
C. W. Jen 任建葳任建葳任建葳任建葳
cwjen@twins.ee.nctu.edu.tw

Chapter 2

ARM Processor Core and Instruction Sets

1/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Outline

• Processor programming model
• 32-bit instruction set
• 16-bit instruction set
• ARM processor core
• Software development

2/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

 Processor Programming Model

3/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Ltd

• ARM was originally developed at Acron Computer Limited
of Cambridge, England between 1983 and 1985
– 1980, RISC concept at Stanford and Berkeley universities
– first RISC processor for commercial use

• 1990 Nov, ARM Ltd was founded
• ARM cores

licensed to partners who fabricate and sell to customers
• Technologies assist to design in the ARM application

– Software tools, boards, debug hardware, application software, bus
architectures, peripherals etc…

4/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Architecture vs. Berkeley RISC

• Features used
– load/store architecture
– fixed-length 32-bit instructions
– 3-address instruction formats

• Features unused
– register windows ⇒ costly

 use shadow registers in ARM
– delayed branch ⇒ not well to superscalar

 badly with branch prediction
– single-cycle execution of all instructions

most single-cycle
– memory access

multiple cycles when no separate data and instruction memory
support
auto-indexing addressing modes

5/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Data Size and Instruction set

• ARM processor is a 32-bit architecture
• Most ARM’s implement two instruction sets

– 32-bit ARM instruction set
– 16-bit Thumb instruction set

6/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Data Types

• ARM processor supports 6 data types
– 8-bits signed and unsigned bytes
– 16-bits signed and unsigned half-words, aligned on 2-byte

boundaries
– 32-bits signed and unsigned words, aligned on 4-byte boundaries

• ARM instructions are all 32-bit words, word-aligned
Thumb instructions are half-words, aligned on 2-byte
boundaries

• Internally all ARM operations are on 32-bit operands; the
shorter data types are only supported by data transfer
instructions. When a byte is loaded form memory, it is zero-
or sign-extended to 32 bits

• ARM coprocessor supports floating-point values

7/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Programming Model

• Each instruction can be viewed as performing a
defined transformation of the states

visible registers
invisible registers
system memory
user memory

8/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Processor Modes

• ARM has seven basic operating modes
• Mode changes by software control or external interrupts

userRunning privileged operating systemSystem11111
_undHandling undefined instruction trapsUndef11011
_abtProcessing memory faultsAbort10111
_svcProcessing software interrupts (SWIs)SVC10011
_irpProcessing standard interruptsIRQ10010
_fiqProcessing fast interruptsFIQ10001
UserNormal user codeUser10000
RegistersUseModeCPRS[4:0]

9/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Privileged Modes

• Most programs operate in user mode. ARM has
other privileges operating modes which are used
to handle exceptions, supervisor calls (software
interrupts), and system mode

• More access rights to memory systems and
coprocessors

• Current operating mode is defined by CPSR[4:0]

10/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Supervisor Mode

• Having some protective privileges
• System-level function (transaction with the outside

world) can be accessed through specified
supervisor calls

• Usually implemented by software interrupt (SWI)

11/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

The Registers

• ARM has 37 registers, all of which are 32 bits long
– 1 dedicated program counter
– 1 dedicated current program status register
– 5 dedicated saved program status registers
– 30 general purpose registers

• The current processor mode governs which bank is
accessible
each mode can access
– a particular set of r0-r12 registers
– a particular r13 (stack pointer, SP) and r14 (link register, LR)
– the program counter, r15 (PC)
– the current program status register, CPSR

privileged modes (except System) can access
– a particular SPSR (saved program status register)

12/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Register Banking

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

Current Visible RegistersCurrent Visible RegistersCurrent Visible RegistersCurrent Visible Registers

User ModeUser ModeUser ModeUser Mode

r13 (sp)

r14 (lr)

r11

r12

r9

r10

r8

spsr spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

Banked out RegistersBanked out RegistersBanked out RegistersBanked out Registers

FIQFIQFIQFIQ IRQIRQIRQIRQ SVCSVCSVCSVC UndefUndefUndefUndef AbortAbortAbortAbort

13/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Registers Organization Summary

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

UserUserUserUser

r13 (sp)

r14 (lr)

r11

r12

r9

r10

r8

spsr spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

FIQFIQFIQFIQ IRQIRQIRQIRQ SVCSVCSVCSVC UndefUndefUndefUndef AbortAbortAbortAbort

User
mode
r0-r7,
r15,
and
cpsr

User
mode
r0-r12,

r15,
and
cpsr

User
mode
r0-r12,

r15,
and
cpsr

User
mode
r0-r12,

r15,
and
cpsr

User
mode
r0-r12,

r15,
and
cpsr

Note : System mode uses the User mode reigster setNote : System mode uses the User mode reigster setNote : System mode uses the User mode reigster setNote : System mode uses the User mode reigster set

Thumb state
Low registers

Thumb state
High registers

14/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Program Counter (r15)

• When the processor is executing in ARM state:
– all instructions are 32 bits wide
– all instructions must be word-aligned
– therefore the PC value is stored in bits [31:2] with bits

[1:0] undefined (as instruction cannot be halfword or
byte aligned)

• When the processor is executing in Thumb state:
– all instructions are 16 bits wide
– all instructions are must be halfword-aligned
– therefore the PC value is stored in bits [31:1] with bit [0]

undefined (as instruction cannot be byte-aligned)

15/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Program Status Registers (CPSR)

• Condition code flags
– N : Negative result from ALU
– Z : Zero result from ALU
– C: ALU operation Carried out
– V : ALU operation oVerflowed

• Sticky overflow flag – Q flag
– architecture 5TE only
– indicates if saturation has occurred

during certain operations

• Interrupt disable bits
– I = 1, disables the IRQ
– F = 1, disables the FIQ

• T Bit
– architecture xT only
– T = 0, processor in ARM

state
– T = 1, processor in Thumb

state
• Mode bits

– specify the processor mode

N Z C V Q

f s x c

modeI F TU n d e f i n e d

31 28 27 24 23 16 15 8 7 6 5 4 0

16/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

SPSRs

• Each privileged mode (except system mode) has
associated with it a Save Program Status Register, or
SPSR

• This SPSR is used to save the state of CPSR (Current
Program Status Register) when the privileged mode is
entered in order that the user state can be fully restored
when the user process is resumed

• Often the SPSR may be untouched from the time the
privileged mode is entered to the time it is used to restore
the CPSR, but if the privileged supervisor calls to itself)
then the SPSR must be copied into a general register and
saved

17/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Exceptions

• Exceptions are usually used to handle
unexpected events which arise during the
execution of a program, such as interrupts or
memory faults, also cover software interrupts,
undefined instruction traps, and the system reset

• Three groups :
– generated as the direct effect of executing an

instruction software interrupts, undefined instructions,
prefetch abort (memory fault)

– generated as the side-effect of an instruction
data aborts

– generated externally
reset, IRQ, FIQ

18/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Exception Entry (1/2)

• When an exception arises, ARM completes the current
instruction as best it can (except that reset exception
terminates the current instruction immediately) and then
departs from the current instruction sequence to handle the
exception which starts from a specific location (exception
vector)

• Processor performs the following sequence
– change to the operating mode corresponding to the particular

exception
– save the address of the instruction following the exception entry

instruction in r14 of the new mode
– save the old value of CPSR in the SPSR of the new mode
– disable IRQs by setting bit of the CPSR, and if the exception is a fast

interrupt, disable further faster interrupt by setting bit of the CPSR

19/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Exception Entry (2/2)
– force the PC to begin executing at the relevant vector address

• Normally the vector address contains a branch to the
relevant routine, though the FIQ code can start
immediately

• Two banked registers in each of the privilege modes are
used to hold the return address and stack pointer

0x0000001CFIQFIQ (fast interrupt)

0x00000018IRQIRQ (normal interrupt)
0x00000010AbortData abort (data access memory fault)
0x0000000CAbortPrefetch abort (instruction fetch memory fault)
0x00000008SVCSoftware interrupt (SWI)
0x00000004UNDUndefined instruction
0x00000000SVCReset
Vector addressModeException

20/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Exception Return (1/3)

• Once the exception has been handled, the user
task is normally resumed

• The sequence is
– any modified user registers must be restored from the

handler’stack
– CPSR must be restored from the appropriate SPSR
– PC must be changed back to the relevant instruction

address
• The last two steps happen atomically as part of a

single instruction

21/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Exception Return (2/3)

• When the return address has been kept in the
banked r14
– to return from a SWI or undefined instruction trap

MOVS PC,r14

– to return from an IRQ, FIQ or prefetch abort
SUBS PC,r14,#4

– To return from a data abort to retry the data access
SUBS PC,r14,#8

– ‘S’ signifies when the destination register is the PC

22/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Exception Return (3/3)

• When the return address has been saved onto a
stack
LDMFD r13!,{r0-r3,PC}^ ;restore and return

– ‘^’ indicates that this is a special form of the instruction
the CPSR is restored at the same time that the PC is
loaded from memory, which will always be the last item
transferred from memory since the registers are loaded
in increasing order

23/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Exception Priorities

• Priority order
– reset (highest priority)
– data abort
– FIQ
– IRQ
– prefetch abort
– SWI, undefined instruction

24/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Memory Organization

• Word, half-word alignment (xxxxoo or xxxxxo)
• ARM can be set up to access data in either little-

endian or big-endian format

23 22 21 20

19 18 17 16

15 14 13 12

11 10 9 8

7 6 5 4

3 2 1 0

byte3 byte0byte1byte2

byte
address

byte6

word8

half-word4

half-word14 half-word12

word16

bit 31 bit 0

20 21 22 23

16 17 18 19

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

byte0 byte3byte2byte1

byte
address

byte5

word8

half-word6

half-word12 half-word14

word16

bit 31 bit 0

(a) Little-endian memory
organization

(b) Big-endian memory
organization

25/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Features of the ARM Instruction Set

• Load-store architecture
process values which are in registers
load, store instructions for memory data accesses

• 3-address data processing instructions
• Conditional execution of every instruction
• Load and store multiple registers
• Shift, ALU operation in a single instruction
• Open instruction set extension through the

coprocessor instruction
• Very dense 16-bit compressed instruction set

(Thumb)

26/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Coprocessors

• Up to 16 coprocessor can be defined
• Expands the ARM instruction set
• ARM uses them for “internal functions” so as not to enforce a

particular memory map (eg cp15 is the ARM cache controller)
• Usually better for system designers to use memory mapped

peripherals
- easier to implement

ARM coreARM coreARM coreARM core

F D E

Coprocessor XCoprocessor XCoprocessor XCoprocessor X

F D E

Coprocessor YCoprocessor YCoprocessor YCoprocessor Y

F D E

DatabusDatabusDatabusDatabus

HandshakingHandshakingHandshakingHandshaking
signalssignalssignalssignals

27/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Thumb

• Thumb is a 16-bit instruction set
– optimized for code density from C code
– improved performance from narrow memory
– subset of the fumctionality of the ARM instruction set

• Core has two execution states – ARM and Thumb
– switch between them using BX instruction

ADDS r2,r2,#1ADDS r2,r2,#1ADDS r2,r2,#1ADDS r2,r2,#1

ADD r2,#1ADD r2,#1ADD r2,#1ADD r2,#1

031

15 0

For most instruction generated by compiler:
• Conditional execution is not used
• Source and destination registers identical
• Only Low registers used
• Constants are of limited size
• Inline barrel shifter not used

