/Counter/Shifter/CRC/PRS/Deadband functions
— Four Digital Communications Type A blocks:
» Timer/Counter/Shifter/CRC/PRS/Deadband functions
* Full-duplex UARTs and SPI| master or slave functions

e Twelve PSoC blocks

— Three types: ContinuousTime (CT) blocks, and type 1 and type 2
Switch Capacitor (SC) blocks that support

— 14 bit Multi-Slope and 12 bit Delta-Sigma ADC, successive
approximation ADCs up to 9 bits, DACs up to 9 bits, programmable
gain stages, sample and hold circuits, programmable filters,
differential comparators, and temperature sensor.

<

95/42

Altera - Excalibur™ Embedded Processors <44

* Processors
— ARM, MIPS

Embedded processor core Programmable logic core

On-Chip RAM

JTAG/Debug AR“CAIIDI\CJIPS APEX™

Architecture
Cache

External
Bus Interface

External Device

Serial Port UART

A)isiaAiun Bun] oeiys [euoijeN ‘so1uoJjds|g Jo ajnjisuj

96/42

ARM-Based System Architecture 44

Embedded Processor Stripe FLO
AHBZ
Clock Generators

a Configuration
P »— Logic
Py (Bus Mastar)
c

o e AHB1-2 Bri

® ridge Resstdods
(o) =— Coniraller
=h

ARMSZ2T +
m Gache + MMU [
g _:_ Timer
Simgle-Port
= * SRAM
S
Interrupt
— . PLDO _MEHIIBI
o Controller — Bt
L
Dual-Part

< SRAM —®

)

=: v\?_tm:lq;

° mer

> PLD Slave
) SDRAM _z_ Bridge
S Controllar

E- — UART

Q

o

: Expansicn
: Bluz Interface
«Q

=

¢<p B -0 ciock Domain

Ilem

- I:l Peripheral Clock Domain SORAM SRAM M,ﬁ Azl
g. Peripherals | | MEmory
(>3 Processor Clock Domain
& L

97/42

Wipro’s SOC-RaPtor™ Architecture <<

A)isiaAiun Bun] oeiys [euoijeN ‘so1uoJjds|g Jo ajnjisuj

SOC-RaPtor: SoC Rapid Prototyper Architecture Platform 98/42

Palmchip’s PalmPak™ SoC Platform <<

= CoreFrame™
(4 .

= cPU Architecture

c

® » Mbus and PalmBus
: {

Fnh Generic » Point-to-point and
2 ¢ ¢ broadcast connections
[y

=

o

S CPU PalmBUS MBus » Star-shaped topbology
0 SRAM Controller Bridge

v ’ » CPU Subsystem
§ Memory

- MBUs Access |#=I Memory Interface

g Timer Watchdog Controller

D

g PalmBus

5.

(<]

-] Clcok r 4 5 I 5 .

c ower nterrupt rogramme DMA —) () Serial Port

'3 Reset 3 Management Controller 110 Controller | UART

2 {

3,

<

(1] GP I/O Port

)

:

<

99/42

Tality’'s ARM/OAK-based SoC Platform ¢4

« Used as the development vehicle for multiple
application-specific Integration Platforms.
— for Bluetooth, xDSL and Cable Modems.
— “Socketizes” the IP to make it AMBA 2.0-compliant.

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

100/42

Example of Tality’s Derived Design - Bluetooth ¢«

Yerification Environment

Blustooth SOC Integration Platform
Embedded

Memorny
Memony _ _
Controllers m B aseband Controller Core
AHB m Radio Radio Test
Shared Interface Module

. Memory
i Bridge Controller Speech

' RAM Interface
ARMITDR

GPIO Test JUART Test
Module Module

TdityIP] Processdependert IF [l 2RM 1P

101/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Outline

VCI Interface Standards
AMBA - On Chip Buses
Platform-based SoC Design
SoC Design Flow

<

102/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Challenges of SoC Era

* Deign complexity
— Validation & Verification
— Design space exploration
— Integration
— Timing & power
— Testing
— Packaging

