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CPU architecture
Pipeline
Cache
Memory Management Units (MMU)
Direct Memory Access (DMA)
Bus Interface Unit (BIU)
Examples 
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CPU Architecture (1/8)CPU Architecture (1/8)

von Neumann architecture
Data and instructions are stored 
in memory, the Control Unit 
takes instructions and controls 
data manipulation in the 
Arithmetic Logic Unit. 
Input/Output is needed to make 
the machine a practicality
Execution in multiple cycles
Serial fetch instructions & data
Single memory structure

• Can get data/program mixed
• Data/instructions same size

Memory

Control ALU

I/O

Examples of von Neumann 
ORDVAC (U-Illinois) at 
Aberdeen Proving Ground, 
Maryland (completed Nov 
1951) 
IAS machine at Princeton 
University (Jan 1952) 
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CPU Architecture (2/8)CPU Architecture (2/8)

The ALU manipulates 
two binary words 
according to the 
instruction decoded in 
the Control unit. The 
result is in the 
Accumulator and may 
be moved into Memory.
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CPU Architecture (3/8)CPU Architecture (3/8)

von Neumann architecture introduces a problem, 
which is not solved until much later.
The CPU work on only one instruction at a time, 
each must be fetched from memory then 
executed. During fetch the CPU is idle, this is a 
waste of time. Made worse by slow memory 
technology compared with CPU.
Time is also lost in the CPU during instruction 
decode.

F         E    F        E      --------- D       E
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CPU Architecture (4/8)CPU Architecture (4/8)
Harvard architecture

In a computer using the Harvard 
architecture, the CPU can both read 
an instruction and perform a data 
memory access at the same time.
A Harvard architecture computer 
can thus be faster for a given circuit 
complexity because instruction 
fetches and data access do not 
contend for a single memory 
pathway. 
Execution in 1 
cycle
Parallel fetch instructions & 
data                  
More Complex 
hardware

• Instructions and data always 
separate

• Different code/data path 
widths (E.G. 14 bit instructions, 8 bit 
data)

CPU

data memory

program memory

address

data

address

data

Examples of Harvard:
Microchip PIC 
families
Atmel AVR
AndeScore
Atom
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CPU Architecture (5/8)CPU Architecture (5/8)

Take a closer look at the action part of the 
CPU, the ALU, and how data circulates 
around it.
An ALU is combinational logic only, no data 
is stored, i.e. no registers. This is the 
original reason for having CPU registers.
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CPU Architecture (6/8)CPU Architecture (6/8)

CPU Architecture

ALU

A

X Y

In the simplest, minimum hardware, 
solution one of them, say X, is the 
accumulator A, the other, Y, is 
straight off the memory bus (this 
requires a temporary register not 
visible to the programmer).

The instruction may be ADDA, 
which means: add to the contents 
of A  the number (Y) and put the 
answer in A.

data bus
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CPU Architecture (7/8)CPU Architecture (7/8)

• It’s a simple step to add more CPU data registers 
and extend the instructions to include B, C,….. as 
well as A.

• An internal CPU bus structure then becomes a 
necessity. 
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CPU Architecture (8/8)CPU Architecture (8/8)
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Architectures: CISC vs. RISC (1/2)Architectures: CISC vs. RISC (1/2)

CISC - Complex Instruction Set Computers:
von Neumann architecture
Emphasis on hardware 
Includes multi-clock complex instructions 
Memory-to-memory
Sophisticated arithmetic (multiply, divide, trigonometry etc.)
Special instructions are added to optimize performance 
with particular compilers
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Architectures: CISC vs. RISC (2/2)Architectures: CISC vs. RISC (2/2)

RISC - Reduced Instruction Set Computers:
Harvard architecture
A very small set of primitive instructions
Fixed instruction format
Emphasis on software 
All instructions execute in one cycle (Fast!)
Register to register (except Load/Store instructions)
Pipeline architecture
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Single-, Dual-, Multi-, Many- CoresSingle-, Dual-, Multi-, Many- Cores
Single-core:

Most popular today.