16-bit Thumb instruction

32-bit ARM instruction

28/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Average Thumb Code Sizes

29/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM and Thumb Performace

30/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

I/O System

• ARM handles input/output peripherals as
memory-mapped with interrupt support

• Internal registers in I/O devices as addressable
locations within ARM’s memory map
read and written using load-store instructions

• Interrupt by normal interrupt (IRQ)
 or fast interrupt (FIQ) higher priority
input signals are level-sensitive and maskable

• May include Direct Memory Access (DMA)
hardware

31/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Exceptions

• Supports interrupts, traps, supervisor calls
• When an exception occurs, the ARM:

– copies CPSR into SPSR_<mode>
– sets appropriate CPSR bits

• if core currently in Thumb state then
ARM state is entered

• mode field bits
• interrupt disable bits (if appropriate)

– stores the return address in LR_<mode>
– set pc to vector address

• To return, exception handler needs to:
– restore CPSR from SPSR_<mode>
– restore PC from LR_<mode>

This can only be done in ARM state

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

Vector TableVector TableVector TableVector Table

0x00

0x04

0x08

0x0C

0x10

0x14

0x18

0x1C

Vector table can be at
0xffff0000 on ARM720T

and on ARM9/10 family devices

32/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Exceptions

• Exception handler use r13_<mode> which will
normally have been initialized to point to a
dedicated stack in memory, to save some user
registers for use as work registers

33/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Processor Cores

• ARM Processor core + cache + MMU
→ARM CPU cores

• ARM6 → ARM7 (3V operation, 50-100MHz for
.25µ or .18 µ)

T : Thumb 16-bit compressed instruction set
D : on-chip Debug support, enabling the processor to
halt in response to a debug request
M : enhanced Multiplier, 64-bit result
I : embedded ICE hardware, give on-chip breakpoint
and watchpoint support

34/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Processor Cores

• ARM 8 → ARM 9
 → ARM 10

• ARM 9
– 5-stage pipeline (130 MHz or 200MHz)
– using separate instruction and data memory ports

• ARM 10 (1998. Oct.)
– high performance, 300 MHz
– multimedia digital consumer applications
– optional vector floating-point unit

35/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Architecture Versions (1/5)

• Version 1
– the first ARM processor, developed at Acorn

Computers Limited 1983-1985
– 26-bit addressing, no multiply or coprocessor support

• Version 2
– sold in volume in the Acorn Archimedes
– 26-bit addressing, including 32-bit result multiply and

coprocessor
• Version 2a

– coprocessor 15 as the system control coprocessor to
manage cache

– add the atomic load store (SWP) instruction

36/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Architecture Versions (2/5)

• Version 3
– first ARM processor designed by ARM Limited (1990)
– ARM6 (macro cell)

ARM60 (stand-alone processor)
ARM600 (an integrated CPU with on-chip cache, MMU, write
buffer)
ARM610 (used in Apple Newton)

– 32-bit addressing, separate CPSR and SPSRs
– add the undefined and abort modes to allow coprocessor

emulation and virtual memory support in supervisor mode
• Version 3M

– introduce the signed and unsigned multiply and multiply-
accumulate instructions that generate the full 64-bit result

37/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Architecture Versions (3/5)

• Version 4
– add the signed, unsigned half-word and signed byte

load and store instructions
– reserve some of SWI space for architecturally defined

operations
– system mode is introduced

• Version 4T
– 16-bit Thumb compressed form of the instruction set is

introduced

38/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Architecture Versions (4/5)

• Version 5T
– introduced recently, a superset of version 4T adding the

BLX, CLZand BRK instructions
• Version 5TE

– add the signal processing instruction set extension

39/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Architecture Versions (5/5)

v5TEARM10TDMI, ARM1020E
v5TEARM9E-S
V4TARM9TDMI, ARM920T, ARM940T
v4StrongARM, ARM8, ARM810

v4TARM7TDMI, ARM710T, ARM720T, ARM740T
v3ARM7, ARM700, ARM710
v3ARM6, ARM600, ARM610
v2aARM2as, ARM3
v2ARM2
v1ARM1

ArchitectureCore

40/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

 32-bit Instruction Set

41/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

• ARM assembly language program
– ARM development board or ARM emulator

• ARM instruction set
– standard ARM instruction set
– a compressed form of the instruction set, a subset of

the full ARM instruction set is encoded into 16-bit
instructions - Thumb instruction

– some ARM cores support instruction set extensions to
enhance signal processing capabilities

42/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Instructions

• Data processing instructions
• Data transfer instructions
• Control flow instructions

43/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Instruction Set Summary (1/4)
Mnemonic Instruction Action

ADC Add with carry Rd:=Rn+Op2+Carry

ADD Add Rd:=Rn+Op2

AND AND Rd:=Rn AND Op2

B Branch R15:=address

BIC Bit Clear Rd:=Rn AND NOT Op2

BL Branch with Link R14:=R15
R15:=address

BX Branch and Exchange R15:=Rn
T bit:=Rn[0]

CDP Coprocessor Data Processing (Coprocessor-specific)

CMN Compare Negative CPSR flags:=Rn+Op2

CMP Compare CPSR flags:=Rn-Op2

44/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Instruction Set Summary (2/4)
Mnemonic Instruction Action

EOR Exclusive OR Rd:=Rn^Op2

LDC Load Coprocessor from memory (Coprocessor load)

LDM Load multiple registers Stack Manipulation (Pop)

LDR Load register from memory Rd:=(address)

MCR Move CPU register to coprocessor
register

CRn:=rRn{<op>cRm}

MLA Multiply Accumulate Rd:=(Rm*Rs)+Rn

MOV Move register or constant Rd:=Op2

MRC Move from coprocessor register to
CPU register

rRn:=cRn{<op>cRm}

MRS Move PSR status/flags to register Rn:=PSR

MSR Move register to PSR status/flags PSR:=Rm

45/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Instruction Set Summary (3/4)

Mnemonic Instruction Action

MUL Multiply Rd:=Rm*Rs

MVN Move negative register Rd:=~Op2

ORR OR Rd:=Rn OR Op2

RSB Reverse Subtract Rd:=Op2-Rn

RSC Reverse Subtract with Carry Rd:=Op2-Rn-1+Carry

SBC Subtract with Carry Rd:=Rn-Op2-1+Carry

STC Store coprocessor register to
memory

address:=cRn

STM Store Multiple Stack manipulation (Push)

46/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Instruction Set Summary (4/4)

Mnemonic Instruction Action

STR Store register to memory <address>:=Rd

SUB Subtract Rd:=Rn-Op2

SWI Software Interrupt OS call

SWP Swap register with memory Rd:=[Rn]
[Rn]:=Rm

TEQ Test bitwise equality CPSR flags:=Rn EOR Op2

TST Test bits CPSR flags:=Rn AND Op2

47/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Instruction Set Format

48/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Data Processing Instructions

• Consist of
– arithmetic (ADD, SUB, RSB)
– logical (BIC, AND)
– compare (CMP, TST)
– register movement (MOV, MVN)

• All operands are 32-bit wide; come from registers or
specified as literal in the instruction itself

• Second operand sent to ALU via barrel shifter
• 32-bit result placed in register; long multiply instruction

produces 64-bit result
• 3-address instruction format

49/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Conditional Execution

• Most instruction sets only allow branches to be executed
conditionally.

• However by reusing the condition evaluation hardware,
ARM effectively increases number of instructions.
– all instructions contain a condition field which determines whether

the CPU will execute them
– non-executed instructions still take up 1 cycle

• to allow other stages in the pipeline to complete

• This reduces the number of branches which would stall the
pipeline
– allows very dense in-line code
– the time penalty of not executing several conditional instructions is

frequently less than overhead of the branch or subroutine call that
would otherwise be needed

50/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Conditional Execution

Each of the 16 values causes the instruction to be executed or skipped
according to the N, Z, C, V flags in the CPSR

cond
31 28 27 0

51/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Using and Updating the Condition Field

• To execute an instruction conditionally, simply postfix it with
the appropriate condition:
– for example an add instruction takes the form:

• ADD r0,r1,r2 ;r0:=r1+r2 (ADDAL)

– to execute this only if the zero flag is set:
• ADDEQ r0,r1,r2 ;r0:=r1+r2 iff zero flag is set

• By default, data processing operations do not affect the
condition flags
– with comparison instructions this is the only effect

• To cause the condition flags to be updated, the S bit of the
instruction needs to be set by postfixing the instruction (and
any condition code) with an “S”.
– for exammple to add two numbers and set the condition flags:

• ADDS r0,r1,r2 ;r0:=r1+r2 and set flags

52/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Data Processing Instructions

• Simple register operands
• Immediate operands
• Shifted register operands
• Multiply

53/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Simple Register Operands (1/2)

• Arithmetic Operations
ADD r0,r1,r2 ;r0:=r1+r2

ADC r0,r1,r2 ;r0:=r1+r2+C

SUB r0,r1,r2 ;r0:=r1-r2

SBC r0,r1,r2 ;r0:=r1-r2+C-1

RSB r0,r1,r2 ;r0:=r2-r1,reverse subtraction

RSC r0,r1,r2 ;r0:=r2-r1+C-1

– by default, data processing operations do not affect the
condition flags

• Bit-wise Logical Operations
AND r0,r1,r2 ;r0:=r1 AND r2

ORR r0,r1,r2 ;r0:=r1 OR r2

EOR r0,r1,r2 ;r0:=r1 XOR r2

BIC r0,r1,r2 ;r0:=r1 AND (NOT r2), bit clear

54/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Simple Register Operands (2/2)

• Register Movement Operations
– omit 1st source operand from the format

MOV r0,r2 ;r0:=r2

MVN r0,r2 ;r0:=NOT r2, move 1’s complement

• Comparison Operations
– not produce result; omit the destination from the format
– just set the condition code bits (N, Z, C and V) in CPSR

CMP r1,r2 ;set cc on r1-r2, compare

CMN r1,r2 ;set cc on r1+r2, compare negated

TST r1,r2 ;set cc on r1 AND r2, bit test

TEQ r1,r2 ;set cc on r1 XOR r2, test equal

55/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Immediate Operands

• Replace the second source operand with an immediate
operand, which is a literal constant, preceded by “#”

ADD r3,r3,#1 ;r3:=r3+1

AND r8,r7,#&FF ;r8:=r7[7:0], &:hexadecimal

• Immediate = (0~255)*22n

56/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Shifted Register Operands

• ADD r3,r2,r1,LSL#3
;r3:=r2+8*r1

– a single instruction executed in a
single cycle

• LSL: Logical shift left by 0 to 31
places, 0 filled at the lsb end

• LSR, ASL(Arithmetic Shift Left),
ASR, ROR(Rotate Right),
RRX(Rotate Right eXtended by 1
place)

• ADD r5,r5,r3,LSL r2
;r5:=r5+r3*2r2

• MOV r12,r4,ROR r3 ;r12:=r4
rotated right by value of r3

57/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Using the Barrel Shifter: the 2nd Operand

• Register, optionally with shift operation
applied.
– Shift value can be either:

