
WWW.ANDESTECH.COM

Embedded ProcessorEmbedded ProcessorEmbedded Processor

Page 2

AgendaAgenda

CPU architecture
Pipeline
Cache
Memory Management Units (MMU)
Direct Memory Access (DMA)
Bus Interface Unit (BIU)
Examples

Page 3

CPU Architecture (1/8)CPU Architecture (1/8)

von Neumann architecture
Data and instructions are stored
in memory, the Control Unit
takes instructions and controls
data manipulation in the
Arithmetic Logic Unit.
Input/Output is needed to make
the machine a practicality
Execution in multiple cycles
Serial fetch instructions & data
Single memory structure

• Can get data/program mixed
• Data/instructions same size

Memory

Control ALU

I/O

Examples of von Neumann
ORDVAC (U-Illinois) at
Aberdeen Proving Ground,
Maryland (completed Nov
1951)
IAS machine at Princeton
University (Jan 1952)

Page 4

CPU Architecture (2/8)CPU Architecture (2/8)

The ALU manipulates
two binary words
according to the
instruction decoded in
the Control unit. The
result is in the
Accumulator and may
be moved into Memory.

Page 5

CPU Architecture (3/8)CPU Architecture (3/8)

von Neumann architecture introduces a problem,
which is not solved until much later.
The CPU work on only one instruction at a time,
each must be fetched from memory then
executed. During fetch the CPU is idle, this is a
waste of time. Made worse by slow memory
technology compared with CPU.
Time is also lost in the CPU during instruction
decode.

F E F E --------- D E

Page 6

CPU Architecture (4/8)CPU Architecture (4/8)
Harvard architecture

In a computer using the Harvard
architecture, the CPU can both read
an instruction and perform a data
memory access at the same time.
A Harvard architecture computer
can thus be faster for a given circuit
complexity because instruction
fetches and data access do not
contend for a single memory
pathway.
Execution in 1
cycle
Parallel fetch instructions &
data
More Complex
hardware

• Instructions and data always
separate

• Different code/data path
widths (E.G. 14 bit instructions, 8 bit
data)

CPU

data memory

program memory

address

data

address

data

Examples of Harvard:
Microchip PIC
families
Atmel AVR
AndeScore
Atom

Page 7

CPU Architecture (5/8)CPU Architecture (5/8)

Take a closer look at the action part of the
CPU, the ALU, and how data circulates
around it.
An ALU is combinational logic only, no data
is stored, i.e. no registers. This is the
original reason for having CPU registers.

Page 8

CPU Architecture (6/8)CPU Architecture (6/8)

CPU Architecture

ALU

A

X Y

In the simplest, minimum hardware,
solution one of them, say X, is the
accumulator A, the other, Y, is
straight off the memory bus (this
requires a temporary register not
visible to the programmer).

The instruction may be ADDA,
which means: add to the contents
of A the number (Y) and put the
answer in A.

data bus

Page 9

CPU Architecture (7/8)CPU Architecture (7/8)

• It’s a simple step to add more CPU data registers
and extend the instructions to include B, C,….. as
well as A.

• An internal CPU bus structure then becomes a
necessity.

Page 10

CPU Architecture (8/8)CPU Architecture (8/8)

Page 11

Architectures: CISC vs. RISC (1/2)Architectures: CISC vs. RISC (1/2)

CISC - Complex Instruction Set Computers:
von Neumann architecture
Emphasis on hardware
Includes multi-clock complex instructions
Memory-to-memory
Sophisticated arithmetic (multiply, divide, trigonometry etc.)
Special instructions are added to optimize performance
with particular compilers

Page 12

Architectures: CISC vs. RISC (2/2)Architectures: CISC vs. RISC (2/2)

RISC - Reduced Instruction Set Computers:
Harvard architecture
A very small set of primitive instructions
Fixed instruction format
Emphasis on software
All instructions execute in one cycle (Fast!)
Register to register (except Load/Store instructions)
Pipeline architecture

Page 13

Single-, Dual-, Multi-, Many- CoresSingle-, Dual-, Multi-, Many- Cores
Single-core:

Most popular today.

Dual-core, multi-core, many-core:
Forms of multiprocessors in a single chip

Small-scale multiprocessors (2-4 cores):
Utilize task-level parallelism.
Task example: audio decode, video decode, display control,
network packet handling.