Dual-core, multi-core, many-core:
Forms of multiprocessors in a single chip

Small-scale multiprocessors (2-4 cores):
Utilize task-level parallelism.
Task example: audio decode, video decode, display control, 
network packet handling.

Large-scale multiprocessors (>32 cores):
nVidia’s graphics chip: >128 core
Sun’s server chips: 64 threads 
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Pipeline (1/2)Pipeline (1/2)

An instruction pipeline is a technique used in the design 
of computers and other digital electronic devices to 
increase their instruction throughput (the number of 
instructions that can be executed in a unit of time).
The fundamental idea is to split the processing of a 
computer instruction into a series of independent steps, 
with storage at the end of each step. 
This allows the computer's control circuitry to issue 
instructions at the processing rate of the slowest step, 
which is much faster than the time needed to perform all 
steps at once. 
The term pipeline refers to the fact that each step is 
carrying data at once (like water), and each step is 
connected to the next (like the links of a pipe.)
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Pipeline (2/2)Pipeline (2/2)

Basic five-stage pipeline in a RISC machine (IF = 
Instruction Fetch, ID = Instruction Decode, EX = Execute, 
MEM = Memory access, WB = Register write back). In the 
fourth clock cycle (the green column), the earliest 
instruction is in MEM stage, and the latest instruction has 
not yet entered the pipeline. 
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8-stage pipeline8-stage pipeline

 

RF 

EX 

IF1 IF2 ID DA1 DA2 WB 

Instruction-Fetch 
 First and Second 

Instruction Decode 

Instruction Issue and
Register File Read 

AG 

Instruction Retire and
Result Write Back 

Data Access 
 First and Second

Data Address 
 Generation 

F1 F2 I1 I2 E1 E2 E3 E4 

MAC1 MAC2 
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Instruction Fetch StageInstruction Fetch Stage

F1 – Instruction Fetch First
Instruction Tag/Data Arrays
ITLB Address Translation
Branch Target Buffer Prediction

F2 – Instruction Fetch Second
Instruction Cache Hit Detection
Cache Way Selection
Instruction Alignment

IF1 IF2 ID RF AG DA1 DA2 WB

EX

MAC1 MAC2
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Instruction Issue StageInstruction Issue Stage

I1 – Instruction Issue First / Instruction Decode
32/16-Bit Instruction Decode
Return Address Stack prediction

I2 – Instruction Issue Second / Register File Access
Instruction Issue Logic
Register File Access

IF1 IF2 ID RF AG DA1 DA2 WB

EX

MAC1 MAC2
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Execution StageExecution Stage

E1 – Instruction Execute First / Address Generation / MAC First
Data Access Address Generation
Multiply Operation (if MAC presents)

E2 –Instruction Execute Second / Data Access First / MAC Second / ALU 
Execute

ALU
Branch/Jump/Return Resolution
Data Tag/Data arrays
DTLB address translation
Accumulation Operation (if MAC presents)

E3 –Instruction Execute Third / Data Access Second
Data Cache Hit Detection
Cache Way Selection
Data Alignment

IF1 IF2 ID RF AG DA1 DA2 WB

EX

MAC1 MAC2
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Write Back StageWrite Back Stage

E4 –Instruction Execute Fourth / Write Back
Interruption Resolution
Instruction Retire
Register File Write Back

IF1 IF2 ID RF AG DA1 DA2 WB

EX

MAC1 MAC2
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Branch Prediction OverviewBranch Prediction Overview

Why is branch prediction required?
A deep pipeline is required for high speed
Branch cost is a combination of penalty, frequency of branches, and 
frequency that they are taken
Moving detection earlier reduces penalty
Conditional operations reduce number of branches 
Pipelines offer speedup due to parallel execution of instructions 
Full speedup is rarely obtained dues to hazards (data, control, structural) 
Control hazards handled by avoidance and prediction 
Prediction can be static, dynamic, local, global, and hybrid
Prediction reduces number "taken“