• 5-bit unsigned integer
• Specified in bottom byte of another

register
– Used for multiplication by constant

• Immediate value
– 8-bit number, with a range of 0-255

• Rotated right through even number of
positions

– Allows increased range of 32-bit
constants to be loaded directly into
registers

ALU

Result

Barrel
Shifter

Operand
1

Operand
2

58/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Multiply

MUL r4,r3,r2 ;r4:=(r3*r2)[31:0]

• Multiply-Accumulate

MLA r4,r3,r2,r1 ;r4:=(r3*r2+r1)[31:0]

59/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Multiplication by a Constant

• Multiplication by a constant equals to a ((power of 2) +/- 1)
can be done in a single cycle
– Using MOV, ADD or RSBs with an inline shift

• Example: r0=r1*5
• Example: r0=r1+(r1*4)

ADD r0,r1,r1,LSL #2

• Can combine several instructions to carry out other
multiplies

• Example: r2=r3*119
• Example: r2=r3*17*7
• Example: r2=r3*(16+1)*(8-1)

ADD r2,r3,r3,LSL #4 ;r2:=r3*17

RSB r2,r2,r2,LSL #3 ;r2:=r2*7

60/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Data Processing Instructions (1/3)

• <op>{<cond>}{S} Rd,Rn,#<32-bit immediate>

• <op>{<cond>}{S} Rd,Rn,Rm,{<shift>}

– omit Rn when the instruction is monadic (MOV, MVN)
– omit Rd when the instruction is a comparison, producing only

condition code outputs (CMP, CMN, TST, TEQ)
– <shift> specifies the shift type (LSL, LSR, ASL, ASR, ROR or RRX)

and in all cases but RRX, the shift amount which may be a 5-bit
immediate (# < # shift>) or a register Rs

• 3-address format
– 2 source operands and 1 destination register
– one source is always a register, the second may be a register, a

shifted register or an immediate value

61/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Data Processing Instructions (2/3)

62/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

• Allows direct control of whether or not the condition codes are affected
by S bit (condition code unchanged when S=0)
N=1 if the result is negative; 0 otherwise
(i.e. N=bit 31 of the result)
Z=1 if the result is zero; 0 otherwise
C= carry out from the ALU when ADD, ADC, SUB, SBC, RSB, RSC, CMP,

CMN; carry out from the shifter
V=1 if overflow from bit 30 to bit 31; 0 if no overflow
(V is preserved in non-arithmetic operations)

• PC may be used as a source operand (address of the instruction plus
8) except when a register-specified shift amount is used

• PC may be specified as the destination register, the instruction is a
form of branch (return from a subroutine)

Data Processing Instructions (3/3)

63/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Examples
• ADD r5,r1,r3

• ADD Rs,PC,#offset ;PC is ADD address+8

• Decrement r2 and check for zero
SUBS r2,r2#1 ;dec r2 and set cc

BEQ LABEL

…

• Multiply r0 by 5
ADD r0,r0,r0,LSL #2

• A subroutine to multiply r0 by 10
MOV r0,#3

BL TIMES10

……

TIMES10 MOV r0,r0,LSL #1 ;*2

ADD r0,r0,r0,LSL #2 ;*5

MOV PC,r14 ;return

• Add a 64-bit integer in r0, r1 to one in r2, r3
ADD r2,r2,r0

ADC r3,r3,r1

64/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Multiply Instructions (1/2)
• 32-bit Product (Least Significant)

MUL{<cond>}{S} Rd,Rm,Rs

MLA{<cond>}{S} Rd,Rm,Rs,Rn

• 64-bit Product
<mul>{<cond>}{S} RdHi,RdLo,Rm,Rs

<mul> is (UMULL,UMLAC,SMULL,SMLAL)

65/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

• Accumulation is denoted by “+=“
• Example: form a scalar product of two vectors

MOV r11,#20 ;initialize loop counter

MOV r10,#0 ;initialize total

Loop LDR r0,[r8],#4 ;get first component

LDR r1,[r9],#4 ;get second component

MLA r10,r0,r1,r10

SUBS r11,r11,#1

BNE Loop

Multiply Instructions (2/2)

66/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Count Leading Zeros (CLZ-V5T only)

• CLZ{<cond>} Rd,Rm
– set Rd to the number of the bit position of the most significant 1 in

Rm; If Rm is zero, Rd=32
– useful for renormalizing numbers

• Example
MOV r0,#&100

CLZ r1,r0 ;r1:=23

• Example
CLZ r1,r2

MOVS r2,r2,LSL r1

67/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Data Transfer Instructions

• Three basic forms to move data between ARM
registers and memory
– single register load and store instruction

• a byte, a 16-bit half word, a 32-bit word
– multiple register load and store instruction

• to save or restore workspace registers for procedure entry and exit
• to copy blocks of data

– single register swap instruction
• a value in a register to be exchanged with a value in memory
• to implement semaphores to ensure mutual exclusion on accesses

68/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Single Register Data Transfer

• Word transfer
LDR / STR

• Byte transfer
LDRB / STRB

• Halfword transfer
LDRH / STRH

• Load singed byte or halfword-load value and sign
extended to 32 bits
LDRSB / LDRSH

• All of these can be conditionally executed by inserting the
appropriate condition code after STR/LDR
LDREQB

69/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Addressing

• Register-indirect addressing
• Base-plus-offset addressing

– base register
r0-r15

– offset, add or subtract an unsigned number
immediate
register (not PC)
scaled register (only available for word and unsigned byte instructions)

• Stack addressing
• Block-copy addressing

70/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Register-indirect Addressing

• Use a value in one register (base register) as a
memory address
LDR r0,[r1] ;r0:=mem32[r1]

STR r0,[r1] ;mem32[r1]:=r0

• Other forms
– adding immediate or register offsets to the base

address

71/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Initializing an Address Pointer

• A small offset to the program counter, r15
– ARM assembler has a “pseudo” instruction, ADR

• As an example, a program which must copy data
from TABLE1 to TABLE2, both of which are near
to the code

COPY ADR r1,TABLE1 ;r1 points to TABLE1

ADR r2,TABLE2 ;r2 points to TABLE2

…

TABLE1

… ;<source>

TABLE2

… ;<destination>

72/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Single Register Load and Store

• A base register, an offset which may be another register or
an immediate value

Copy ADR r1,TABLE1

ADR r2,TABLE2

Loop LDR r0,[r1]

STR r0,[r2]

ADD r1,r1,#4

ADD r2,r2,#4

???

…

TABLE1

…

TABLE2

…

73/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Base-plus-offset Addressing (1/3)

• Pre-indexing
LDR r0,[r1,#4] ;r0:=mem32[r1+4]

– offset up to 4K, added or subtracted, (#-4)

• Post-indexing
LDR r0,[r1],#4 ;r0:=mem32[r1], r1:=r1+4

– equivalent to a simple register-indirect load, but faster, less code
space

• Auto-indexing
LDR r0,[r1,#4]! ;r0:=mem32[r1+4], r1:=r1+4

– no extra time, auto-indexing performed while the data is being
fetched from memory

74/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Base-plus-offset Addressing (2/3)

0x5 0x5
r0 Source

Register
 for STR

12
Offset

0x200 0x200
r1

0x20c

Base
Register

*Pre-indexed: STR r0, [r1, #12]

Auto-update from: STR r0, [r1, #12] !

0x5 0x5
r0 Source

Register
 for STR

12
Offset

0x200 0x200
r1

0x20c

Original
Base

Register

0x20c
r1Updated

Base
Register

*Post-indexed: STR r0, [r1], #12

75/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

• Copy ADR r1,TABLE1

ADR r2,TABLE2

Loop LDR r0,[r1],#4

STR r0,[r2],#4

???

…

TABLE1

…

TABLE2

…

• A single unsigned byte load
LDRB r0,[r1] ;r0:=mem8[r1]

– also support signed bytes, 16-bit half-word

Base-plus-offset Addressing (3/3)

76/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Loading Constants (1/2)

• No single ARM instruction can load a 32-bit immediate
constant directly into a register
– all ARM instructions are 32-bit long
– ARM instructions do not use the instruction stream as data

• The data processing instruction format has 12 bits
available for operand 2
– if used directly, this would only give a range of 4096

• Instead it is used to store 8-bit constants, give a range of
0~255

• These 8 bits can then be rotated right through an even
number of positions (i.e. RORs by 0,2,4,…,30)

• This gives a much larger range of constants that can be
directly loaded, though some constants will still need to be
loaded from memory

77/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Loading Constants (2/2)
• This gives us:

– 0~255 [0-0xff]
– 256,260,264,…,1020 [0x100-0x3fc,step4,0x40-0xff ror 30]
– 1024,1240,…,4080 [0x400-0xff0,step16,0x40-0xff ror 28]
– 4096,4160,…,16320 [0x1000-0x3fc0,step64,0x40-0xff ror 26]

• To load a constant, simply move the required value into a register - the
assembler will convert to the rotate form for us
– MOV r0,#4096 ;MOV r0,#0x1000 (0x40 ror 26)

• The bitwise complements can also be formed using MVN:
– MOV r0,#0xFFFFFFFF ;MVN r0,#0

• Values that cannot be generated in this way will cause an error

78/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Loading 32-bit Constants

• To allow larger constants to be loaded, the assembler
offers a pseudo-instruction:
LDR rd,=const

• This will either:
– produce a MOV or MVN instruction to generate the value (if

possible) or
– generate a LDR instruction with a PC-relative address to read the

constant from a literal pool (Constant data area embedded in the
code)

• For example
LDR r0,=0xFF ;MOV r0,#0xFF
LDR r0,=0x55555555 ;LDR r0,[PC,#Imm10]

• As this mechanism will always generate the best
instruction for a given case, it is the recommended way of
loading constants.

79/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Multiple Register Data Transfer (1/2)
• The load and store multiple instructions (LDM/STM) allow between 1

and 16 registers to be transferred to or from memory
– order of register transfer cannot be specified, order in the list is insignificant
– lowest register number is always transferred to/from lowest memory location

accessed
• The transferred registers can be either

– any subset of the current bank of registers (default)
– any subset of the user mode bank of registers when in a privileged mode

(postfix instruction with a “^”)
• Base register used to determine where memory access should occur

– 4 different addressing modes
– base register can be optionally updated following the transfer (using “!”)