* Time to market

* The cost

<

103/42

From Requirement to Deliverables 44

Hierarchy Hierarchy
Refinemenet Validaton

Product
DeliveL

System Function

Customer
Needs

System Vaildation "Pattern”

System Function

Architecture X"~ """"""""TTTTTT oo ST TS T e s s eSS Architecture
Verification

Behavioral{~~—""""""""""""""""TTmo s Behavioral

Logical Netlist\"~""""""""""~ Logical Device
La}\/noutk Wafer
Abstract as Real
< >

Fab

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

104/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Five SoC Design Issues

* To manage the design complexity
— Co-design
— |P modeling
— Timing closure
— Signal Integrity
— Interoperability

<

105/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

How to Conquer the Complexity

« Use a known real entity
— A pre-designed component (reuse)
— A platform
 Partition
— Based on functionality
— Hardware and software
* Modeling

— At different level
— Consistent and accurate

<

106/42

SoC Design Flow

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Hardware

High Level Algorithm Model
C/C++/COSSAP/VCC/MATLAB

Hardware/Software Partition
N2C/VCC

Communication Refinement
N2C/Port-C/VCC

Front End

Back End

Chip

Hardware/Software Coverification
2C/Seamless/"Q/Bridge™

RTOS Device Driver
WinCE/VxWorks Driveway

Embedded
Software

al e/;mos

API

<

107/42

Physical Design Flow

Kjisianiun Buny oelysn jeuoijepN ‘soiuou}da|g Jo ajnyisul

* In VDSM

— Interconnect dominates delay

— Timing closure

— Signal integrity
 Traditional design flow

— Two-step process

— Physical design is performed

independently after logic design

* New design flow

— Capture real technology behaviors
early in the design flow

— Break the iteration between physical
design and logic design

Front
End

Back
End

High Level
Design

Functional
Verification

Synthesis ['
P&R

Timing
Simulation

LVS/DRC

RC
Extraction

<

108/42

Making Sense of Interconnect 44

« At 0.35u, timing convergence started to become a problem.

« At 0.25u, it started to significantly impact the work of the
designer.

« At 0.18u, if not accounted for, it actually causes designs to fail.

A

Cannot solve
using tradional

techmigues

Percentage of Delay

o 10 11 12 1% 14 15 16 17 18

VDSM technology renders traditional design methodologies obsolete

Source: Avant! Source: Synopsys

109/42

Interconnect Power Consumption in DSM ««4¢

K)isiaAiun Bun] oeiys [euoijeN ‘so1uoJ)ds|g Jo ajnjisuj

« DSM effects in energy dissipation:
cross-coupling capacitances

4
35
3

2.5

2

Power (mW)

1.5

1

0.5

0
0 2 4 6 8 10 12 14

Length (mm)

Source: Y. Zorian, S. Dey, and M. Rodgers, “Test of Future System-on-Chips,” Proceeding of the 2000 International Conference on Computer-Aided Design, 392-398 110/42

Signal Integrity and Timing Closure 44

* Root causes of both Signal Integrity and Timing Closure
— Inadequate interconnect modeling techniques
— No effective design methodology

« Synthesis timing does not correlate with physical timing

— Factors
» Coupling capacitance increases
 Interconnect resistance increases
« Device noise margins decrease
« Higher frequencies result in on-chip inductive effects

— Problems
 Signal electromigration
» Antenna effects
» Crosstalk delay
» Crosstalk noise

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

111/42

Example - Crosstalk Delay

* Net-to-net coupling capacitance dominates as a
percentage of total capacitance in VDSM.

* The coupling capacitance can be multiplied by the

Miller Effect

— Wire capacitance can be off by 2X if the adjacent wires
are switching in the opposite direction.

— The coupling capacitance can be much less than
expected if the wires are switching in the same
direction

« Both have to be considered during timing analysis
to fully account for setup and hold constraints.