Why dynamic branch prediction?
Static branch prediction

• Static uses fixed prediction algorithm, or compile-time information
Dynamic branch prediction

• Dynamic gathers information as the program executes, using historical 
behavior of branch to predict its next execution
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Branch Prediction OverviewBranch Prediction Overview

Simple Static Prediction:
if 60% of branches are taken, assume all are taken, 
and the percent "taken" drops to 40% 
Once a choice is made, the compiler can order 
branches appropriately 
Very simple, cheap to implement, moderately effective 

Complex Static Prediction:
Assume backwards branches are taken (likely loop 
returns) and forward branches aren't (BTFN) 
Compiler provides hints by selecting different branches 
or including flags to indicate likely to be taken --
requires a predecoding of the branch 
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Branch Prediction OverviewBranch Prediction Overview

Simple Dynamic Prediction
Records portion of jump address, and most recent action 
(taken/not) 
Partial address can result in aliasing (behavior of multiple 
branches is combined) 
Single bit of state can lead to worse behavior in degenerate cases 

Extended Dynamic Prediction
2-bit state -- none, taken, not, both 
2-bit state -- taken, multi-taken, not-taken, multi-not-taken 
Not fooled by branch occasionally behaving in the opposite 
manner 
May be associated with I-cache, with BTB, or as a separate table 
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Branch Prediction UnitBranch Prediction Unit

Branch Target Buffer (BTB)
Branch target buffer (BTB) stores address of the last target 
location to avoid recomputing
Indexed by low-order bits of jump address, tag holds high-
order bits 
Enables earlier prefetching of target based on prediction
128 entries of 2-bit saturating counters
128 entries, 32-bit predicted PC and 26-bit address tag

Return Address Stack (RAS)
Four entries

BTB and RAS updated by committing 
branches/jumps
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BTB Instruction PredictionBTB Instruction Prediction

BTB predictions are performed based on the previous PC instead of 
the actual instruction decoding information, BTB may make the 
following two mistakes

Wrongly predicts the non-branch/jump instructions as branch/jump 
instructions
Wrongly predicts the instruction boundary (32-bit -> 16-bit) 

If these cases are detected, IFU will trigger a BTB instruction 
misprediction in the I1 stage and re-start the program sequence from 
the recovered PC.  There will be a 2-cycle penalty introduced here 

 

F1 F2 I1 

F1 F2 

F1 

branch 

PC+4

PC+4

BTB instruction misprediction 

F1 F2 I1 

killed 

killed 

Recovered PC 
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RAS PredictionRAS Prediction

When return instructions present in the instruction 
sequence, RAS predictions are performed and the fetch 
sequence is changed to the predicted PC.
Since the RAS prediction is performed in the I1 stage.  
There will be a 2-cycle penalty in the case of return 
instructions since the sequential fetches in between will 
not be used.

 

F1 F2 I1 

F1 F2 

F1 

return 

PC+4

PC+4

RAS prediction 

F1 F2 I1 

killed 

killed 

target 
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Branch Miss-PredictionBranch Miss-Prediction

In processor core, the resolution of the branch/return instructions is 
performed by the ALU in the E2 stage and will be used by the IFU in 
the next (F1) stage.  In this case, the misprediction penalty will be 5 
cycles.

