ANDES

TECHMNOLOGY

@ @23k

National Chino Tﬂﬂg Uuiwrrsirrj

Makefile

WWW.ANDESTECH.COM

¢ Cygwin is a Unix-like environment and command-line
Interface for Microsoft Windows.
L)

% Cygwin provides native integration of Windows-based
applications, data, and other system resources with
applications, software tools, and data of the Unix-like
environment. Thus it is possible to launch Windows
applications from the Cygwin environment, as well as to use
Cygwin tools and applications within the Windows operating
context.

¢ Cygwin consists of two parts: a Dynamic-link library (DLL) as
an APl compatibility layer providing a substantial part of the
POSIX API functionality, and an extensive collection of
software tools and applications that provide a Unix-like look
and feel.

s Cygwin was originally developed by Cygnus Solutions and
was acquired by Red Hat. It is free and open source software,

released under the GNU General Public License version 2.
Page 2

Toolchain (1/2)

¢ In software, a toolchain is the set of computer programs (tools)
that are used to create a product (typically another computer
program or system of programs).

** The tools may be used in a chain, so that the output of each
tool becomes the input for the next, but the term is used
widely to refer to any set of linked development tools.

¢ A simple software development toolchain consists of a text
editor for editing source code, a compiler and linker to
transform the source code into an executable program,
libraries to provide interfaces to the operating system, and a
debugger.

¢ A complex product such as a video game needs tools for
preparing sound effects, music, textures, 3-dimensional
models, and animations, and further tools for combining these
resources into the finished product.

Page 3

Toolchain (2/2)

¢ GNU toolchain

Page 4

The GNU toolchain is a blanket term for a collection of
programming tools produced by the GNU Project. These tools
form a toolchain (suite of tools used in a serial manner) used for
developing applications and operating systems.

The GNU toolchain plays a vital role in development of Linux
kernel, BSD, and software for embedded systems. Parts of the
GNU toolchain are also directly used with or ported to other
platforms such as Solaris, Mac OS X, Microsoft Windows (via
Cygwin and MinGW/MSYS) and Sony PlayStation 3

Projects included in the GNU toolchain are:
GNU make: Automation tool for compilation and build

GNU Compiler Collection (GCC): Suite of compilers for several programming
languages

GNU Binutils: Suite of tools including linker, assembler and other tools
GNU Bison: Parser generator
GNU m4: m4 macro processor
GNU Debugger (GDB): Code debugging tool
GNU build system (autotools)
— Autoconf
— Autoheader
— Automake
— Libtool

Andes toolchain

« Project creation — tool B nds33be-elf-V0
chain selection 7] nds3Zhe-eli-¥1
= Selection based on =1 nds3Zbe-linu-glibe- V0
Cores or Architecture 5] mids32he-linux-glibe-¥1
CPU endian type 7| nds32be-limneuclibe-V1

Libraries 7| nds32le-elf-¥0
E nds32le-elf-V1

= nds32le-linme-glibe-¥0
= nds32le-linus-glibe-¥ 1
=] nds32le-linme-uclibe-¥1

Page 5

Makefile (1/17)

X make#F‘} '&J F
= make [option] [target] optionﬂ“&j‘aﬁL_fE'fElfJJ%{gfpgl 11
target%’“%’“ﬁ?%?ﬂ BERLES U el & 2 (e pu AR T
P LL AR Pl I@T\ﬁwgﬁ?g;ﬁﬁ%ﬂa” .