Large-scale multiprocessors (>32 cores):
nVidia’s graphics chip: >128 core
Sun’s server chips: 64 threads

Page 14

Pipeline (1/2)Pipeline (1/2)

An instruction pipeline is a technique used in the design
of computers and other digital electronic devices to
increase their instruction throughput (the number of
instructions that can be executed in a unit of time).
The fundamental idea is to split the processing of a
computer instruction into a series of independent steps,
with storage at the end of each step.
This allows the computer's control circuitry to issue
instructions at the processing rate of the slowest step,
which is much faster than the time needed to perform all
steps at once.
The term pipeline refers to the fact that each step is
carrying data at once (like water), and each step is
connected to the next (like the links of a pipe.)

Page 15

Pipeline (2/2)Pipeline (2/2)

Basic five-stage pipeline in a RISC machine (IF =
Instruction Fetch, ID = Instruction Decode, EX = Execute,
MEM = Memory access, WB = Register write back). In the
fourth clock cycle (the green column), the earliest
instruction is in MEM stage, and the latest instruction has
not yet entered the pipeline.

Page 16

8-stage pipeline8-stage pipeline

RF

EX

IF1 IF2 ID DA1 DA2 WB

Instruction-Fetch
 First and Second

Instruction Decode

Instruction Issue and
Register File Read

AG

Instruction Retire and
Result Write Back

Data Access
 First and Second

Data Address
 Generation

F1 F2 I1 I2 E1 E2 E3 E4

MAC1 MAC2

Page 17

Instruction Fetch StageInstruction Fetch Stage

F1 – Instruction Fetch First
Instruction Tag/Data Arrays
ITLB Address Translation
Branch Target Buffer Prediction

F2 – Instruction Fetch Second
Instruction Cache Hit Detection
Cache Way Selection
Instruction Alignment

IF1 IF2 ID RF AG DA1 DA2 WB

EX

MAC1 MAC2

Page 18

Instruction Issue StageInstruction Issue Stage

I1 – Instruction Issue First / Instruction Decode
32/16-Bit Instruction Decode
Return Address Stack prediction

I2 – Instruction Issue Second / Register File Access
Instruction Issue Logic
Register File Access

IF1 IF2 ID RF AG DA1 DA2 WB

EX

MAC1 MAC2

Page 19

Execution StageExecution Stage

E1 – Instruction Execute First / Address Generation / MAC First
Data Access Address Generation
Multiply Operation (if MAC presents)

E2 –Instruction Execute Second / Data Access First / MAC Second / ALU
Execute

ALU
Branch/Jump/Return Resolution
Data Tag/Data arrays
DTLB address translation
Accumulation Operation (if MAC presents)

E3 –Instruction Execute Third / Data Access Second
Data Cache Hit Detection
Cache Way Selection
Data Alignment

IF1 IF2 ID RF AG DA1 DA2 WB

EX

MAC1 MAC2

Page 20

Write Back StageWrite Back Stage

E4 –Instruction Execute Fourth / Write Back
Interruption Resolution
Instruction Retire
Register File Write Back

IF1 IF2 ID RF AG DA1 DA2 WB

EX

MAC1 MAC2

Page 21

Branch Prediction OverviewBranch Prediction Overview

Why is branch prediction required?
A deep pipeline is required for high speed
Branch cost is a combination of penalty, frequency of branches, and
frequency that they are taken
Moving detection earlier reduces penalty
Conditional operations reduce number of branches
Pipelines offer speedup due to parallel execution of instructions
Full speedup is rarely obtained dues to hazards (data, control, structural)
Control hazards handled by avoidance and prediction
Prediction can be static, dynamic, local, global, and hybrid
Prediction reduces number "taken“

Why dynamic branch prediction?
Static branch prediction

• Static uses fixed prediction algorithm, or compile-time information
Dynamic branch prediction

• Dynamic gathers information as the program executes, using historical
behavior of branch to predict its next execution

Page 22

Branch Prediction OverviewBranch Prediction Overview

Simple Static Prediction:
if 60% of branches are taken, assume all are taken,
and the percent "taken" drops to 40%
Once a choice is made, the compiler can order
branches appropriately
Very simple, cheap to implement, moderately effective

Complex Static Prediction:
Assume backwards branches are taken (likely loop
returns) and forward branches aren't (BTFN)
Compiler provides hints by selecting different branches
or including flags to indicate likely to be taken --
requires a predecoding of the branch

Page 23

Branch Prediction OverviewBranch Prediction Overview

Simple Dynamic Prediction
Records portion of jump address, and most recent action
(taken/not)
Partial address can result in aliasing (behavior of multiple
branches is combined)
Single bit of state can lead to worse behavior in degenerate cases