• These instructions are very efficient for
– moving blocks of data around memory
– saving and restoring context - stack

80/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Multiple Register Data Transfer (2/2)

• Allow any subset (or all, r0 to r15) of the 16 registers to be
transferred with a single instruction

LDMIA r1,{r0,r2,r5}

;r0:=mem32[r1]

;r2:=mem32[r1+4]

;r5:=mem32[r1+8]

81/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Stack Processing
• A stack is usually implemented as a linear data structure which grows

up (an ascending stack) or down (a descending stack) memory
• A stack pointer holds the address of the current top of the stack, either

by pointing to the last valid data item pushed onto the stack (a full stack),
or by pointing to the vacant slot where the next data item will be placed
(an empty stack)

• ARM multiple register transfer instructions support all four forms of
stacks
– full ascending: grows up; base register points to the highest address

containing a valid item
– empty ascending: grows up; base register points to the first empty location

above the stack
– full descending: grows down; base register points to the lowest address

containing a valid data
– empty descending: grows down, base register points to the first empty

location below the stack

82/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Block Copy Addressing (1/2)

 Addressing modes
r5

STMIA r9!, {r0, r1, r5}

r1
r0

r9’

r9

100016

101816

100c16

r5
r1
r0

r9’

r9

100016

101816

100c16

STMIB r9!, {r0, r1, r5}

r5

STMDA r9!, {r0, r1, r5}

r1
r0

r9’

r9

100016

101816

100c16 r5
r1
r0r9’

r9

100016

101816

100c16

STMDB r9!, {r0, r1, r5}

STMIB
STMFABefore

Increment
STMIA
STMEA

LDMIA
LDMFD

LDMIB
LDMED

LDMDA
LDMFA

LDMDB
LDMEA

STMDB
STMFD

STMDA
STMED

After

Before
Decrement

After

Full Empty

Ascending

Full Empty

Descending

83/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

• Copy 8 words from the location r0 points to to the location
r1 points to
LDMIA r0!,{r2-r9}

STMIA r1,{r2-r9}

– r0 increased by 32, r1 unchanged
• If r2 to r9 contained useful values, preserve them by

pushing them onto a stack
STMFD r13!,{r2-r9}

LDMIA r0!,{r2-r9}

STMIA r1,{r2-r9}

LDMFD r13,{r2-r9}

– FD postfix: full descending stack addressing mode

Block Copy Addressing (2/2)

84/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Memory Block Copy

• The direction that the base pointer moves through memory
is given by the postfix to the STM/LDM instruction
– STMIA/LDMIA: Increment After
– STMIB/LDMIB: Increment Before
– STMDA/LDMDA: Decrement After
– STMDB/LDMDB: Decrement Before

• For Example
;r12 points to start of source data

;r14 points to end of source data

;r13 points to start of destination data

Loop LDMIA r12!,{r0-r11} ;load 48 bytes

STMIA r13!,{r0-r11} ;and store them

CMP r12,r14 ;check for the end

BNE Loop ;and loop until done

– this loop transfers 48 bytes in 31 cycles
– over 50Mbytes/sec at 33MHz

�����
�����
�����

r13

�����
�����
�����

r12

r14

increasing
memory

copy

85/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Single Word and Unsigned Byte Data Transfer
Instructions

• Pre-indexed form
LDR|STR {<cond>}{B} Rd,[Rn,<offset>]{!}

• Post-index form
LDR|STR {<cond>}{B}{T} Rd,[Rn],<offset>

• PC-relative form
LDR|STR {<cond>}{B} Rd,LABEL

– LDR: ‘load register’; STR: ‘store register’
– ‘B’ unsigned byte transfer, default is word;
– <offset> may be # +/-<12-bit immediate> or +/- Rm {, shift}
– ! auto-indexing
– T flag selects the user view of the memory translation and

protection system

86/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Example

• Store a byte in r0 to a peripheral

LDR r1, UARTADD ; UART address into r1

STRB r0, [r1] ; store data to UART

…

UARTADD & &10000000 ; address literal

87/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Half-word and Signed Byte Data Transfer Instructions

• Pre-indexed form
LDR|STR{<cond>}H|SH|SB Rd,[Rn,<offset>]{!}

• Post-indexed form
LDR|STR{<cond>}H|SH|SB Rd,[Rn],<offset>

– <offset> is # +/-<8-bit immediate> or +/-Rm
– H|SH|SB selects the data type

• unsigned half-word
• signed half-word and
• signed byte
• Otherwise the assemble format is for word and unsigned byte transfer

88/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Example

• Expand an array of signed half-words into an array
of words

ADR r1,ARRAY1 ;half-word array start
ADR r2,ARRAY2 ;word array start
ADR r3,ENDARR1 ;ARRAY1 end+2

Loop LDRSH r0,[r1],#2 ;get signed half-word
STR r0,[r2],#4 ;save word
CMP r1,r3 ;check for end of array
BLT Loop ;if not finished, loop

89/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Multiple Register Transfer Instructions

• LDM|STM {<cond>}<add mode> Rn{!},
<registers>

– <add mode> specifies one of the addressing modes
– ‘!’: auto-indexing
– <registers> a list of registers, e.g., {r0, r3-r7, pc}

• In non-user mode, the CPSR may be restored by
LDM{<cond>}<add mode> Rn{!},<registers+PC>^

• In non-user mode, the user registers may be
saved or restored by
LDM|STM{<cond>}<add mode> Rn,<registers-PC>^

– The register list must not contain PC and write-back is
not allowed

90/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Example

• Save 3 work registers and the return address upon entering
a subroutine (assume r13 has been initialized for use as a
stack pointer)

STMFD r13!,{r0-r2,r14}

• Restore the work registers and return
LDMFD r13!,{r0-r2,pc}

91/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Swap Memory and Register Instructions

• SWP{<cond>}{B} Rd,Rm,[Rn]

• Rd <- [Rn], [Rn] <- Rm

• Combine a load and a store of a word or an unsigned byte
in a single instruction

• Example
ADR r0,SEMAPHORE

SWPB r1,r1,[r0] ;exchange byte

92/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Status Register to General Register Transfer
Instructions
• MRS{<cond>} Rd,CPSR|SPSR

• The CPSR or the current mode SPSR is copied into the
destination register. All 32 bits are copied.

• Example
MRS r0,CPSR

MRS r3,SPSR

93/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

General Register to Status Register Transfer
Instructions

• MSR{<cond>} CPSR_<field>|SPSR_<field>,#<32-bit immediate>

MSR{<cond>} CPSR_<field>|SPSR_<field>,Rm

– <field> is one of
• c - the control field PSR[7:0]
• x - the extension field PSR[15:8]
• s - the status field PSR[23:16]
• f - the flag field PSR[31:24]

• Example
– set N, X, C, V flags
MSR CPSR_f,#&f0000000

– set just C, preserving N, Z, V
MRS r0,CPSR

ORR r0,r0,#&20000000 ;set bit29 of r0

MSR CPSR_f,r0

94/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Control Flow Instructions

• Branch instructions
• Conditional branches
• Conditional execution
• Branch and link instructions
• Subroutine return instructions
• Supervisor calls
• Jump tables

95/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Branch Instructions

B LABEL

…

LABEL …

– LABEL comes after or before the branch instruction

96/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Conditional Branches

• The branch has a condition associated with it and it is only
executed if the condition codes have the correct value -
taken or not taken

MOV r0,#0 ;initialize counter

Loop …

ADD r0,r0,#1 ;increment loop counter

CMP r0,#10 ;compare with limit

BNE Loop ;repeat if not equal

;else fall through

97/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Conditional Branch

Note:
The pair listed in the
same row !
Synonyms, identical
binary code

Interpretation
B
BAL

BNE
BPL
BMI

Always
Equal
Not Equal
Plus
Minus

Branch Normal uses
Unconditional Always take this branch

Always take this branch
BEQ Comparison equal or zero result

Comparison equal or non-zero result
Result positive or zero
Result minus or negative

BCC
BLO Lower

Carry clear Arithmetic operation did not give carry-out
Unsigned comparison gave lower

BCS
BHS Higher or same

Carry set Arithmetic operation gave give carry-out
Unsigned comparison gave higher or same

BVC Overflow clear Signed integer operation; no overflow occurred
BVS Overflow set Signed integer operation; overflow occurred
BGT Greater than Signed integer comparison gave greater than
BGE Greater or equal Signed integer comparison gave greater or equal
BLT Less than Signed integer comparison gave less than
BLE Less or equal Signed integer comparison gave less than or equal
BHI Higher Unsigned comparison gave higher
BLS Lower or same Unsigned comparison gave lower or same

98/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Conditional Execution

• An unusual feature of the ARM instruction set is that conditional execution
applies not only to branches but to all ARM instructions

CMP r0,#5 CMP r0,#5

BEQ Bypass ;if(r0!=5) ADDNE r1,r1,r0

ADD r1,r1,r0 ;{r1=r1+r0-r2} SUBNE r1,r1,r2

SUB r1,r1,r2

Bypass …

• Whenever the conditional sequence is 3 instructions or fewer it is better
(smaller and faster) to exploit conditional execution than to use a branch
if((a==b)&&(c==d)) e++; CMP r0,r1

CMPEQ r2,r3

ADDEQ r4,r4,#1

99/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Branch and Link Instructions

• Perform a branch, save the address following the branch
in the link register, r14

BL SUBR ;branch to SUBR

… ;return here

SUBR … ;subroutine entry point

MOV PC,r14 ;return

• For nested subroutine, push r14 and some work registers
required to be saved onto a stack in memory

BL SUB1

…

SUB1 STMFD r13!,{r0-r2,r14} ;save work and link regs

BL SUB2

…

SUB2 …

100/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Subroutine Return Instructions
SUB …

MOV PC,r14 ;copy r14 into r15 to return

• Where the return address has been pushed onto a stack

SUB1 STMFD r13!,{r0-r2,r14} ;save work regs and link

 BL SUB2

 …

 LDMFD r13!,{r0-e12,PC} ;restore work regs & return

101/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Supervisor Calls

• The supervisor is a program which operates at a privileged
level, which means that it can do things that a user-level
program cannot do directly (e.g. input or output)

• SWI instruction
– software interrupt or supervisor call

SWI SWI_WriteC ;output r0[7:0]

SWI SWI_Exit ;return to monitor program

102/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Jump Tables

• To call one of a set of subroutines, the choice depending on a
value computed by the program

BL JUMPTAB BL JUMPTAB

… …

JUMPTAB CMP r0,#0 JUMPTAB ADR r1,SUBTAB ;r1->SUBTAB

BEQ SUB0 CMP r0,#SUBMAX ;check for overrun

CMP r0,#1 LDRLS PC,[r1,r0,LSL#2];if OK,table jump

BEQ SUB1 B ERROR

CMP r0,#2 SUBTAB DCD SUB0

BEQ SUB2 DCD SUB1

… DCD SUB2

…

• The ‘DCD’ directive instructs the assembler to reserve a word of
store and to initialize it to the value of the expression to the right,
which in these cases is just the address of the label.

103/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Branch and Branch with Link (B,BL)

• B{L}{<cond>} <target address>

– <target address> is normally a label in the assembler code.