<

112/42

New Physical Design Flow Needed 44

» Bring physical information into the v
logical design
» Overview of solutions HEAE
esig
— Single pass methodology Eront :
.) End Fuqc_:tlo?al
— Synthesis-driven layout Verification

— Layout-driven synthesis

Synthesis
— All-Integrated (optimization, analysis = *.
and layout) layout o P&R

Timing
Simulaton

Back

End LVS/DRC

Annotated Package
°

RC
Extraction

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

113/42

HW/SW Cosimulation Through Emulation <4«

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

« Emulation in “virtual silicon® ..
— Complete functional simulation

of the chip at close to real time
— Run real software » [

* Tools to enable simulation between EDAs and
emulators
— Cycle-based simulators
— Full-timing simulators
— Instruction set simulators
— E.g. Quickturn Q/Bridge

« Expensive, long learning curve and set-up time

S
<

M Emulation
100K

10K
1K

CPS (Cycle/Secon

Acceleration

Source: IKOS Systems Inc

114/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Error Memory
Host MMI/GUI Handling Allocation N
N iagnostics
Application Message Task State
Manager controller Machine
Application Program Interface
Display Alarm Event
Services Services Manager
Stack = - Kernel
Protocol e i ata Services
Manager EnET 1/O

|

Device Drivers

Embedded Software Architecture for SoC Design (¢4

115/42

Software Development 44

* Porting software to a new processor and RTOS
— Using a common RTOS abstraction layer

* The evolution of embedded system in the future
— An standard RTOS

2

=

(1]

=8

m

&

o

3,

é Application Software Application Software
5

g.

- Optimized API New API Needed
0

§'- Illlllllllll»

= RTOS New RTOS

&

; - -
3,

<

o

0

& Old New

116/42

Software Performance Estimation 44

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

* Have to take the following into account
— Instruction set
— Bus loading
— Memory fetching
— Register allocation

« Example: Cadence VCC technology
— CPU characterized as Virtual Processor Model
— Using a Virtual Machine Instruction Set
— SW estimation using annotation into C-Code

— Good for early system scheduling, processor load estimation
» Two orders of magnitude faster than ISS
» Greater than 80% accuracy

117/42

Tester Partitioning 44

High bandwidth

Source/

Low bandwidth

Source/
Sink

Source/
Sink

Source/
Sink

External Tester Embedded Tester External Tester Embedded Tester

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Source: Y. Zorian, S. Dey, and M. Rodgers, “Test of Future System-on-Chips,” Proceeding of the 2000 International Conference on Computer-Aided Design, 392-398 118/42

Self-Testing of Embedded Processor Cores ¢4

* Logic BIST

— Based on the application of pseudo random test
patterns generated by on-chip test pattern generators
like LFSRs.

— Cannot always achieve very high fault coverage for
processor cores.
 |Instruction-based self-test techniques

— Rely on generating and applying random instruction
sequences to processor cores.

— The approach determines the structural test needs of
processor components

— Advantage: programmability and flexibility

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

119/42

Platform-based Design 44

Block Authoring Chip Integration

Executable Specification

-

Verification Analysis Analysis Verification Analysis
Block Chip RTOS/

Specification Specification/ Application

IP Selection Selection

Block
Design Planning

Functional
Design

Architecture
Design

Integration

Planning Module

Static Development

Verification Static

Verification

Formal IP Handoff

Testbenches
Testbenches

Integration
Design

Tg c

=

) ; Chip

Eé’ Implementation Implementation l

2 Physical W

= Verification Physical L O

S ysica

5 Distribution

S35

c

(1]

=

o>

-E.E’ ——— S— swW E—

g2 Cell ¥ IP Portfolio [{ Authoring Guide IP PortfoliollNtegration pevelopment RTOS/

g.ﬁ Libraries Platform Links Applications
(3]

D=

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

25 Source: “Surviving the SOC Revolution - A Guide to Platform-Based Design” by Henry Chang et al, Kluwer Academic Publishers, 1999 120/42

Design Entry 44

Gate level
Truth table

FSM
Waveform

RTL level 10K~100k

System level modeling 100K~100M

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

121/42

Hardware Platform-Based Design 44

It is a "meet-in-the-middle” approach.