= Example:

make -n all clean

make install

make

make -f makefile2 install

Page 6

Makefile (2/17)

< rmakefilefi %
< makefileflfl - H#
%J CEEHT A R

R A AR A

l@ﬁ'i‘ 2
I_IF[J_ FLIFBF' F{~
E e i

g 1 2 Tl

; F’l JF;I"JD 3 ﬁéfﬁjﬁgfj

[target] E %%If - B PR TS BT E]
* [dependency] fHIAEFET - FUEAHTIMETR SR8 T £

Frik I

N TR Rl B P
'EZF'JTab

e

—_—

ii

Ic 17 [
el
Fol B

e [rule] i] - 1P JeAF 0T RISt e 7 % 1A

Page 7

Makefile (3/17)

“* Example:

lﬁimakeflleﬁ Jﬁ\‘?‘# (F-i)

target]. [dependency] [dependency]
TAB][rule]
AB][rule]
target] ‘dependency]
TAB][rule]

i iimakefileih LA™ | IFU’FS‘* ’ E‘Tg%[‘ﬁ'lﬂ“[i
,F[EIT%\;*E k| AT e F = {[tER =
ENE inﬁ* B lﬂ“jﬂ%lﬁfﬂ F“ ELF“” l'ﬂ

Page 8

Makefile (4/17)

“» makep~ =1 & (macro)
= Example:

CC= gcc TFI_.

$(CC) L]

CFLAGS = -ansi -Wall gij,_
$(CFLAGS) fL*]

SIESI(HEs H[JFIJ[i{ » Zmakeifle R1Ipfipe > & W2 &
gﬁ_r+ [V PEEE Ffri 21 & pudi e fEmakefileps g
[T fﬂ

= $7? I*i—ﬁzﬁ@@p UM ASETEE

" $@ FIfpvERRIE 8

= $< [RBY- [RAH L

o $F PRI AIMETE T ARG ¢

Page 9

Make (5/17)

*» In software development, make is a utility for
automatically building executable programs and
libraries from source code.

*» Files called makefiles specify how to derive the
target program from each of its dependencies.

**» Make can decide where to start through
topological sorting.

** Though Integrated Development Environments
and language-specific compiler features can
also be used to manage the build process in
modern systems, make remains widely used,
especially in Unix-based platforms.

Page 10

Make (6/17)

+» Makefile structure

= A makefile consists of lines of text which define a file (or set of
files) or a rule name as depending on a set of files. Output files
are marked as depending on their source files, for example, and
on files which they include internally, since they all affect the
output. After each dependency is listed, a series of lines of tab-
indented text may follow which define how to transform the input
into the output, if the former has been modified more recently
than the latter. In the case where such definitions are present,
they are referred to as "build scripts” and are passed to the shell
to generate the target file. The basic structure is:

Page 11

Make (7/17)

»# Comments use the hash symbol
target: dependencies
command 1
command 2

command n

Page 12

Makefile (8/17)

target...: dependencies
<tab>command
<tab>command

Page 13

Makefile (9/17)

‘*Examplel
hello:hello.o #(target...: dependencies)
gcc -0 hello hello.o #(<tab>command)
hello.o:hello.c #(target.... dependencies)
gcc -c hello.c #(<tab>command)

Page 14

Makefile (10/17)

*Examplel: hello.c

=# it IS a test
all:hello.c
gcc hello.c -o hello
clean:
rm -f hello

*HLT # make, ﬁ‘j\“hﬁfl Fikihello E J%‘Lljﬁﬁﬁg EIC
ﬁ i&lFEJﬁﬂ?_‘ # make clean ﬁjiﬁu “1ihello posgh
i 'J[fé M Makefile[* |fits# 15%‘#’,&[SR
pS: 1— 2. gcc hello.c -0 hello FJ'JF'”“E > ﬁ% i Jtab

oo T f Il [spacedg: -

Page 15

Makefile (11/17)

< Example2:& ™ a.h, b.h, c.h, main.c, 2.c, 3.c * [
mytest:main.o 2.0 3.0
gcc -0 mytest main.o 2.0 3.0
main.o:main.c a.h
gcc -c main.c
2.0:2.ca.hb.h
gcc -c 2.C
3.0:3.c b.h c.h
gcc -c 3.C

Page 16

Makefile (12/17)