 24-bit offset, sign-extended, shift left 2 places
+ PC (address of branch instruction + 8)
 target address

cond 1 1 1 0L 24-bit signed word offset
31 28 27 2524 23 0

104/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Examples
• Unconditional jump

B LABEL

…

LABEL …

• Loop ten times
MOV r0,#10

Loop…

SUBS r0,#1

BNE Loop

…

• Call a subroutine
BL SUB

…

SUB …

MOV PC,r14

• Conditional subroutine call
CMP r0,#5

BLLT SUB1 ; if r0<5, call SUB1

BLGE SUB2 ; else call SUB2

105/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Branch, Branch with Link and eXchange

• B{L}X{<cond>} Rm

– the branch target is specified in a register, Rm
– bit[0] of Rm is copied into the T bit in CPSR; bit[31:1] is moved into

PC
– if Rm[0] is 1, the processor switches to execute Thumb instructions

and begins executing at the address in Rm aligned to a half-word
boundary by clearing the bottom bit

– if Rm[0] is 0, the processor continues executing ARM instructions
and begins executing at the address in Rm aligned to a word
boundary by clearing Rm[1]

• BLX <target address>

– call Thumb subroutine from ARM
– the H bit (bit 24) is also added into bit 1 of the resulting address,

allowing an odd half-word address to be selected for the target
instruction which will always be a Thumb instruction

106/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Example

• A call to a Thumb subroutine

CODE32

…

BLX TSUB ;call Thumb subroutine

…

CODE16 ;start of Thumb code

TSUB …

BX r14 ;return to ARM code

107/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Software Interrupt (SWI)

• SWI{<cond>} <24-bit immediate>

– used for calls to the operating system and is often called a
“supervisor call”

– it puts the processor into supervisor mode and begins executing
instruction from address 0x08

• Save the address of the instruction after SWI in r14_svc
• Save the CPSR in SPSR_svc
• Enter supervisor mode and disable IRQs by setting CPSR[4:0] to

100112 and CPSR[7] to 1
• Set PC to 0816 and begin executing the instruction there

– the 24-bit immediate does not influence the operation of the
instruction but may be interpreted by the system code

108/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Examples
• Output the character ‘A’

MOV r0,#’A’

SWI SWI_WriteC

• Finish executing the user program and return to the monitor
SWI SWI_Exit

• A subroutine to output a text string
BL STROUT

= “Hello World”,&0a,&0d,0

…

STROUT LDRB r0,[r14],#1 ;get character

CMP r0,#0 ;check for end marker

SWINE SWI_WriteC ;if not end, print

BNE STROUT ; … , loop

ADD r14,#3 ;align to next word

BIC r14,#3

MOV PC,r14 ;return

109/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Coprocessor Instructions

• Extend the instruction set through the addition of
coprocessors
– System Coprocessor: control on-chip function such as cache and

memory management unit
– Floating-point Coprocessor
– Application-Specific Coprocessor

• Coprocessors have their own private register sets and
their state is controlled by instructions that mirror the
instructions that control ARM registers

110/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Coprocessor Data Operations
• CDP{<cond>}<CP#>,<Cop1>,CRd,CRn,CRm{,<Cop2>}

• Use to control internal operations on data in coprocessor
registers

• CP# identifies the coprocessor number
• Cop1, Cop2 operation
• Examples

CDP P2,3,C0,C1,C2
CDPEQ P3,6,C1,C5,C7,4

cond 1 1 1 0 Cop1 CRn CRd
31 28 27 201924 23 16 15 12 11 8 7 5 4 3 0

CP# Cop20 CRm

111/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Coprocessor Data Transfers
• Pre-indexed form

LDC|STC{<cond>}{L}<CP#>,CRd,[Rn,<offset>]{!}

• Post-indexed form
LDC|STC{<cond>}{L}<CP#>,CRd,[Rn],<offset>

– L flag, if present, selects the long data type
– <offset> is # +/-<8-bit immediate>

– the number of words transferred is controlled by the coprocessor
– address calculated within ARM; number of words transferred controlled by the

coprocessor
• Examples

LDC P6,c0,[r1]

STCEQL P5,c1,[r0],#4

cond 1110
31 28 27 201924

23
16 15 12 11 8 7 0

21

source/destination register
PUNWL

25
22

CRn CRd CP# 8-bit offset

base register
load/store
write-back (auto-index)
data size (coprocessor dependent)
up/down
pre-/post-index

112/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Coprocessor Register Transfers

• Move to ARM register from coprocessor
MRC{<cond>} <CP#>,<Cop1>,Rd,CRn,CRm,{,<Cop2>}

• Move to coprocessor from ARM register
MCR{<cond>} <CP#>,<Cop1>,Rd,CRn,CRm,{,<Cop2>}

• Examples
MCR P14,3,r0,c1,c2

MRCCS P2,4,r3,c3,c4,6

cond 1 1 1 0 Cop1
31 28 27 201924 23 16 15 12 11 8 7 5 4 3 0

L CRn CRd CP# Cop21 CRm
21

Load from coprocessor/store to coprocessor

113/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Breakpoint Instructions (BKPT-v5T only)

• BKPT <16-bit immediate>

• Used for software debugging purposes; they cause the
processor to break from normal instruction execution and enter
appropriate debugging procedures

• BKPT is unconditional
• Handled by an exception handler installed on the prefetch

abort vector

114/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Unused Instruction Space
• Unused Arithmetic Instructions

• Unused Control Instructions

• Unused Load/Store Instructions

• Unused Coprocessor Instructions

• Undefined Instruction Space

cond 1 1 0 0
31 28 27 201924

23
16 15 12 11 8 7 0

21

op 0 x
22

Rn CRd CP# offset

cond 011
31 28 27 24 4 3 025

x 1 xxxx
5

7 5 4 3 0
cond 0 0 0

31 28 27 201924
23

16 15 12 11 8
21

PUBWL

25
22

Rn Rd RS 1 op 1 Rm
6

7 5 4 3 0
cond 0 0 0 0 0 1

31 28 27 2019 16 15 12 11 82122 6
op Rn Rd RS 1001 Rm

cond 0 0 1 1 0

31 28 27 201923 16 15 12 11 8

op 0

22

Rn CRd #rot 8-bit immediate

cond 0 0 0 1 0 op 0 Rn CRd RS 0 op2 1 Rm

cond 0 0 0 1 0 op 0 Rn CRd RS op2 0 Rm
7 5 4 3 0621

115/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

 16-bit Instruction Set

116/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Thumb Instruction Set (1/3)

Mnemonic Instruction Lo
Register

Hi
Register

Condition
Code

ADC Add with carry ○ ○

ADD Add ○ ○ ○

AND AND ○ ○

ASR Arithmetic Shift Right ○ ○

B Branch ○

Bxx Conditional Branch ○

BIC Bit Clear ○ ○

BL Branch with Link
BX Branch and Exchange ○ ○

CMN Compare Negative ○ ○

CMP Compare ○ ○ ○

EOR EOR ○ ○

LDMIA Load Multiple ○

LDR Load Word ○

117/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Thumb Instruction Set (2/3)
Mnemonic Instruction Lo

Register
Hi
Register

Condition
Code

LDRB Load Byte ○

LDRH Load Halfword ○

LSL Logical Shift Left ○ ○

LDSB Load Signed Byte ○

LDSH Load Signed Halfword ○

LSR Logical Shift Right ○ ○

MOV Move Register ○ ○ ○

MUL Multiply ○ ○

MVN Move Negative Register ○ ○

NEG Negate ○ ○

ORR OR ○ ○

POP Pop Registers ○

PUSH Push Registers ○

ROR Rotate Right ○ ○

118/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Thumb Instruction Set (3/3)

Mnemonic Instruction Lo
Register

Hi
Register

Condition
Code

SBC Subtract with Carry ○ ○

STMIA Store Multiple ○

STR Store Word ○

STRB Store Byte ○

STRH Store Halfword ○

SWI Software Interrupt
SUB Subtract ○ ○

TST Test Bits ○ ○

119/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Thumb Instruction Format

120/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Thumb-ARM Difference

• Thumb instruction set is a subset of the ARM instruction
set and the instructions operate on a restricted view of the
ARM registers

• Most Thumb instructions are executed unconditionally (All
ARM instructions are executed conditionally)

• Many Thumb data processing instructions use a 2-address
format, i.e. the destination register is the same as one of
the source registers (ARM data processing instructions,
with the exception of the 64-bit multiplies, use a 3-address
format)

• Thumb instruction formats are less regular than ARM
instruction formats => dense encoding

121/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Register Access in Thumb

• Not all registers are directly accessible in Thumb
• Low register r0~r7: fully accessible
• High register r8~r12: only accessible with MOV,

ADD, CMP; only CMP sets the condition code
flags

• SP(stack pointer), LR(link register) & PC(program
counter): limited accessibility, certain instructions
have implicit access to these

• CPSR: only indirect access
• SPSR: no access

122/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Thumb Accessible Registers

shaded registers have restricted access
 r0
 r1
 r2
 r3
 r4
 r5
 r6
 r7
 r8
 r9
 r10
 r11
 r12
 SP (r13)
 LR (r14)
 PC (r15)

Lo registers

Hi registers

 CPSR

123/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Branches
• Thumb defines three PC-relative branch instructions, each of which

have different offset ranges
– Offset depends upon the number of available bits

• Conditional Branches
– B<cond> label

– 8-bit offset: range of -128 to 127 instructions (+/-256 bytes)
– Only conditional Thumb instructions

• Unconditional Branches
– B label

– 11-bit offset: range of -1024 to 1023 instructions (+/- 2Kbytes)
• Long Branches with Link

– BL subroutine

– Implemented as a pair of instructions
– 22-bit offset: range of -2097152 to 2097151 instructions (+/- 4Mbytes)

124/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Data Processing Instructions

• Subset of the ARM data processing instructions
• Separate shift instructions (e.g. LSL, ASR, LSR,

ROR)
LSL Rd,Rs,#Imm5 ;Rd:=Rs <shift> #Imm5
ASR Rd,Rs ;Rd:=Rd <shift> Rs

• Two operands for data processing instructions
– act on low registers

BIC Rd,Rs ;Rd:=Rd AND NOT Rs
ADD Rd,#Imm8 ;Rd:=Rd+#Imm8

– also three operand forms of add, subtract and shifts
ADD Rd,Rs,#Imm3 ;Rd:=Rs+#Imm3

• Condition code always set by low register
operations

125/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Load or Store Register
• Two pre-indexed addressing modes

– base register+offset register
– base register+5-bit offset, where offset scaled by

• 4 for word accesses (range of 0-124 bytes / 0-31 words)
– STR Rd,[Rb,#Imm7]

• 2 for halfword accesses (range of 0-62 bytes / 0-31 halfwords)
– LDRH Rd,[Rb,#Imm6]

• 1 for byte accesses (range of 0-31 bytes)
– LDRB Rd,[Rb,#Imm5]

• Special forms:
– load with PC as base with 1Kbyte immediate offset (word aligned)

• used for loading a value from a literal pool
– load and store with SP as base with 1Kbyte immediate offset (word

aligned)
• used for accessing local variables on the stack

126/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Block Data Transfers

• Memory copy, incrementing base pointer after transfer
– STMIA Rb!, {Low Reg list}

– LDMIA Rb!, {Low Reg list}

• Full descending stack operations
– PUSH {Low Reg list}

– PUSH {Low Reg list, LR}

– POP {Low Reg list}

– POP {Low Reg list, PC}

• The optional addition of the LR/PC provides support for
subroutine entry/exit.

127/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Miscellaneous

• Thumb SWI instruction format
– same effect as ARM, but SWI number limited to 0~255
– syntax:

• SWI <SWI number>

• Indirect access to CPSR and no access to SPSR, so no
MRS or MSR instructions

• No coprocessor instruction space

1 01 1 1 1 1 1

15 8 7 0

SWI number

128/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Thumb Instruction Entry and Exit

• T bit, bit 5 of CPSR
– if T=1, the processor interprets the instruction stream as 16-bit

Thumb instruction
– if T=0, the processor interprets it as standard ARM instructions

• Thumb Entry
– ARM cores startup, after reset, executing ARM instructions
– executing a Branch and Exchange instruction (BX)

• set the T bit if the bottom bit of the specified register was set
• switch the PC to the address given in the remainder of the register

• Thumb Exit
– executing a Thumb BX instruction

129/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

The Need for Interworking

• The code density of Thumb and its performance from
narrow memory make it ideal for the bulk of C code in many
systems. However there is still a need to change between
ARM and Thumb state within most applications:
– ARM code provides better performance from wide memory

• therefore ideal for speed-critical parts of an application
– some functions can only be performed with ARM instructions, e.g.