Extended Dynamic Prediction
2-bit state -- none, taken, not, both
2-bit state -- taken, multi-taken, not-taken, multi-not-taken
Not fooled by branch occasionally behaving in the opposite
manner
May be associated with I-cache, with BTB, or as a separate table

Page 24

Branch Prediction UnitBranch Prediction Unit

Branch Target Buffer (BTB)
Branch target buffer (BTB) stores address of the last target
location to avoid recomputing
Indexed by low-order bits of jump address, tag holds high-
order bits
Enables earlier prefetching of target based on prediction
128 entries of 2-bit saturating counters
128 entries, 32-bit predicted PC and 26-bit address tag

Return Address Stack (RAS)
Four entries

BTB and RAS updated by committing
branches/jumps

Page 25

BTB Instruction PredictionBTB Instruction Prediction

BTB predictions are performed based on the previous PC instead of
the actual instruction decoding information, BTB may make the
following two mistakes

Wrongly predicts the non-branch/jump instructions as branch/jump
instructions
Wrongly predicts the instruction boundary (32-bit -> 16-bit)

If these cases are detected, IFU will trigger a BTB instruction
misprediction in the I1 stage and re-start the program sequence from
the recovered PC. There will be a 2-cycle penalty introduced here

F1 F2 I1

F1 F2

F1

branch

PC+4

PC+4

BTB instruction misprediction

F1 F2 I1

killed

killed

Recovered PC

Page 26

RAS PredictionRAS Prediction

When return instructions present in the instruction
sequence, RAS predictions are performed and the fetch
sequence is changed to the predicted PC.
Since the RAS prediction is performed in the I1 stage.
There will be a 2-cycle penalty in the case of return
instructions since the sequential fetches in between will
not be used.

F1 F2 I1

F1 F2

F1

return

PC+4

PC+4

RAS prediction

F1 F2 I1

killed

killed

target

Page 27

Branch Miss-PredictionBranch Miss-Prediction

In processor core, the resolution of the branch/return instructions is
performed by the ALU in the E2 stage and will be used by the IFU in
the next (F1) stage. In this case, the misprediction penalty will be 5
cycles.

F1 F2 I1 I2

F1 F2 I1 I2

F1 F2 I1 I2

PC+4

PC+4

F1 F2 I1

F1 F2

E1 E2

E1

branch

target

F1

F1 F2 I1 I2

predicted taken (wrong)

killed

killed

redirect

Page 28

CacheCache

Store copies of data at places that can be
accessed more quickly than accessing the
original

Speed up access to frequently used data
At a cost: Slows down the infrequently used data

Page 29

Block diagramBlock diagram

AHB (1 or 2)

HSMP (1 or 2)

Core

Cache Local Memory

A
D

D
R
E

S
S
/C

O
M

M
A

N
D

A
D

D
R
E

S
S
/C

O
M

M
A

N
D

D
A

T
A

ADDRESS/COMMAND
D

A
T
A

MMU

DMA

B
I
U

ADDRESS/DATA

EDM JTAG

B
I
U

Page 30

Memory Hierarchy - DiagramMemory Hierarchy - Diagram

Page 31

Cache (1/3)Cache (1/3)

Small amount of fast memory
Sits between normal main memory and CPU
May be located on CPU chip or module
Size does matter

Cost
• More cache is expensive

Speed
• More cache is faster (up to a point)
• Checking cache for data takes time

Page 32

Cache (2/3)Cache (2/3)

Page 33

Cache (3/3)Cache (3/3)

Page 34

Hierarchy ListHierarchy List

Registers
L1 Cache
L2 Cache
Main memory
Disk cache
Disk
Optical
Tape

Page 35

Caching in Memory HierarchyCaching in Memory Hierarchy

Provides the illusion of GB storage
With register access time

Access Time Size Cost

Primary memory Registers 1 clock cycle ~500 bytes On chip
Cache 1-2 clock cycles <10 MB

Main memory 1-4 clock cycles < 4GB $0.1/MB
Secondary memory Disk 5-50 msec < 200 GB $0.001/MB

Page 36

Caching in Memory HierarchyCaching in Memory Hierarchy

Exploits two hardware characteristics
Smaller memory provides faster access times
Large memory provides cheaper storage per byte

Puts frequently accessed data in small, fast, and
expensive memory

Page 37

Cache Read Operation - FlowchartCache Read Operation - Flowchart

Page 38

Cache and CPU (1/2)Cache and CPU (1/2)

CPU
ca

ch
e

co
nt

ro
lle

r cache
main

memory

data

data

address

data

address

Page 39

Cache and CPU (2/2)Cache and CPU (2/2)

Main memory

L2 cache

L1 cache

CPU

~1-5 cycles

~5-20 cycles

~40-100 cycles

1 cycle

Roughly

Page 40

Some Cache Spec.Some Cache Spec.