 

F1 F2 I1 I2 

F1 F2 I1 I2 

F1 F2 I1 I2 

PC+4 

PC+4

F1 F2 I1 

F1 F2 

E1 E2

E1

branch 

target 

F1 

F1 F2 I1 I2 

predicted taken (wrong) 

killed 

killed 

redirect 
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CacheCache

Store copies of data at places that can be 
accessed more quickly than accessing the 
original

Speed up access to frequently used data
At a cost:  Slows down the infrequently used data



Page 29

Block diagramBlock diagram

AHB (1 or 2)

HSMP (1 or 2)
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Memory Hierarchy - DiagramMemory Hierarchy - Diagram
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Cache (1/3)Cache (1/3)

Small amount of fast memory
Sits between normal main memory and CPU
May be located on CPU chip or module
Size does matter

Cost
• More cache is expensive

Speed
• More cache is faster (up to a point)
• Checking cache for data takes time
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Cache (2/3)Cache (2/3)
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Cache (3/3)Cache (3/3)
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Hierarchy ListHierarchy List

Registers
L1 Cache
L2 Cache
Main memory
Disk cache
Disk
Optical
Tape
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Caching in Memory HierarchyCaching in Memory Hierarchy

Provides the illusion of GB storage
With register access time

Access Time Size Cost

Primary memory Registers 1 clock cycle ~500 bytes On chip
Cache 1-2 clock cycles <10 MB

Main memory 1-4 clock cycles < 4GB $0.1/MB
Secondary memory Disk 5-50 msec < 200 GB $0.001/MB
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Caching in Memory HierarchyCaching in Memory Hierarchy

Exploits two hardware characteristics
Smaller memory provides faster access times
Large memory provides cheaper storage per byte

Puts frequently accessed data in small, fast, and 
expensive memory
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Cache Read Operation - FlowchartCache Read Operation - Flowchart
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Cache and CPU (1/2)Cache and CPU (1/2)

CPU
ca

ch
e

co
nt

ro
lle

r cache
main

memory

data

data

address

data

address
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Cache and CPU (2/2)Cache and CPU (2/2)

Main memory

L2 cache

L1 cache

CPU

~1-5 cycles

~5-20 cycles

~40-100 cycles

1 cycle

Roughly
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Some Cache Spec.Some Cache Spec.

L1 cache (I/D) L2 cache

PS2 16K/8K16K/8K†† 22--wayway N/AN/A

GameCube 32K/32K32K/32K‡‡ 88--wayway 256K 2256K 2--way unifiedway unified

XBOX 16K/16K 416K/16K 4--wayway 128K 8128K 8--way unifiedway unified

PC ~32~32--64K64K ~128~128--512K512K
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Multiple levels of cacheMultiple levels of cache

CPU L1 cache L2 cache
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Cache data flowCache data flow

I-Cache

D-Cache

CPU Ext Memory

I Fetches

Load & Store

I Cache refill
Uncached Instruction/data

Uncached write/write-through

Write back

D-Cache refill
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Cache operationCache operation

CPU requests contents of memory location
Check cache for this data
If present, get from cache (fast)
If not present, read required block from main memory to 
cache
Then deliver from cache to CPU
Cache includes tags to identify which block of main 
memory is in each cache slot
Many main memory locations are mapped onto one cache 
entry.
May have caches for:

instructions;
data;
data + instructions (unified).
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Cache/Main Memory StructureCache/Main Memory Structure
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Typical Cache OrganizationTypical Cache Organization
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Direct Mapping (1/2)Direct Mapping (1/2)

Each block of main memory maps to only one 
cache line

i.e. if a block is in cache, it must be in one specific 
place

Address is in two parts
Least Significant w bits identify unique word
Most Significant s bits specify one memory block
The MSBs are split into a cache line field r and a 
tag of s-r (most significant)
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Direct Mapping (2/2)Direct Mapping (2/2)

tag

tag

tag

快取

主記憶體

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

Block 0

Block 1

Block 127

7 4 主記憶體位址

標籤 區塊 字組

5

•Direct mapping
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Direct Mapping 
Address Structure 
Direct Mapping 
Address Structure

24 bit address
2 bit word identifier (4 byte block)
22 bit block identifier

8 bit tag (=22-14)
14 bit slot or line

No two blocks in the same line have the same Tag field
Check contents of cache by finding line and checking Tag