• access to CPSR (to enable/disable interrupts & to change mode)
• access to coprocessors

– exception Handling
• ARM state is automatically entered for exception handling, but system

specification may require u;sage of Thumb code for main handler
– simple standalone Thumb programs will also need an ARM

assembler header to change state and call the Thumb routine

130/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Interworking Instructions

• Interworking is achieved using the Branch Exchange
instructions
– in Thumb state

BX Rn

– in ARM state (on Thumb-aware cores only)
BX<condition> Rn

where Rn can be any registers (r0 to r15)
• This performs a branch to an absolute address in 4GB

address space by copying Rn to the program counter
• Bit 0 of Rn specifies the state to change to

131/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Switching between States

Rn
0131

01

0
31 Destination

Address

ARM/Thumb Selection
0- ARM State

1- Thumb State

BX

132/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Example
;start off in ARM state

CODE32

ADR r0,Into_Thumb+1 ;generate branch target
;address & set bit 0,

;hence arrive Thumb state

BX r0 ;branch exchange to Thumb

…

CODE16 ;assemble subsequent as
;Thumb

Into_Thumb …

ADR r5,Back_to_ARM ;generate branch target to

;word-aligned address,

;hence bit 0 is cleared.

BX r5 ;branch exchange to ARM

…

CODE32 ;assemble subsequent as

;ARM

Back_to_ARM …

133/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

 ARM Processor Core

134/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

3-Stage Pipeline ARM Organization

• Register Bank
– 2 read ports, 1write ports, access any

register
– 1 additional read port, 1 additional

write port for r15 (PC)
• Barrel Shifter

– Shift or rotate the operand by any
number of bits

• ALU
• Address register and incrementer
• Data Registers

– Hold data passing to and from
memory

• Instruction Decoder and Control

135/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Data Processing Instructions

• All Operations take place in a single clock cycle

136/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

3-Stage Pipeline (1/2)

• Fetch
– the instruction is fetched from memory and placed in the instruction pipeline

• Decode
– the instruction is decoded and the datapath control signals prepared for the

next cycle
• Execute

– the register bank is read, an operand shifted, the ALU result generated and
written back into a destination register

1 fetch decode execute

2 fetch decode execute

3 fetch decode execute

instruction

time

137/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

• At any time slice, 3 different instructions may occupy each
of these stages, so the hardware in each stage has to be
capable of independent operations

• When the processor is executing data processing
instructions, the latency = 3 cycles and the throughput = 1
instruction/cycle

• When accessing r15 (PC), r15=address of current
instruction + 8

3-Stage Pipeline (2/2)

138/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Data Transfer Instructions

• Computes a memory address similar to a data processing instruction
• Load instruction follow a similar pattern except that the data from memory only

gets as far as the ‘data in’ register on the 2nd cycle and a third cycle is needed
to transfer the data from there to the destination register

139/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Multi-cycle Instruction

• Memory access (fetch, data transfer) in every cycle
• Datapath used in every cycle (execute, address calculation, data

transfer)
• Decode logic generates the control signals for the data path use in next

cycle (decode, address calculation)

1 fetch ADD decode execute

2 fetch STR decode calc. addr.

3

instruction

time

4

5

data xfer

fetch ADD decode execute

fetch ADD decode execute

fetch ADD decode execute

140/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Branch Instructions

• The third cycle, which is required to complete the pipeline refilling, is also used
to make a small correction to the value stored in the link register in order that it
points directly at the instruction which follows the branch

141/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Branch Pipeline Example

Breaking the pipeline

Note that the core is executing in ARM state

fetch decode execute linkret adjust
fetch decode

fetch
fetch decode execute

fetch decode execute
fetch decode

fetch

opeationaddress

BL

X

XX

ADD

SUB

MOV

0x8000

0x8004

0x8008

0x8FEC

0x8FF0

0x8FF4

Cycle 1 2 3 4 5

142/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Interrupt Pipeline Example

fetch decode execute
fetch decode IRQ

fetch
fetch

fetch decode execute
fetch decode

fetch

opeationaddress

ADD

SUB

MOV

0x8000

0x8004

0x8008

0x800C

0x001C

0x0018

Cycle 1 2 3 4 5 6 7 8

0x0020

0xAF00

0xAF04

0xAF08

X

B(to 0xAF00)
XX

XXX

STMFD

MOV

LDR

fetch
fetch

fetch

execute IRQ linkret adjust

IRQ

decode execute
decode

IRQ interrupt minimum latency = 7 cycyles

143/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

5-Stage Pipelined ARM Organization

• Tprog=Ninst*CPI*cycle_time
– Ninst, compiler dependent
– CPI, hazard => pipeline stalls
– cycle_time, frequency

• Separate instruction and data memories => 5 stage
pipeline

• Used in ARM9TDMI

144/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM9TDMI 5-stage Pipeline Organization

• Fetch
– The instruction is fetched from memory and

placed in the instruction pipeline
• Decode

– The instruction is decoded and register
operands read from the register file. There are
3 operand read ports in the register file so
most ARM instructions can source all their
operands in one cycle

• Execute
– An operand is shifted and the ALU result

generated. If the instruction is a load or store,
the memory address is computed in the ALU

• Buffer/Data
– Data memory is accessed if required.

Otherwise the ALU result is simply buffered for
one cycle

• Write Back
– The results generated by the instruction are

written back to the register file, including any
data loaded from memory

145/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Data Forwarding
• Data dependency arises when an instruction needs to use the result of

one of its predecessors before the result has returned to the register
file => pipeline hazards

• Forwarding paths allow results to be passed between stages as soon
as they are available

• 5-stage pipeline requires each of the three source operands to be
forwarded from any of the intermediate result registers

• Still one load stall
LDR rN,[…]

ADD r2,r1,rN ;use rN immediately

– one stall
– compiler rescheduling

146/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM7TDMI Processor Core

• Current low-end ARM core for applications like digital
mobile phones

• TDMI
– T: Thumb, 16-bit compressed instruction set
– D: on-chip Debug support, enabling the processor to halt in

response to a debug request
– M: enhanced Multiplier, yield a full 64-bit result, high performance
– I: Embedded ICE hardware

• Von Neumann architecture
• 3-stage pipeline, CPI ~1.9

147/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM7TDMI Block Diagram

148/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM7TDMI Core Diagram

149/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM7TDMI Interface Signals (1/4)

150/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

• Clock control
– all state change within the processor are controlled by mclk, the memory

clock
– internal clock = mclk AND \wait
– eclk clock output reflects the clock used by the core

• Memory interface
– 32-bit address A[31:0], bidirectional data bus D[31:0], separate data out

Dout[31:0], data in Din[31:0]
– \mreq indicates a processor cycle which requires a memory access
– seq indicates that the memory address will be sequential to that used in the

previous cycle

ARM7TDMI Interface Signals (2/4)

 0
seq

 1
 0
 1

Cycle
 N
 S
 I
 C

Use
Non-sequential memory access

Internal cycle - bus and memory inactive
Sequential memory access

Coprocessor register transfer - memory inactive

 0
mreq

 0
 1
 1

151/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

– lock indicates that the processor should keep the bus to ensure the
atomicity of the read and write phase of a SWAP instruction

– \r/w, read or write
– mas[1:0], encode memory access size - byte, half-word or word
– bl[3:0], externally controlled enables on latches on each of the 4 bytes on

the data input bus
• MMU interface

– \trans (translation control), 0:user mode, 1:privileged mode
– \mode[4:0], bottom 5 bits of the CPSR (inverted)
– abort, disallow access

• State
– T bit, whether the processor is currently executing ARM or Thumb

instructions
• Configuration

– bigend, big-endian or little-endian

ARM7TDMI Interface Signals (3/4)

152/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

• Interrupt
– \fiq, fast interrupt request, higher priority
– \irq, normal interrupt request
– isync, allow the interrupt synchronizer to be passed

• Initialization
– \reset, starts the processor from a known state, executing from address

0000000016

• ARM7TDMI characteristics

ARM7TDMI Interface Signals (4/4)

Process
Metal layers
Vdd

Transitsors
Core ares
Clock

MIPS
Power
MIPS/W

0.35 µm
3

3.3 V

74,209

2.1 mm2

0 ~ 66 MHz

60

87 mW

690

153/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

External Address Generation

Incrementer

Vectors

Address
Register A[31:0]

INC 0x00

0x1C

ALU[31:0]

PC[31:2] ARM State
PC[31:1] Thumb State

154/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Memory Access

Memory as words

Byte Line

• The ARM7 is a Von Neumann,
load/store architecture, I.e.,
– One 32 bit data bus for both inst. and data.
– Only the load/store inst. (and SWP) access

memory.
• Memory is addressed as a 32 bit

address space.
• Data types can be 8 bit bytes, 16 bit

half-words or 32 bit words, and may be
seen as a byte line folded into 4-byte
words.

• Words must be aligned to 4 byte
boundaries, and half-words to 2 byte
boundaries.

• Always ensure that memory controller
supports all three access sizes.

155/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Memory Interface
• Sequential (S cycle)

– (nMREQ, SEQ) = (0, 1)
– The ARM core requests a transfer to or from an address which is

either the same, or one word or one-half-word greater than the
preceding address.

• Non-sequential (N cycle)
– (nMREQ, SEQ) = (0, 0)
– The ARM core requests a transfer to or from an address which is

unrelated to the address used in the preceding cycle.
• Internal (I cycle)

– (nMREQ, SEQ) = (1, 0)
– The ARM core does not require a transfer, as it is performing an

internal function, and no useful prefetching can be performed at the
same time.

• Coprocessor register transfer (C cycle)
– (nMREQ, SEQ) = (1, 1)
– The ARM core wishes to use the data bus to communicate with a

coprocessor, but does not require any action by the memory system.