L1 cache (I/D) L2 cache

PS2 16K/8K16K/8K†† 22--wayway N/AN/A

GameCube 32K/32K32K/32K‡‡ 88--wayway 256K 2256K 2--way unifiedway unified

XBOX 16K/16K 416K/16K 4--wayway 128K 8128K 8--way unifiedway unified

PC ~32~32--64K64K ~128~128--512K512K

Page 41

Multiple levels of cacheMultiple levels of cache

CPU L1 cache L2 cache

Page 42

Cache data flowCache data flow

I-Cache

D-Cache

CPU Ext Memory

I Fetches

Load & Store

I Cache refill
Uncached Instruction/data

Uncached write/write-through

Write back

D-Cache refill

Page 43

Cache operationCache operation

CPU requests contents of memory location
Check cache for this data
If present, get from cache (fast)
If not present, read required block from main memory to
cache
Then deliver from cache to CPU
Cache includes tags to identify which block of main
memory is in each cache slot
Many main memory locations are mapped onto one cache
entry.
May have caches for:

instructions;
data;
data + instructions (unified).

Page 44

Cache/Main Memory StructureCache/Main Memory Structure

Page 45

Typical Cache OrganizationTypical Cache Organization

Page 46

Direct Mapping (1/2)Direct Mapping (1/2)

Each block of main memory maps to only one
cache line

i.e. if a block is in cache, it must be in one specific
place

Address is in two parts
Least Significant w bits identify unique word
Most Significant s bits specify one memory block
The MSBs are split into a cache line field r and a
tag of s-r (most significant)

Page 47

Direct Mapping (2/2)Direct Mapping (2/2)

tag

tag

tag

快取

主記憶體

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

Block 0

Block 1

Block 127

7 4 主記憶體位址

標籤 區塊 字組

5

•Direct mapping

Page 48

Direct Mapping
Address Structure
Direct Mapping
Address Structure

24 bit address
2 bit word identifier (4 byte block)
22 bit block identifier

8 bit tag (=22-14)
14 bit slot or line

No two blocks in the same line have the same Tag field
Check contents of cache by finding line and checking Tag

Tag s-r Line or Slot r Word w

8 14 2

Page 49

Direct Mapping Cache OrganizationDirect Mapping Cache Organization

Page 50

Direct Mapping
Example
Direct Mapping
Example

Page 51

Direct Mapping SummaryDirect Mapping Summary

Address length = (s + w) bits
Number of addressable units = 2s+w words or
bytes
Block size = line size = 2w words or bytes
Number of blocks in main memory = 2s+ w/2w = 2s

Number of lines in cache = m = 2r

Size of tag = (s – r) bits

Page 52

Associative Mapping (1/2)Associative Mapping (1/2)

A main memory block can load into any line of
cache
Memory address is interpreted as tag and word
Tag uniquely identifies block of memory
Every line’s tag is examined for a match
Cache searching gets expensive

Page 53

Associative Mapping (2/2)Associative Mapping (2/2)

4

tag

tag

tag

快取

主記憶體

Block 0

Block 1

Block i

Block 4095

Block 0

Block 1

Block 127

12 主記憶體位址

標籤 字組

Fully associative mapping(完全關聯映射)

Page 54

Fully Associative Cache OrganizationFully Associative Cache Organization

Page 55

Associative Mapping
Address Structure
Associative Mapping
Address Structure

22 bit tag stored with each 32 bit block of data
Compare tag field with tag entry in cache to check
for hit
e.g.

Address Tag Data Cache
line
FFFFFC FFFFFC 24682468 3FFF

Tag 22 bit
Word
2 bit

Page 56

Associative
Mapping Example
Associative
Mapping Example

Page 57

Associative Mapping SummaryAssociative Mapping Summary

Address length = (s + w) bits
Number of addressable units = 2s+w words or
bytes
Block size = line size = 2w words or bytes
Number of blocks in main memory = 2s+ w/2w = 2s

Number of lines in cache = undetermined
Size of tag = s bits

Page 58

Set Associative Mapping (1/2)Set Associative Mapping (1/2)