Tag  s-r Line or Slot  r Word  w

8 14 2



Page 49

Direct Mapping Cache OrganizationDirect Mapping Cache Organization
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Direct Mapping 
Example 
Direct Mapping 
Example
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Direct Mapping SummaryDirect Mapping Summary

Address length = (s + w) bits
Number of addressable units = 2s+w words or 
bytes
Block size = line size = 2w words or bytes
Number of blocks in main memory = 2s+ w/2w = 2s

Number of lines in cache = m = 2r

Size of tag = (s – r) bits
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Associative Mapping (1/2)Associative Mapping (1/2)

A main memory block can load into any line of 
cache
Memory address is interpreted as tag and word
Tag uniquely identifies block of memory
Every line’s tag is examined for a match
Cache searching gets expensive
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Associative Mapping (2/2)Associative Mapping (2/2)

4

tag

tag

tag

快取

主記憶體

Block 0

Block 1

Block i

Block 4095

Block 0

Block 1

Block 127

12 主記憶體位址

標籤 字組

Fully associative mapping(完全關聯映射)
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Fully Associative Cache OrganizationFully Associative Cache Organization
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Associative Mapping 
Address Structure 
Associative Mapping 
Address Structure

22 bit tag stored with each 32 bit block of data
Compare tag field with tag entry in cache to check 
for hit
e.g.

Address Tag Data Cache 
line
FFFFFC FFFFFC 24682468 3FFF

Tag   22 bit
Word
2 bit
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Associative 
Mapping Example 
Associative 
Mapping Example
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Associative Mapping SummaryAssociative Mapping Summary

Address length = (s + w) bits
Number of addressable units = 2s+w words or 
bytes
Block size = line size = 2w words or bytes
Number of blocks in main memory = 2s+ w/2w = 2s

Number of lines in cache = undetermined
Size of tag = s bits
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Set Associative Mapping (1/2)Set Associative Mapping (1/2)

Cache is divided into a number of sets
Each set contains a number of lines
A given block maps to any line in a given set

e.g. Block B can be in any line of set i
e.g. 2 lines per set

2 way associative mapping
A given block can be in one of 2 lines in only one set
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Set Associative Mapping (2/2)Set Associative Mapping (2/2)

tag

tag

tag

快取

主記憶體

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

Block 129

Block 4095

Block 0

Block 1

Block 126

tag

tag
Block 2

Block 3

tag Block 127

主記憶體位址6 6 4
T標籤 集合 字組

Set 0

Set 1

Set 63
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Set Associative Mapping 
Address Structure 
Set Associative Mapping 
Address Structure

Use set field to determine cache set to look in
Compare tag field to see if we have a hit
e.g

Address Tag Data Set number
1FF 7FFC 1FF 12345678 1FFF
001 7FFC 001 11223344 1FFF

Tag  9 bit Set  13 bit
Word
2 bit
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Set Associative Mapping 
Example 
Set Associative Mapping 
Example

13 bit set number
Block number in main memory is modulo 213

000000, 00A000, 00B000, 00C000 … map to 
same set
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Set Associative Mapping 
Address Structure 
Set Associative Mapping 
Address Structure

Use set field to determine cache set to look in
Compare tag field to see if we have a hit
e.g

Address Tag Data Set number
1FF 7FFC 1FF 12345678 1FFF
001 7FFC 001 11223344 1FFF

Tag  9 bit Set  13 bit
Word
2 bit
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Two Way Set Associative Cache 
Organization 
Two Way Set Associative Cache 
Organization
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Two Way Set Associative Mapping 
Example 
Two Way Set Associative Mapping 
Example
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Set Associative Mapping SummarySet Associative Mapping Summary

Address length = (s + w) bits
Number of addressable units = 2s+w words or 
bytes
Block size = line size = 2w words or bytes
Number of blocks in main memory = 2d

Number of lines in set = k
Number of sets = v = 2d

Number of lines in cache = kv = k * 2d

Size of tag = (s – d) bits
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Replacement policyReplacement policy

Replacement policy
strategy for choosing which cache entry to throw out to make room 
for a new memory location