System Integrator Perspective Platform Provider Perspective

Application Space Application Space

Application Instance Application Instances

Platform
Specification

Platform
Specification

System
Platform

System
Platform

Platform Platform
Design Spacc Design Space
Exploration Exploration

Platform Instance Platform Instance

Architectural Space

Architectural Space

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

122/42

Aysianiun Buny oelysn jeuoijepN ‘soluoijdag Jo aynyisuj

System-Level Design

e Goal

— To define the platform that satisfies the system
functions with performance/cost tradeoff

+ Platform design
— Bus structure

— |P and their function design
» Customized instructions
» Parallelism
» Command parameters
» Configurable parameters
» IP parameters

— Control scheme
— Data communication (bandwidth)

<

123/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Control Scheme Model

Interrupts

Status Polling (timer)

Interrupt

Status

Command

Configuration

Data Receive Buffer

Data Transmit Buffer

<

124/42

Some Helps in System-Level Design 44

» Cadence VCC (Virtual Component Codesign,
from Cadence Berkely Labs)

— Performance simulation
— Communication refinement technology

« Vast Systems Technology
— VPM (Virtual Processor Model)
— HW/SW codesign

» CoWare N2C (Napkin-to-chip)

— Interface synthesis

« SystemC

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

125/42

Cadence’s VCC 44

Full System Specification

>

VCC Platform

VCC Platform
Function Architecture

VCC Functional -%

2 System Integration ';.;
2 £ | =

(<3
ol B £ e >
g © SPW Fixed Point S %z
o % Algorithm Analysis = : E
. WSS9 VCCHardware = VCC Software o
SPW HDS Block Implementation } Assembly Assembly

HWISW Verifier - Verification Cockpit - NCSIM
RTL Block Verification and HW-SW-Co-Verification

Synthesis / PIace & Route etc.

S
7]
=r
[y
c
(=g
®
[©)
=h
m
®
(2]
-~
=
(©)
=i
(2]
&
<
)
=
)
=
a
0
~
o
©
-]
c
=
@
(o=
—
<
=
g
-~
<

126/42

An Opportunity To Do It Right !

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

(sysTEMC

1990s 2000s

<

127/42

SystemC Heritage «

I
SYNOPSYS =
ATG [| SYNoPsys | SystemC VSIA SLD
“Scenic” v0.90 Datatypes

uc / _ o Spec
Irvine SYNOPSYS M&\ f
1996 "Fridge” |
- , SystemC
Frontier A/RT | Fixed Point Types \ I

N

1111 s Library _
Apr. 00 \
1901 -
|
%ﬁ” > Com:re Abstract Protacolsh SY:TI*"?':”C I
THes N2C _l

1992 1997 Jun. 00

128/42

SystemC Roadmap 44

SystemC v1.X

Proposed v2.X
' Diﬁ'éi*" Idea for v3.X
roposed | Comput.| DF | Untimed (RPC) I — ,
v2 0+ “_O_dﬂlsul ___________ J i i
! Untimed HW with || | i
 RTOS SW - Map Mi
ICroprocessor :
Performance Models tﬂ TﬂSkS i
proposed || Deadlines Cycle Accurate HW | | | :
v1.2 <
Analog/Mixed
_ Signal
» Hierarchical Links ArChltECtU ral
« Comms Refinement .
Maybe Necessary
RTL
Planned

Present in v1.0, 1.1

129/42

The Intent of Different Level of Model 44

* Design exploration at higher level
— Import of top-level constraint and block architecture
— Hierarchical, complete system refinement
— Less time for validating system requirement

— More design space of algorithm and system
architecture

« Simple and efficient verification and simulation
— Functional verification
— Timing simulation/verification
— Separate internal and external (interface) verification
— Analysis: power and timing