Cache is divided into a number of sets
Each set contains a number of lines
A given block maps to any line in a given set

e.g. Block B can be in any line of set i
e.g. 2 lines per set

2 way associative mapping
A given block can be in one of 2 lines in only one set

Page 59

Set Associative Mapping (2/2)Set Associative Mapping (2/2)

tag

tag

tag

快取

主記憶體

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

Block 129

Block 4095

Block 0

Block 1

Block 126

tag

tag
Block 2

Block 3

tag Block 127

主記憶體位址6 6 4
T標籤 集合 字組

Set 0

Set 1

Set 63

Page 60

Set Associative Mapping
Address Structure
Set Associative Mapping
Address Structure

Use set field to determine cache set to look in
Compare tag field to see if we have a hit
e.g

Address Tag Data Set number
1FF 7FFC 1FF 12345678 1FFF
001 7FFC 001 11223344 1FFF

Tag 9 bit Set 13 bit
Word
2 bit

Page 61

Set Associative Mapping
Example
Set Associative Mapping
Example

13 bit set number
Block number in main memory is modulo 213

000000, 00A000, 00B000, 00C000 … map to
same set

Page 62

Set Associative Mapping
Address Structure
Set Associative Mapping
Address Structure

Use set field to determine cache set to look in
Compare tag field to see if we have a hit
e.g

Address Tag Data Set number
1FF 7FFC 1FF 12345678 1FFF
001 7FFC 001 11223344 1FFF

Tag 9 bit Set 13 bit
Word
2 bit

Page 63

Two Way Set Associative Cache
Organization
Two Way Set Associative Cache
Organization

Page 64

Two Way Set Associative Mapping
Example
Two Way Set Associative Mapping
Example

Page 65

Set Associative Mapping SummarySet Associative Mapping Summary

Address length = (s + w) bits
Number of addressable units = 2s+w words or
bytes
Block size = line size = 2w words or bytes
Number of blocks in main memory = 2d

Number of lines in set = k
Number of sets = v = 2d

Number of lines in cache = kv = k * 2d

Size of tag = (s – d) bits

Page 66

Replacement policyReplacement policy

Replacement policy
strategy for choosing which cache entry to throw out to make room
for a new memory location

Two popular strategies:
Random
Least-recently used (LRU)

Page 67

Write operationsWrite operations

Write Policy
Must not overwrite a cache block unless main memory is up to
date
Multiple CPUs may have individual caches
I/O may address main memory directly

Write-through
immediately copy write to main memory
immediately propagates update through various levels of caching

• For critical data
All writes go to main memory as well as cache
Multiple CPUs can monitor main memory traffic to keep local (to
CPU) cache up to date
Lots of traffic
Slows down writes

Page 68

Write operationsWrite operations

Write-back
write to main memory only when location is removed
from cache
delays the propagation until the cached item is
replaced

• Goal: spread the cost of update propagation over multiple
updates

• Less costly
Updates initially made in cache only
Update bit for cache slot is set when update occurs
Other caches get out of synchronization
If block is to be replaced, write to main memory only if
update bit is set

Page 69

Generic Issues in CachingGeneric Issues in Caching

Cache hit: requested instruction/data by
microprocessor is found in the cache
Cache miss: request instruction/data is not in the
cache => read from main memory (DRAM) and
the associated data is copied in the cache (cache
update)

Page 70

Reasons for Cache MissesReasons for Cache Misses

Compulsory misses: data brought into the cache
for the first time

e.g., booting
Capacity misses: caused by the limited size of a
cache

A program may require a hash table that exceeds the
cache capacity

• Random access pattern
• No caching policy can be effective

Page 71

Reasons for Cache MissesReasons for Cache Misses

Misses due to competing cache entries: a cache
entry assigned to two pieces of data

When both active
Each will preempt the other

Policy misses: caused by cache replacement
policy, which chooses which cache entry to
replace when the cache is full

Page 72

Improving Cache PerformanceImproving Cache Performance

Goal: reduce the Average Memory Access Time
(AMAT)

AMAT = Hit Time + Miss Rate * Miss Penalty

Approaches
Reduce Hit Time
Reduce or Miss Penalty
Reduce Miss Rate

Notes
There may be conflicting goals
Keep track of clock cycle time, area, and power
consumption

Page 73

Effective Access TimeEffective Access Time

Cache hit rate: 99%
Cost: 2 clock cycles

Cache miss rate: 1%
Cost: 4 clock cycles

Effective access time:
99%*2 + 1%*(2 + 4)

= 1.98 + 0.06 = 2.04 (clock cycles)

Page 74

Tuning Cache ParametersTuning Cache Parameters

Size:
Must be large enough to fit working set (temporal locality)
If too big, then hit time degrades

Associativity
Need large to avoid conflicts, but 4-8 way is as good a FA
If too big, then hit time degrades

Block
Need large to exploit spatial locality & reduce tag overhead
If too large, few blocks ⇒ higher misses & miss penalty

Configurable architecture allows designers to make
the best performance/cost trade-offs

Configurable architecture allows designers to make
the best performance/cost trade-offs

Page 75

Processor Core Start procedureProcessor Core Start procedure

AndeScore

Local
Memory

Cache

External
Memory

Page 76

Local memoryLocal memory

Local memory is also used to describe a portion
of memory that a software program or utility only
has access to once obtained.
On-chip memory, based on thread unit to use.
The memory used by a single CPU or allocated to
a single program or function.