Two popular strategies:
Random
Least-recently used (LRU)
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Write operationsWrite operations

Write Policy
Must not overwrite a cache block unless main memory is up to 
date
Multiple CPUs may have individual caches
I/O may address main memory directly

Write-through
immediately copy write to main memory
immediately propagates update through various levels of caching

• For critical data
All writes go to main memory as well as cache
Multiple CPUs can monitor main memory traffic to keep local (to 
CPU) cache up to date
Lots of traffic
Slows down writes
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Write operationsWrite operations

Write-back
write to main memory only when location is removed 
from cache
delays the propagation until the cached item is 
replaced

• Goal:  spread the cost of update propagation over multiple 
updates

• Less costly
Updates initially made in cache only
Update bit for cache slot is set when update occurs
Other caches get out of synchronization
If block is to be replaced, write to main memory only if 
update bit is set
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Generic Issues in CachingGeneric Issues in Caching

Cache hit: requested instruction/data by 
microprocessor is found in the cache
Cache miss: request instruction/data is not in the 
cache => read from main memory (DRAM) and 
the associated data is copied in the cache (cache 
update) 
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Reasons for Cache MissesReasons for Cache Misses

Compulsory misses: data brought into the cache 
for the first time

e.g., booting
Capacity misses:  caused by the limited size of a 
cache

A program may require a hash table that exceeds the 
cache capacity

• Random access pattern
• No caching policy can be effective
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Reasons for Cache MissesReasons for Cache Misses

Misses due to competing cache entries:  a cache 
entry assigned to two pieces of data

When both active
Each will preempt the other

Policy misses:  caused by cache replacement 
policy, which chooses which cache entry to 
replace when the cache is full
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Improving Cache PerformanceImproving Cache Performance

Goal: reduce the Average Memory Access Time 
(AMAT)

AMAT = Hit Time + Miss Rate * Miss Penalty

Approaches
Reduce Hit Time
Reduce or Miss Penalty
Reduce Miss Rate

Notes
There may be conflicting goals
Keep track of clock cycle time, area, and power 
consumption
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Effective Access TimeEffective Access Time

Cache hit rate:  99%
Cost:  2 clock cycles

Cache miss rate:  1%
Cost:  4 clock cycles

Effective access time:
99%*2 + 1%*(2 + 4) 

= 1.98 + 0.06 = 2.04 (clock cycles)
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Tuning Cache ParametersTuning Cache Parameters

Size:
Must be large enough to fit working set (temporal locality)
If too big, then hit time degrades

Associativity
Need large to avoid conflicts, but 4-8 way is as good a FA
If too big, then hit time degrades

Block
Need large to exploit spatial locality & reduce tag overhead
If too large, few blocks ⇒ higher misses & miss penalty

Configurable architecture allows designers to make 
the best performance/cost trade-offs 

Configurable architecture allows designers to make 
the best performance/cost trade-offs
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Processor Core Start procedureProcessor Core Start procedure

AndeScore

Local 
Memory

Cache

External 
Memory
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Local memoryLocal memory

Local memory is also used to describe a portion 
of memory that a software program or utility only 
has access to once obtained. 
On-chip memory, based on thread unit to use.
The memory used by a single CPU or allocated to 
a single program or function. 
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Local memoryLocal memory

Memory model
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Cache/Local Memory DesignCache/Local Memory Design

Size
Mapping Function
Replacement Algorithm
Write Policy
Block Size
Number of Caches/Local Memories
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Memory Management Unit (MMU)Memory Management Unit (MMU)

Hardware device that maps virtual to physical 
address.
In MMU scheme, the value in the relocation 
register is added to every address generated by a 
user process at the time it is sent to memory.
The user program deals with logical addresses; it 
never sees the real physical addresses.
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Block diagramBlock diagram
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MMU FunctionalityMMU Functionality

Memory management unit (MMU) translates addresses

CPU
memory

management
unit

logical
address

physical
address
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Virtual memoryVirtual memory