156/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Instruction Execution Cycles (1/2)

Instruction Qualifier Cycle count
Any unexecuted Condition codes fail +S
Data processing Single -cycle +S
Data processing Register -specified shift +I +S
Data processing R15 destination +N +2S
Data processing R15, register -specified shift +I +N +2S
MUL +(m)I +S
MLA +I +(m)I +S
MULL +(m)I +I +S
MLAL +I +(m)I +I +S
B, BL +N +2S
LDR Non-R15 destination +N +I +S

157/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Instruction Execution Cycles (2/2)

Instruction Qualifier Cycle count
LDR R15 destination +N +I +N +2S
STR +N +N
SWP +N +N +I +S
LDM Non- R15 destination +N +(n - 1)S + I +S
LDM R15 destination +N +(n - 1)S +I +N +2S
STM +N +(n - 1)S +I +N
MSR, MRS +S
SWI, trap +N +2S
CDP +(b)I +S
MCR +(b)I +C +N
MRC +(b)I +C +I +S
LDC, STC +(b)I +N +(n - 1)S +N

158/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Effect of T bit

ARM
Instrction
Decode

Fetch Decode Excute

Phase 2Phase 1

D[31:0]

Thumb
Instruction

Decompressor

A[1]

T bit

MUX

1

0

MUX

1

0

MUX16

16

32-bit data

159/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Cached ARM7TDMI Macrocells

AMBA
Interface

Inst. & data cache

MMU

ARM7TDMI

CP15EmbeddedICE & JTAG

JTAG and non-AMBA signals

Write
Buffer

AMBA
Address

AMBA
Data

Virtual
Address

Physical
Address

Inst. & data

• ARM710T
– 8K unified write through cache
– Full memory management unit

supporting virtual memory and
memory protection

– Write buffer

• ARM720T
– As ARM 710T but with WinCE support

• ARM740T
– 8K unified write through cache
– Memory protection unit
– Write buffer

160/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM 8
• Higher performance than ARM7

– by increasing the clock rate
– by reducing the CPI

• higher memory bandwidth, 64-bit wide memory
• Separate memories for instruction and data accesses

• ARM8 ARM9TDMI
 ARM10TDMI
• Core Organization

– the prefetch unit is responsible for
fetching instructions from memory and
buffering them (exploiting the double
bandwidth memory)

– it is also responsible for branch
prediction and use static prediction
based on the branch prediction
(backward: predicted ‘taken’, forward:
predicted ‘not taken’)

161/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Pipeline Organization

• 5-stage, prefetch unit occupies the 1st stage, integer unit
occupies the remainder

(1) Instruction prefetch
(2) Instruction decode and register read
(3) Execute (shift and ALU)
(4) Data memory access
(5) Write back results

162/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Integer Unit Organization

163/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM9TDMI

• Harvard architecture
– increases available memory bandwidth

• instruction memory interface
• data memory interface

– simultaneous accesses to instruction and data memory
can be achieved

• 5-stage pipeline
• Changes implemented to

– improve CPI to ~1.5
– improve maximum clock frequency

164/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM9TDMI Organization

165/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM9TDMI Pipeline Operations

Not sufficient slack time to translate Thumb instructions into ARM instructions and then
decode, instead the hardware decode both ARM and Thumb instructions directly

inst.
fetch

Thumb
decompress

ARM
decode

inst.
fetch shift/ALU data

memory acces

reg
read shift/ALU reg

write

reg
writedecode

reg
read

Fetch Decode Execute Memory Write

Fetch Decode Execute

ARM9TDMI

ARM7TDMI

166/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM9TDMI Datapath (1/2)

IA Vectors

Byte Rot/
Sign Ex.

C

B

A

DINFWD

Register
Bank

MU Logic

RESULT

Byte/Half Word
Replication

Bidirectional
Buffers DD

DA

DINC

ALU

IINC

167/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM9TDMI Datapath (2/2)

MU Logic

(To IA Generator Logic)

Register
Bank

Latch

PSR

Latch

B

A

DINFWD
RESULT

BDATA

Multiplier

ADATA

Shifter
Imm

168/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

LDR Interlock

• In this example, it takes 7 clock cycles to execute 6 instructions, CPI of 1.2
• The LDR instruction immediately followed by a data operation using the

same register cause an interlock

F D E
F D

F

Operation
ADD
SUB
LDR
ORR

EOR

R1, R1, R2
R3, R4, R1
R4, [R7]
R8, R3, R4

R3, R1, R2

Cycle 1 2 3 4 5 6 7 8 9

F - Fetch D - Decode E - Excute I - Interlock M - Memory
W - Writeback

AND R6, R3, R1

D
E

E

W
W

W
F D E

F D
F D

E
E

W
W

W

M
I
I

169/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Optimal Pipelining

• In this example, it takes 6 clock cycles to execute 6 instructions, CPI of 1
• The LDR instruction does not cause the pipeline to interlock

F D E
F D

F

Operation
ADD
SUB
LDR

ORR
EOR

R1, R1, R2
R3, R4, R1
R4, [R7]

R8, R3, R4
R3, R1, R2

Cycle 1 2 3 4 5 6 7 8 9

F - Fetch D - Decode E - Excute I - Interlock M - Memory
W - Writeback

AND R6, R3, R1
D
E

E

W
W

W
F D E

F D
F D

E
E

W
W

W

M

170/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

LDM Interlock (1/2)

• In this example, it takes 8 clock cycles to execute 5 instructions, CPI of 1.6
• During the LDM there are parallel memory and writeback cycles

F MWD E M MW MW W
F ID I I E W

F II I D E M W
F D E W

F D E

Operation
LDMLA
SUB
STR
ORR
AND

R13!, {R0-R3}
R9, R7, R2
R4, [R9]
R8, R4, R3
R6, R3, R1

Cycle 1 2 3 4 5 6 7 8 9 10

F - Fetch D - Decode E - Excute I - Interlock M - Memory
ME - Simultaneous Memory and Writeback W - Writeback

W

171/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

LDM Interlock (2/2)

• In this example, it takes 9 clock cycles to execute 5 instructions, CPI of 1.8
• The SUB incurs a further cycle of interlock due to it using the highest

specified register in the LDM instruction
– This would occur for any of the LDM variants, e.g., IA, DB, FD, etc.

F MWD E M MW MW W
F ID I I I E W

F II I I D E M W
F D E W

F D E

Operation
LDMLA
SUB
STR
ORR
AND

R13!, {R0-R3}
R9, R7, R3
R4, [R9]
R8, R4, R3
R6, R3, R1

Cycle 1 2 3 4 5 6 7 8 9 10

F - Fetch D - Decode E - Excute I - Interlock M - Memory
ME - Simultaneous Memory and Writeback W - Writeback

172/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Example ARM9TDMI System

ARM9TDMI

Data Memory

Inst. Memory

Glue

Glue

ID[..]

IA[..]

DD[..]

DA[..]

CTRL

CTRL

Note:
• The data interface must have read access to the instruction memory for literal

pool data.
• For debug purposes, it is recommended that the data interface have read and

write access to instruction memory.

173/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Cached ARM9TDMI Macrocell

• ARM940T
– 2x 4K caches
– Memory protection unit
– Write buffer

• ARM920T
– 2x 16K caches
– Full memory management unit

supporting virtual addressing
and memory protection

– Write buffer

ARM9TDMI MMU

D cache

I cache

Glue

External
Memory

ARM9xxT

174/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

• Coprocessor support
– coprocessors: floating-point, digital signal processing,

special-purpose hardware accelerator
• On-chip debug

– additional features compared to ARM7TDMI
• hardware single stepping
• breakpoint can be set on exceptions

• ARM9TDMI characteristics

ARM9TDMI Pipeline Operations (2/2)

Process
Metal layers
Vdd

Transitsors
Core ares
Clock

MIPS
Power
MIPS/W

0.25 µm
3

2.5 V

111,000

2.1 mm2

0 ~ 200 MHz

220

150 mW

1500

175/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM9E-S Family Overview
• ARM9E is based on an ARM9TDMI with the following extensions

– single cycle 32*16 multiplier implementation
– EmbeddedICE Logic RT
– improved ARM/Thumb interworking
– new 32*16 and 16*16 multiply instructions
– new count leading zeros instruction
– new saturated maths instructions

• ARM946E-S
– ARM9E-S core
– instruction and data caches, selectable sizes
– instruction and data RAMs, selectable sizes
– protection unit
– AHB bus interface

• ARM966E-S
– similar to ARM946-S, but with no cache

Architecture v5TE

176/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM1020T Overview
• Architecture v5T

– ARM1020E will be v5TE
• CPI ~ 1.3
• 6-stage pipeline
• Static branch prediction
• 32KB instruction and 32KB data caches

– ‘hit under miss’ support
• 64 bits per cycle LDM/STM operations
• EmbeddedICE Logic RT-II
• Support for new VFPv1 architecture
• ARM10200 test chip

– ARM1020T
– VFP10
– SDRAM memory interface
– PLL

177/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM10TDMI (1/2)

• Current high-end ARM processor core
• Performance on the same IC process

• 300MHz, 0.25uM CMOS
• Increase clock rate

inst.
fetch

multiplier
partials add

addr.
calc.

reg
writedecode

reg
read

Fetch Decode Execute Memory Write

ARM10TDMI

branch
predicition

decode

data
memory acces

Issue

data
write

shift/ALU
multiply

ARM10TDMI ARM9TDMI ARM7TDMI
× 2 × 2

178/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

• Reduce CPI
– branch prediction
– non-blocking load and store execution
– 64-bit data memory ! transfer 2 registers in each cycle

ARM10TDMI (2/2)

179/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

 Software Development

180/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Tools
C source C libraries asm source

C compiler

linker

.aof
assembler

object
libraries

debug.aif

ARMsd

development
boardARMulator

system model

• ARM software development - ADS

• ARM system development - ICE and trace

• ARM-based SoC development – modeling, tools, design flow

181/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Development Suite (ADS),
ARM Software Development Toolkit (SDT) (1/3)

• Develop and debug C, C++ or assembly language program
• armcc ARM C compiler

armcpp ARM C++ compiler
tcc Thumb C compiler
tcpp Thumb C++ compiler
armasm ARM and Thumb assembler
armlink ARM linker

- combine the contents of one or more object files
with selected parts of one or more object libraries
to produce an executable program

- ARM linker creates ELF executable images
armsd ARM and Thumb symbolic debugger

- can single-step through C or assembly language
sources, set break-points and watch-points, and
examine program variables or memory

182/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Development Suite (ADS),
ARM Software Development Toolkit (SDT) (2/3)
• .aof ARM object format file

.aif ARM image format file

• The .aif file can be built to include the debug tables
=> ARM symbolic debugger, ARMsd

• ARMsd can load, run and debug programs either on hardware such as
the ARM development board or using the software emulation of the
ARM (ARMulator)

• AxD (ADW, ADU)
– ARM debugger for Windows and Unix with graphics user interface
– debug C, C++, and assembly language source

Code Warrior IDE
– project management tool for windows

183/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Development Suite (ADS),
ARM Software Development Toolkit (SDT) (3/3)

• Utilities
armprof ARM profiler
Flash downloader download binary images to Flash memory on

 a development board
• Supporting software

ARMulator ARM core simulator
– provide instruction accurate simulation of ARM processors and enable

ARM and Thumb executable programs to be run on non-native hardware
– integrated with the ARM debugger
Angel ARM debug monitor
– run on target development hardware and enable you to develop and

debug applications on ARM-based hardware

184/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM C Compiler

• Compiler is compliant with the ANSI standard for C
• Supported by the appropriate library of functions
• Use ARM Procedure Call Standard, APCS for all external

functions
– for procedure entry and exit

• May produce assembly source output
– can be inspected, hand optimized and then assembled

sequentially
• Can also produce Thumb codes

185/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Linker

• Take one or more object files and combine them
• Resolve symbolic references between the object files and

extract the object modules from libraries
• Normally the linker includes debug tables in the output file

186/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Symbolic Debugger

• A front-end interface to debug program running either
under emulation (on the ARMulator) or remotely on a ARM
development board (via a serial line or through JTAG test
interface)

• ARMsd allows an executable program to be loaded into
the ARMulator or a development board and run. It allows
the setting of
– breakpoints, addresses in the code
– watchpoints, memory address if accessed as data address
=> cause exception to halt so that the processor state can be

examined

187/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Emulator

• ARMulator is a suite of programs that models the behavior
of various ARM processor cores in software on a host
system