17 - # make -f Makefilel¥hi= = » makefik¢r = 5
9)— TRV main.o 2.0 3.0 > Er’,’“& F l%'\@’ﬁﬂ
195 [t - Tl make ¢ T Makefile1 =7 45
main.o/2.0/3.053 {1 = AR AL R
F 4= imytest, g [AR e > -F RLIT e 2 2T
Dlayrerdi - o £ Nakefilehl » 2572 1<
o~ (HMakefile 1At QQ(I‘]-f)%L_F“’ [%makea‘\ Sl
?F[EfuMakefileft -

Page 17

Makefile (13/17)

“ Example4:clean.c - hello.c, hello.ox Makefileft -
E[I:XJ"/’J;["OI:[_T\
all:hello.c
gcc -c hello.c -0 hello.o

gcc hello.c -0 hello

clean:
rm -f hello.o

gl 3*“5 =5 [M¥#h 7 make cleanﬁﬁﬁ“jmA A& Tl EMYF@,
hello.of< & | WLPY][5s > PRET makeTHI,— %mﬁ“ & i
D= isz gﬁﬁiﬁﬁ?ﬁbiﬁﬁﬁ B IE BT
make clean Z thcleanfl{ % =1 fLiy 7t JF’?[I ﬁ“%‘in

~ rm -f hello.o

Page 18

Makefile (14/17)

X ﬂﬂ,‘&ﬁﬁ%"’ RPN 20 = = F'AJ .&Jﬂ“rjtn? K
.PHONY clean
all:hello.c
gcc -c hello.c -0 hello.o
gcc hello.c -0 hello
clean:
rm -f hello.o

lﬁﬁimakeﬁ“jﬁ ¢1{eicleans Ry MR > BT }T?E L1 ¥R

|—IJ

Page 19

Makefile (15/17)

3 | Hll(Implicit Rules) » ¥ [z Makefilefdf i #1
AV (55 (M3 E hello.c &~ a.h e)
.PHONY :clean

hello:hello.o
gcc $< -0 $@

%.0:%.c a.h
gcc -c $< -0 3@

clean:
rm -fr hello.o
rm -fr hello

Page 20

Makefile (16/17)

& 0pF Fl%ﬁl’iﬁ/‘.’é;flui%ll' FRRYR BV R >
iﬂ?ﬁﬁjp N/ = %Elffﬁ(pattern rule) - hello.ofiik¢7 5. +5
heIIo c > hello.ojix f 9‘ ?&hello C> Jy— 173 JJ%@UIH

", E 7, gec $< };F[;[[g Jklhello.o - [1$@ f {fYHE
i_hello » Bl ynﬂﬁ(y trhello.o > fikgy M §5

%[l %.0:%¢ ah , F‘ fl_f?[’?&}' hello.o: FheIIo C

a.h, iy~ = $<}‘F,ﬂj “rLhello.cka.h, $@}‘F[FIJ
fikkLhello.o

Page 21

Makefile (17/17)

X makeﬁfj’ H HFF, '&J
= make -k: @%makeﬁ‘ﬁﬂ?ﬂ%ﬁ?@iﬁfjﬁﬁ (o[TYRE = T
II:rL._,A ’_TT—‘ 11{ J [—"I‘ lE
Bt 2 || Fﬁ EE
= make -n: ;iﬁjtii}[ﬁ’ﬂgé{?pfjj (B [I:F’-A?Eg ISER= T
= make -f makefile_name: Fﬁ%make%ﬁ%‘lE'Jﬂﬂf[aimakefile

e

Page 22

ANDES

TECHMNOLOGY

Thank You

WWW.ANDESTECH.COM

	Makefile �
	Cygwin
	Toolchain (1/2)
	Toolchain (2/2)
	Andes toolchain
	Makefile (1/17)
	Makefile (2/17)
	Makefile (3/17)
	Makefile (4/17)
	Make (5/17)
	Make (6/17)
	Make (7/17)
	Makefile (8/17)
	Makefile (9/17)
	Makefile (10/17)
	Makefile (11/17)
	Makefile (12/17)
	Makefile (13/17)
	Makefile (14/17)
	Makefile (15/17)
	Makefile (16/17)
	Makefile (17/17)
	Thank You