Virtual address (logical address)
MMU (built in CPU)
Physical address
Page table (in Main Memory)
Page frame
Address translation
TLB

Cache built within CPU for holding translated address just used

Page fault
Replacement algorithm

LRU
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Virtual memoryVirtual memory

資料

資料

DMA 傳送

實際位址

實際位址

虛擬位址

磁碟儲存體

主記憶體

快取

MMU

處理器
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Virtual memoryVirtual memory

記憶體中
的分頁訊框

來自處理器的虛擬位址

位移

位移

虛擬分頁編號分頁表位址

分頁表基底暫存器

控制位元

主記憶體中的實際位址

分頁表

分頁訊框

+

指向分頁表的起始位址

指向分頁表中某個entry

指向實體分頁表的起始位址

指向實體分頁表中的某個byte

Valid bit

Dirty bit

Access right of the program to the page
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Logical vs. Physical Address SpaceLogical vs. Physical Address Space

The concept of a logical address space that is 
bound to a separate physical address space is 
central to proper memory management.

Logical address – generated by the CPU; also referred 
to as virtual address.
Physical address – address seen by the memory unit.

Logical and physical addresses are the same in 
compile-time and load-time address-binding 
schemes; logical (virtual) and physical addresses 
differ in execution-time address-binding scheme.
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Dynamic relocation using a relocation 
register 
Dynamic relocation using a relocation 
register
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MMU ArchitectureMMU Architecture

4/8 I-uTLB 4/8 D-uTLB

M-TLB arbiter

32x4 M-TLB

HPTWK

N(=32) sets  k(=4) ways =128-entry

M-TLB entry index

Set numberWay number
Log2(N)-1 0Log2(N*K)-1 Log2(N)

4 056

Bus interface unit

IFU LSU

M-TLB Tag

M-TLB Tag

M-TLB data

M-TLB data
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MMU FunctionalityMMU Functionality

Virtual memory addressing
Better memory allocation, less fragmentation
Allows shared memory
Dynamic loading

Memory protection (read/write/execute)
Different permission flags for kernel/user mode
OS typically runs in kernel mode
Applications run in user mode
Implemented by associating protection bit with each frame.
Valid-invalid bit attached to each entry in the page table:
• “valid” indicates that the associated page is in the process’ logical 

address space, and is thus a legal page.
• “invalid” indicates that the page is not in the process’ logical address 

space.
Cache control (cached/uncached)

Accesses to peripherals and other processors needs to be 
uncached.
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Valid (v) or Invalid (i) Bit In A Page TableValid (v) or Invalid (i) Bit In A Page Table
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Direct Memory Access (DMA)Direct Memory Access (DMA)
Direct memory access (DMA) is a feature of modern 
computers and microprocessors that allows certain 
hardware subsystems within the computer to access 
system memory for reading and/or writing independently 
of the central processing unit. 
Many hardware systems use DMA including disk drive 
controllers, graphics cards, network cards and sound 
cards. 
DMA is also used for intra-chip data transfer, especially in 
multiprocessor system-on-chips, where its processing 
element is equipped with a local memory and DMA is 
used for transferring data between the local memory and 
the main memory. 
Computers that have DMA channels can transfer data to 
and from devices with much less CPU overhead than 
computers without a DMA channel.
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Block diagramBlock diagram
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DMA overviewDMA overview

DMA 
Controller

Local Memory

Ext. Memory

Two channels
One active channel
Programmed using physical 
addressing
For both instruction and data local 
memory
External address can be 
incremented with stride
Optional 2-D Element Transfer 
(2DET) feature which provides an 
easy way to transfer two-
dimensional blocks from external 
memory.
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Width byte stride (in DMA Setup register)=1

LMDMA Double Buffer ModeLMDMA Double Buffer Mode

Local Memory 
Bank 0

Local Memory 
Bank 1 DMA Engine

Core 
Pipeline

External 
Memory

Computation
Data Movement
Bank Switch between core and DMA engine
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Bus Interface Unit (BIU)Bus Interface Unit (BIU)