Page 77

Local memoryLocal memory

Memory model

Page 78

Cache/Local Memory DesignCache/Local Memory Design

Size
Mapping Function
Replacement Algorithm
Write Policy
Block Size
Number of Caches/Local Memories

Page 79

Memory Management Unit (MMU)Memory Management Unit (MMU)

Hardware device that maps virtual to physical
address.
In MMU scheme, the value in the relocation
register is added to every address generated by a
user process at the time it is sent to memory.
The user program deals with logical addresses; it
never sees the real physical addresses.

Page 80

Block diagramBlock diagram

AHB (1 or 2)

HSMP (1 or 2)

Core

Cache Local Memory

A
D

D
R
E

S
S
/C

O
M

M
A

N
D

A
D

D
R
E

S
S
/C

O
M

M
A

N
D

D
A

T
A

ADDRESS/COMMAND
D

A
T
A

MMU

DMA

B
I
U

ADDRESS/DATA

EDM JTAG

B
I
U

Page 81

MMU FunctionalityMMU Functionality

Memory management unit (MMU) translates addresses

CPU
memory

management
unit

logical
address

physical
address

Page 82

Virtual memoryVirtual memory

Virtual address (logical address)
MMU (built in CPU)
Physical address
Page table (in Main Memory)
Page frame
Address translation
TLB

Cache built within CPU for holding translated address just used

Page fault
Replacement algorithm

LRU

Page 83

Virtual memoryVirtual memory

資料

資料

DMA 傳送

實際位址

實際位址

虛擬位址

磁碟儲存體

主記憶體

快取

MMU

處理器

Page 84

Virtual memoryVirtual memory

記憶體中
的分頁訊框

來自處理器的虛擬位址

位移

位移

虛擬分頁編號分頁表位址

分頁表基底暫存器

控制位元

主記憶體中的實際位址

分頁表

分頁訊框

+

指向分頁表的起始位址

指向分頁表中某個entry

指向實體分頁表的起始位址

指向實體分頁表中的某個byte

Valid bit

Dirty bit

Access right of the program to the page

Page 85

Logical vs. Physical Address SpaceLogical vs. Physical Address Space

The concept of a logical address space that is
bound to a separate physical address space is
central to proper memory management.

Logical address – generated by the CPU; also referred
to as virtual address.
Physical address – address seen by the memory unit.

Logical and physical addresses are the same in
compile-time and load-time address-binding
schemes; logical (virtual) and physical addresses
differ in execution-time address-binding scheme.

Page 86

Dynamic relocation using a relocation
register
Dynamic relocation using a relocation
register

Page 87

MMU ArchitectureMMU Architecture

4/8 I-uTLB 4/8 D-uTLB

M-TLB arbiter

32x4 M-TLB

HPTWK

N(=32) sets k(=4) ways =128-entry

M-TLB entry index

Set numberWay number
Log2(N)-1 0Log2(N*K)-1 Log2(N)

4 056

Bus interface unit

IFU LSU

M-TLB Tag

M-TLB Tag

M-TLB data

M-TLB data

Page 88

MMU FunctionalityMMU Functionality

Virtual memory addressing
Better memory allocation, less fragmentation
Allows shared memory
Dynamic loading

Memory protection (read/write/execute)
Different permission flags for kernel/user mode
OS typically runs in kernel mode
Applications run in user mode
Implemented by associating protection bit with each frame.
Valid-invalid bit attached to each entry in the page table:
• “valid” indicates that the associated page is in the process’ logical

address space, and is thus a legal page.
• “invalid” indicates that the page is not in the process’ logical address

space.
Cache control (cached/uncached)

Accesses to peripherals and other processors needs to be
uncached.