 Verification support

130/42

SystemC

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

« SystemC is a modeling platform
— C++ extensions to add hardware modeling constructs
— a set C++ class library
— simulation kernel
— supports different levels of abstraction

Good Candidate for Task Level Mapping

<

131/42

Level of abstraction in SystemC 44

v || UnTimed Functional

=)

&

g

o

=3 Design Exploration Refine

m

8

] Perjormance Analysis 1 || Timed Functional
S, HW/SW partitioning

(2]

~‘; HW / SW Partition
)

=

o

3

- Multi-tasking t
0 Abstract RTOS

g. Inter process comm.

o Scheduling/prionity

-]

c

@

= Target RT

3,

<

®

q

@,

(5

<

132/42

SystemC Design Flow 44

SystemC source files for system
class library and testbenches
P
=
0

(> development
\Sj_s TEMC environment

header files »(compller)

libraries

,,make*

executable = simulator

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

133/42

Example

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

P

SystemC Simulation

4 D g B 4 h
1 TR
ARM Core |4—» ARhBﬂqunre 4—» Pperipheral
Simulator
> . > Models
e
- N—
RDI Bus-cycle Bus-cycle
transactions pin transactions /

~

Debugger

Source: SystemC Users Forum, DAC, June 2000

<

134/42

Implementing Virtual Prototypes 44

* Functionality partition
* Module specification
 Communication refinement

Func_A() MC
{ IQ IDCT() MC

FIFO

Q-
...... } IDCT |Q-

IDCT

Kj1s19A1un Bunj] oeiyd jeuoijeN ‘So1uoa)dd|g Jo ansu|
°
o a
(@)
H v
5
%
=l

135/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Functionality Partition

e Separating communication and computation
* Using hierarchy to group related functionality
* Choosing the granularity of the basic parts

<

136/42

Module Specification (1/2) 4

Process A

func B(X,Y)

{

Z = X+Y;
: retuen Z;AA_“\\\\\\\

Process B Process C
entyy () entry ()
{ {

O X.read() ;
X.write () ; Y.read() ;
Y.write () ; Z = X+Y;
Z.read() ; Z.write () ;
““““ }

1

1. Pull out functionality into new created process
2. Replace function call with inter-process communcation.

3. Instantiate new process and define channels to connect them.

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

137/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Module Specification (2/2)

 Abstraction Levels

— Untimed Functional Level
— Processes execute in zero time but in order

— Timed Functional Level
— Bus-Cycle Accurate Level
* Transaction on bus are modeled cycle accurate
« Cycle Accurate Level
— Behavior is clock cycle accurate

<

138/42

Communication Refinement 44

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

Key

Guarantee consistency of communication during refinement

Task A
(VO)

|

» Q

> Task B

Layer 1.0 Channel

(VO

139/42

Software Performance Estimation 44

Kyi1sianiun Buny oeiyn jeuoijeN ‘soiuo.aydd|g Jo aynsu|

* Have to take the following into account
— Instruction set
— Bus loading
— Memory fetching
— Register allocation

« Example: Cadence VCC technology
— CPU characterized as Virtual Processor Model
— Using a Virtual Machine Instruction Set
— SW estimation using annotation into C-Code

— Good for early system scheduling, processor load estimation
» Two orders of magnitude faster than ISS
» Greater than 80% accuracy

140/42

Discussion: Commonality and Differentia «¢«4

» Differentiae
— Processor core (e.g., customized inst. set)
— |P parameterized
— IP add/move

* Design methodology of platform
— System-level

— Platform-level design methodology

» Design flow
* Models
» Tools (EDA venders, 3rd party or home-made)

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

141/42

Kji1sianiun Buny oelysn jeuoijepN ‘so1uou}ds|g Jo ajnyisu|

Summary

« Platform-based design
— From board design to SoC design
— From executable spec., i.e., C/C++, to SystemC

* Modeling
— Performance evaluation
— Task mapping
— Communication refinement

<

142/42