The bus interface unit is the part of the processor that 
interfaces with the rest of the PC. 
It deals with moving information over the processor data 
bus, the primary conduit for the transfer of information to 
and from the CPU. 
The bus interface unit is responsible for responding to all 
signals that go to the processor, and generating all signals 
that go from the processor to other parts of the system. 
Bus Interface unit is responsible for off-CPU 
memory access which includes 

System memory access
Instruction/data local memory access
Memory-mapped register access in devices.
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Block diagramBlock diagram
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Compliance to AHB/AHB-Lite/APB
High Speed Memory Port
Andes Memory Interface
External LM Interface

Bus InterfaceBus Interface
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HSMP – High speed memory portHSMP – High speed memory port

N12 also provides a high speed memory port 
interface which has higher bus protocol efficiency 
and can run at a higher frequency to connect to a 
memory controller.
The high speed memory port will be AMBA3.0 
(AXI) protocol compliant, but with reduced I/O 
requirements. 
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ExamplesExamples
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N903: Low-power Cost-efficient Embedded 
Controller 
N903: Low-power Cost-efficient Embedded 
Controller

Features:
Harvard architecture, 5-stage 
pipeline.
16 general-purpose registers.
Static branch prediction
Fast MAC
Hardware divider
Fully clock gated pipeline
2-level nested interrupt
External instruction/data local 
memory interface
Instruction/data cache
APB/AHB/AHB-Lite/AMI bus 
interface
Power management instructions
45K ~ 110K gate count
250MHz @ 130nm

Applications:
MCU
Storage
Automotive control
Toys

External Bus Interface

APB/AHB/AHB-Lite/AMI

Instr
Cache

Instr
LM/IF

Data
Cache

Data
LM/IF

N9 uCore

JTAG/EDM
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N1033A: Lowe-power Cost-efficient 
Application Processor 
N1033A: Lowe-power Cost-efficient 
Application Processor

External Bus Interface

AHB/AHB(D)/AHB-Lite/APB 

Instruction
Cache

Instruction
LM/INF

Data
Cache

Data
LM/INF

MMU/MPU

N10 Core +Audio

JTAG/EDM EPT  I/F

DTLBITLB

DMA

AHB(I)

External Bus Interface

AHB/AHB(D)/AHB-Lite/APB 

Instruction
Cache

Instruction
LM/INF

Data
Cache

Data
LM/INF

MMU/MPU

N10 Core +Audio

JTAG/EDM EPT  I/F

DTLBITLB

DMA

AHB(I)

Features:
Harvard architecture, 5-stage pipeline.
32 general-purpose registers
Dynamic branch prediction
Fast MAC
Hardware divider
Audio acceleration instructions
Fully clock gated pipeline
3-level nested interrupt
Instruction/Data local memory
Instruction/Data cache
DMA support for 1-D and 2-D transfer
AHB/AHB-Lite/APB bus
MMU/MPU
Power management instructions

Applications:
Portable audio/media player
DVB/DMB baseband
DVD
DSC
Toys, Games
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N1213 – High Performance Application 
Processor 
N1213 – High Performance Application 
Processor

External Bus Interface

AHB

Instruction
LM

Instruction
Cache

Data
LM

Data
Cache

MMU

N12 Execution Core

JTAG/EDM EPT  I/F

DTLBITLB

HSMP

DMA

Features:
Harvard architecture, 8-stage pipeline.
32 general-purpose registers
Dynamic branch prediction.
Multiply-add and multiply-subtract 
instructions.
Divide instructions.
Instruction/Data local memory.
Instruction/Data cache.
MMU
AHB or HSMP(AXI like) bus
Power management instructions

Applications:
Portable media player
MFP
Networking
Gateway/Router
Home entertainment
Smartphone/Mobile phone
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