• It operates at various levels of accuracy
– instruction accurate
– cycle accurate
– timing accurate
=> instruction count or number of cycles can be measured for a

program
=> performance analysis

• Timing accurate model is used for cache, memory
management unit analysis, and so on

188/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Development Board

• A circuit board including an ARM core (e.g. ARM7TDMI),
memory components, I/O and electrically programmable
devices

• It can support both hardware and software development
before the final application-specific hardware is available

189/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Writing Assembly Language Programs

• The following tools are needed
– a text editor to type the program into
– an assembler to translate the program into ARM binary code
– an ARM system or emulator to execute the binary code
– a debugger to see what is happening inside the code

AREA HelloW,CODE,READONLY ;declare code area

SWI_WriteC EQU &0 ;output character in r0

SWI_Exit EQU &11 ;finish program

ENTRY ;code entry point

START ADR r1,TEXT ;r1-> “Hello World”

LOOP LDRB r0,[r1],#1 ;get next byte

CMP r0,#0 ;check for text end

SWINE SWI_WriteC ;if not end print …

BNE LOOP ;… and loop back

SWI SWI_Exit ;end of execution

TEXT = “Hello World”,&0a,&0d,0

END ;end of program source

190/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Program Design

• Start with understanding the requirements, translate the
requirements into an unambiguous specifications

• Define a program structure, the data structure and the
algorithms that are used to perform the required
operations on the data

• The algorithms may be expressed in pseudo-code
• Individual modules should be coded, tested and

documented
• Nearly all programming is based on high-level languages,

however it may be necessary to develop small software
components in assembly language to get the best
performance

191/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

System Architecture (1/2)
• ARM processor, memory system, buses, and the ARM reference peripheral

specification
• The reference peripheral specification defines a basic set of components,

providing a framework within which an operating system can run but leaving
full scope for application-specific system

• Components include
– a memory map
– an interrupt control
– a counter timer
– a reset controller with defined boot behavior, power-on reset detection, a “wait for

interrupt” pause mode
• The system must define

– the base address of the interrupt controller (ICBase)
– the base address of the counter-timer (CTBase)
– the base address of the reset and pause controller (RPCBase)
All the address of the registers are relative to one of the base addresses

192/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

System Architecture (2/2)
• Interrupt controller provides a way of enabling, disabling (by mask)

and examining the status of up to 32 level-sensitive IRQ sources and
one FIQ source

• Two 16-bit counter-timers, controlled by registers. The counters
operate from the system clock with selectable pre-scaling

• Reset and pause controller includes some registers
– the readable registers give identification and reset status information
– the writable registers can set or clear the reset status, clear the reset map

and put the system into pause mode where it uses minimal power until an
interrupt wakes it up again

• Add application-specific peripherals

193/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Hardware System Prototype

• Verifying the function correctness of hardware blocks,
software modules(on-developing) and speed performance
is acceptable

• Simulating the system using software tools => slower,
can’t verify the full system

• Hardware Prototyping
– building a hardware platform by pre-existing or on-developing

components for system verification and software development
– “ARM Integrator” or “Rapid Silicon Prototyping”

194/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Integrator
• A motherboard with some

extensions to support the
development of applications

• Provide core modules, logic
modules (Xilinx Virtex FPGA),
OS, input/output resources,
bus arbitration, interrupt
handling

System Controller
FPGA

PCI Host Bridge

Standard PCI Slot

Standard PCI Slot

Standard PCI Slot

PCI PCI Bridge

Compact PCI

Peripheral Input/
Output

FLASH

SRAM

Boot
ROM

E
xt

er
na

l B
us

 In
te

rfa
ce

C
or

e
M

od
ul

e
C

on
ne

ct
or

s
Lo

gi
c

M
od

ul
e

C
on

ne
ct

or
s

System Bus

GPIO

195/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Rapid Silicon Prototyping (VLSI Tech. Inc.)

• Specially developed reference chips + off-chip extensions

196/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARMulator (1/2)

• ARMulator is a collection of programs that
emulate the instruction sets and architecture of
various ARM processors (It is an instruction set
simulator)

• ARMulator is suited to software development and
benchmarking ARM-targeted software. It models
the instruction set and counts cycles.

• ARMulator supports a C library to allow complete
C programs to run on the simulated system

• To run software on ARMulator, through ARM
symbolic debugger or ARM GUI debuggers, AxD

197/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARMulator (2/2)
• It includes

– processor core models which can emulate any ARM core
– a memory interface which allows the characteristics of the target memory

system to be modeled
– a coprocessor interface that supports custom coprocessor models
– an OS interface that allows individual system calls to be handled

• The processor core model incorporates the remote debug interface, so
the processor and the system state are visible from the ARM symbolic
debugger

• ARMulator => a cycle accurate model of a system including a cache,
MMU, physical memory, peripheral devices, OS, software

• Once the design is OK,
hardware -> design or synthesis by CAD
software -> still use ARMulator model, but instruction accurate

198/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

JTAG Boundary Scan (1/2)
• IEEE 1149, Standard Test Access Port and Boundary Scan Architecture

or called JTAG boundary scan (by Joint Test Action Group)

199/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

JTAG Boundary Scan (2/2)

• Test signals
– \TRST: a test reset input
– TCK: test clock which controls the timing of the test interface

independently from any system clock
– TMS: test mode select which controls the operation of the

test interface state machine
– TDI: test data input line
– TDO: test data output line

• TAP controller (Test Access Port)
A state machine whose state transitions are controlled by TMS

200/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

TAP Controller (1/2)

select DR scan

capture DR

shift DR

exit1 DR

pause DR

exit2 DR

update DR

run test/idle

test logic reset

select IR scan

capture IR

shift IR

exit1 IR

pause IR

exit2 IR

update IR

TMS=0

TMS=1

201/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

TAP Controller (2/2)

• Test instruction selects various data registers
– device ID register, bypass register, boundary scan register

• Some public instructions
– BYPASS: connect TDI to TDO with 1-clock delay
– EXTEST: test the board-level connectivity, boundary scan register

is connected
• capture DR: captured by the boundary scan register
• shift DR: shift out via TDO
• update DR: new data applied to the boundary scan register via TDI

– TNTEST: test the core logic
– INCODE: ID register is connect

202/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Macrocell Testing
• System chip is composed of the pre-designed macrocells with application-

specific custom logic
• Various approaches to test the macrocells

– test mode provided which multiplexes the signals in turn onto the chip
– on-chip bus may support direct test access to macrocell pins
– each macrocell may have a boundary scan path using JTAG extensions

203/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Debug Architecture (1/2)

• Two basic approaches to debug
– from the outside, use a logic analyzer
– from the inside, tools supporting single stepping, breakpoint setting

• Breakpoint: replacing an instruction with a call to the
debugger
Watchpoint: a memory address which halts execution if it
is accessed as a data transfer address
Debug Request: through ICEBreaker programming or by
DBGRQ pin asynchronously

204/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ARM Debug Architecture (2/2)

• In debug state, the core’s internal state and the
system’s external state may be examined. Once
examination is complete, the core and system
state may be restored and program execution is
resumed.

• The internal state is examined via a JTAG-style
serial interface, which allows instructions to be
serially inserted into the core’s pipeline without
using the external data bus.

• When in debug state, a store-multiple (STM)
could be inserted into the instruction pipeline and
this would dump the contents of ARM’s registers.

205/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Debugger (1/2)
• A debugger is software that enables you to make use of a debug agent

in order to examine and control the execution of software running on a
debug target

• Different forms of the debug target
– early stage of product development, software
– prototype, on a PCB including one or more processors
– final product

• The debugger issues instructions that can
– load software into memory on the target
– start and stop execution of that software
– display the contents of memory, registers, and variables
– allow you to change stored values

• A debug agent performs the actions requested by the debugger, such
as
– setting breakpoints
– reading from / writing to memory

206/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Debugger (2/2)

Examples of debug agents
– Multi-ICE
– Embedded ICE
– ARMulator
– BATS
– Angle

• Remote Debug Interface
(RDI) is an open ARM
standard procedural
interface between a
debugger and the debug
agent

RDI

Target
emulated in

Software

ARMulator
RDI

Target
emulated in

Software

BATS
RDI

ARM
development

board

Multi-ICE

ARM
development

board

RDI
Remote_A

Angel

Target (software) Target (hoftware)

Remote Debug Interface (RDI)

ARM debugger
AxD

RDI

207/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

In Circuit Emulator (ICE)

• The processor in the target system is removed and
replaced by a connection to an emulator

• The emulator may be based around the same processor
chip, or a variant with more pins, but it will also incorporate
buffers to copy the bus activity to a “trace buffer” and
various hardware resources which can watch for particular
events, such as execution passing through a breakpoint

208/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Multi-ICE and Embedded ICE

• Multi-ICE and Embedded ICE are JTAG-based
debugging systems for ARM processors

• They provide the interface between a debugger
and an ARM core embedded within an ASIC

• It provides
– real time address-dependent and data-dependent

breakpoints
– single stepping
– full access to, and control of the ARM core
– full access to the ASIC system
– full memory access (read and write)
– full I/O system access (read and write)

209/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Basic Debug Requirements

• Control of program execution
– set watchpoints on interesting data accesses
– set breakpoints on interesting instructions
– single step through code

• Examine and change processor state
– read and write register values

• Examine and change system state
– access to system memory

• download initial code

210/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Debugging with Multi-ICE

• The system being debugged may be the final system
• Third party protocol converters are also available at

http://www.arm.com/DevSupp/ICE_Analyz/

211/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

ICEBreaker (EmbeddedICE macrocell)

• ICEBreaker is programmed in
a serial fashion using the TAP
controller

• It consists of 2 real-time watch-
point units, together with a
control and status register

• Either watch-point unit can be
configured to be a watch-point
or a breakpoint

Processor

DBGRQI

A[31:0]

D[31:0]

nOPC

nRW

TBIT

MAS[1:0]

nTRANS

DBGACKI

BREAKPTI

IFEN

ECLK

nMREQ

ICEBreaker

EXTERN1

EXTERN0

RANGEOUT0

RANGEOUT1

DBGACK

BREAKPT

DBGRQ

DBGEN

TAP
nTRST

TCK

TMS

TDI

TDO

SDIN SDOUT

212/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Real-Time Trace (1/2)

• Debugging uses the breakpoint and single-step to run
application code to a given point, and then stop the
processor to examine or change memory or register
contents, and then step or restart the code

• Some bugs occur while the system is running at full clock
speed => need non-instrusive trace of instruction flow and
data accesses

• Using Trace Debug Tool (TDT), you can set up the trace
filter facility to collect trace data only during the interrupt
routine, and use a trigger to stop tracing

213/213

Institute of Electronics, N
ational C

hiao T
ung U

niversity

Real-Time Trace (2/2)

• Embedded trace macrocell
– monitor the ARM core buses, passed compressed information through the trace

port to Trace Port Analyzer (TPA)
– the on-chip cell contains the trigger and filter logic

• Trace port analyzer
– an external device that stores the information from the trace port

• Trace debug tool
– set up the trigger and filter logic, retrieve the data from the analyzer and

reconstruct a historical view of processor activity

ADW and
TDT running
on the host

JTAG
Unit

JTAG
Port

ARM CPU Macrocell
Embedded

Trace
Macrocell

Trace
Port

Trace
Port Analyzer

5-wire
JTAG

ASIC