Page 89

Valid (v) or Invalid (i) Bit In A Page TableValid (v) or Invalid (i) Bit In A Page Table

Page 90

Direct Memory Access (DMA)Direct Memory Access (DMA)
Direct memory access (DMA) is a feature of modern
computers and microprocessors that allows certain
hardware subsystems within the computer to access
system memory for reading and/or writing independently
of the central processing unit.
Many hardware systems use DMA including disk drive
controllers, graphics cards, network cards and sound
cards.
DMA is also used for intra-chip data transfer, especially in
multiprocessor system-on-chips, where its processing
element is equipped with a local memory and DMA is
used for transferring data between the local memory and
the main memory.
Computers that have DMA channels can transfer data to
and from devices with much less CPU overhead than
computers without a DMA channel.

Page 91

Block diagramBlock diagram

AHB (1 or 2)

HSMP (1 or 2)

Core

Cache Local Memory

A
D

D
R
E

SS
/C

O
M

M
A

N
D

A
D

D
R
E
S
S
/C

O
M

M
A

N
D

D
A

T
A

ADDRESS/COMMAND
D

A
T
A

MMU

DMA

B
I
U

ADDRESS/DATA

EDM JTAG

B
I
U

Page 92

DMA overviewDMA overview

DMA
Controller

Local Memory

Ext. Memory

Two channels
One active channel
Programmed using physical
addressing
For both instruction and data local
memory
External address can be
incremented with stride
Optional 2-D Element Transfer
(2DET) feature which provides an
easy way to transfer two-
dimensional blocks from external
memory.

Page 93
Width byte stride (in DMA Setup register)=1

LMDMA Double Buffer ModeLMDMA Double Buffer Mode

Local Memory
Bank 0

Local Memory
Bank 1 DMA Engine

Core
Pipeline

External
Memory

Computation
Data Movement
Bank Switch between core and DMA engine

Page 94

Bus Interface Unit (BIU)Bus Interface Unit (BIU)

The bus interface unit is the part of the processor that
interfaces with the rest of the PC.
It deals with moving information over the processor data
bus, the primary conduit for the transfer of information to
and from the CPU.
The bus interface unit is responsible for responding to all
signals that go to the processor, and generating all signals
that go from the processor to other parts of the system.
Bus Interface unit is responsible for off-CPU
memory access which includes

System memory access
Instruction/data local memory access
Memory-mapped register access in devices.

Page 95

Block diagramBlock diagram

AHB (1 or 2)

HSMP (1 or 2)

Core

Cache Local Memory

A
D

D
R
E

S
S
/C

O
M

M
A

N
D

A
D

D
R
E

S
S
/C

O
M

M
A

N
D

D
A

T
A

ADDRESS/COMMAND
D

A
T
A

MMU

DMA

B
I
U

ADDRESS/DATA

EDM JTAG

B
I
U

Page 96

Compliance to AHB/AHB-Lite/APB
High Speed Memory Port
Andes Memory Interface
External LM Interface

Bus InterfaceBus Interface

Page 97

HSMP – High speed memory portHSMP – High speed memory port

N12 also provides a high speed memory port
interface which has higher bus protocol efficiency
and can run at a higher frequency to connect to a
memory controller.
The high speed memory port will be AMBA3.0
(AXI) protocol compliant, but with reduced I/O
requirements.

Page 98

ExamplesExamples

Page 99

N903: Low-power Cost-efficient Embedded
Controller
N903: Low-power Cost-efficient Embedded
Controller

Features:
Harvard architecture, 5-stage
pipeline.
16 general-purpose registers.
Static branch prediction
Fast MAC
Hardware divider
Fully clock gated pipeline
2-level nested interrupt
External instruction/data local
memory interface
Instruction/data cache
APB/AHB/AHB-Lite/AMI bus
interface
Power management instructions
45K ~ 110K gate count
250MHz @ 130nm

Applications:
MCU
Storage
Automotive control
Toys

External Bus Interface

APB/AHB/AHB-Lite/AMI

Instr
Cache

Instr
LM/IF

Data
Cache

Data
LM/IF

N9 uCore

JTAG/EDM

Page 100

N1033A: Lowe-power Cost-efficient
Application Processor
N1033A: Lowe-power Cost-efficient
Application Processor

External Bus Interface

AHB/AHB(D)/AHB-Lite/APB

Instruction
Cache

Instruction
LM/INF

Data
Cache

Data
LM/INF

MMU/MPU

N10 Core +Audio

JTAG/EDM EPT I/F

DTLBITLB

DMA

AHB(I)

External Bus Interface

AHB/AHB(D)/AHB-Lite/APB

Instruction
Cache

Instruction
LM/INF

Data
Cache

Data
LM/INF

MMU/MPU

N10 Core +Audio

JTAG/EDM EPT I/F

DTLBITLB

DMA

AHB(I)

Features:
Harvard architecture, 5-stage pipeline.
32 general-purpose registers
Dynamic branch prediction
Fast MAC
Hardware divider
Audio acceleration instructions
Fully clock gated pipeline
3-level nested interrupt
Instruction/Data local memory
Instruction/Data cache
DMA support for 1-D and 2-D transfer
AHB/AHB-Lite/APB bus
MMU/MPU
Power management instructions

Applications:
Portable audio/media player
DVB/DMB baseband
DVD
DSC
Toys, Games

Page 101

N1213 – High Performance Application
Processor
N1213 – High Performance Application
Processor

External Bus Interface

AHB

Instruction
LM

Instruction
Cache

Data
LM

Data
Cache

MMU

N12 Execution Core

JTAG/EDM EPT I/F

DTLBITLB

HSMP

DMA

Features:
Harvard architecture, 8-stage pipeline.
32 general-purpose registers
Dynamic branch prediction.
Multiply-add and multiply-subtract
instructions.
Divide instructions.
Instruction/Data local memory.
Instruction/Data cache.
MMU
AHB or HSMP(AXI like) bus
Power management instructions

Applications:
Portable media player
MFP
Networking
Gateway/Router
Home entertainment
Smartphone/Mobile phone

WWW.ANDESTECH.COM

Thank YouThank You

	Embedded Processor �
	Agenda
	CPU Architecture (1/8)
	CPU Architecture (2/8)
	CPU Architecture (3/8)
	CPU Architecture (4/8)
	CPU Architecture (5/8)
	CPU Architecture (6/8)
	CPU Architecture (7/8)
	CPU Architecture (8/8)
	Architectures: CISC vs. RISC (1/2)
	Architectures: CISC vs. RISC (2/2)
	Single-, Dual-, Multi-, Many- Cores
	Pipeline (1/2)
	Pipeline (2/2)
	8-stage pipeline
	Instruction Fetch Stage
	Instruction Issue Stage
	Execution Stage
	Write Back Stage
	Branch Prediction Overview
	Branch Prediction Overview
	Branch Prediction Overview
	Branch Prediction Unit
	BTB Instruction Prediction
	RAS Prediction
	Branch Miss-Prediction
	Cache
	Block diagram
	Memory Hierarchy - Diagram
	Cache (1/3)
	Cache (2/3)
	Cache (3/3)
	Hierarchy List
	Caching in Memory Hierarchy
	Caching in Memory Hierarchy
	Cache Read Operation - Flowchart
	Cache and CPU (1/2)
	Cache and CPU (2/2)
	Some Cache Spec.
	Multiple levels of cache
	投影片編號 42
	Cache operation
	Cache/Main Memory Structure
	Typical Cache Organization
	Direct Mapping (1/2)
	Direct Mapping (2/2)
	Direct Mapping�Address Structure
	Direct Mapping Cache Organization
	Direct Mapping�Example
	Direct Mapping Summary
	Associative Mapping (1/2)
	Associative Mapping (2/2)
	Fully Associative Cache Organization
	Associative Mapping�Address Structure
	Associative �Mapping Example
	Associative Mapping Summary
	Set Associative Mapping (1/2)
	Set Associative Mapping (2/2)
	Set Associative Mapping�Address Structure
	Set Associative Mapping�Example
	Set Associative Mapping�Address Structure
	Two Way Set Associative Cache Organization
	Two Way Set Associative Mapping �Example
	Set Associative Mapping Summary
	Replacement policy
	Write operations
	Write operations
	Generic Issues in Caching
	Reasons for Cache Misses
	Reasons for Cache Misses
	Improving Cache Performance
	Effective Access Time
	Tuning Cache Parameters
	Processor Core Start procedure
	Local memory
	Local memory
	Cache/Local Memory Design
	Memory Management Unit (MMU)
	Block diagram
	MMU Functionality
	Virtual memory
	Virtual memory
	Virtual memory
	Logical vs. Physical Address Space
	Dynamic relocation using a relocation register
	MMU Architecture
	MMU Functionality
	Valid (v) or Invalid (i) Bit In A Page Table
	Direct Memory Access (DMA)
	Block diagram
	DMA overview
	LMDMA Double Buffer Mode
	Bus Interface Unit (BIU)
	Block diagram
	投影片編號 96
	HSMP – High speed memory port
	Examples
	N903: Low-power Cost-efficient Embedded Controller
	投影片編號 100
	N1213 – High Performance Application Processor
	Thank You

