
WWW.ANDESTECH.COM

AndESLive™ Modeling Training AndESLive™ Modeling Training
SID-based Component Modeling

Jonson Chen

ANDES ConfidentialPage 2

OutlineOutline

Virtual (Evaluation) Platform Introduction
Andes Virtual Evaluation Platform (VEP)
SID: Simulation Backbone of AndESLive
SID Component Modeling
Integrating SID Components in AndESLive

A little touch on SystemC Modeling
How VEP can be used in SoC Development Cycle

WWW.ANDESTECH.COM

Virtual Platform IntroductionVirtual Platform Introduction
From physical to virtual and vice versa

ANDES ConfidentialPage 4

What is Virtual Platform?What is Virtual Platform?

“It is a system-level simulation model that characterizes real
system behavior. It operates at the level of processor
instructions, function calls, memory accesses and data
packet transfers, etc, as opposed to the bit-accurate,
nanosecond-accurate logic transitions of a register
transfer level (RTL) model.”*

*from the book
ESL Design and Verification: A Prescription for Electronic System Level Design Methodology. B. Bailey, G. Martin and A. Piziali.

Elsevier Morgan Kaufmann, 2007

Andes Development Platform Andes Virtual Platform

ANDES ConfidentialPage 5

In
te

gr
at

ed
 D

ev
el

op
m

en
t

En
vi

ro
n

m
en

t

S/W Development with Physical EVBS/W Development with Physical EVB

SW Developer Desktop Target Hardware

DEVICE SOFTWARE STACK

External System
Connectivity

Physical Target
Connection

On-Chip-Debug, Ethernet, USB, …

PHYSICAL HARDWARE BOARD

Operating Systems

BSP/Device Drivers

Middleware

Applications

Operating Systems

BSP/Device Drivers

Middleware

Applications

Editor

Compiler

Debugger

Source Code Analysis

Build

Profiling Tools

Project Management

Other plug-in tools

ANDES ConfidentialPage 6

In
te

gr
at

ed
 D

ev
el

op
m

en
t

En
vi

ro
n

m
en

t

S/W Development with Virtual PlatformS/W Development with Virtual Platform

SW Developer Desktop

DEVICE SOFTWARE STACK

Virtual Platform

Operating Systems

BSP/Device Drivers

Middleware

Applications

Operating Systems

BSP/Device Drivers

Middleware

Applications

Editor

Compiler

Debugger

Source Code Analysis

Build

Profiling Tools

Project Management

Other plug-in tools

Tools/API

External System
Connectivity

WWW.ANDESTECH.COM

Andes Virtual Evaluation PlatformAndes Virtual Evaluation Platform
ADP-AG101

ANDES ConfidentialPage 8

AndeShape™ Platform SoC: AG101AndeShape™ Platform SoC: AG101

N1213N1213
Bus

Controller
Bus

Controller
MAC

10/100
MAC

10/100 USB2.0USB2.0

LCD
Controller

LCD
Controller

SDRAM
Controller
SDRAM

Controller
DMA

Controller
DMA

Controller
SRAM

Controller
SRAM

Controller

PWMPWM I2CI2C GPIOGPIO INTCINTC WDTWDT TimerTimer RTCRTC

ST
UART
ST

UART
BT

UART
BT

UART SSPSSP CFCF I2SI2S SD/
MMC
SD/

MMCPower
Manager
Power

Manager

AHB to APB
Bridge

AHB to APB
Bridge

AHB Bus

APB Bus

ANDES ConfidentialPage 9

AG101 Virtual Evaluation Platform (VEP)AG101 Virtual Evaluation Platform (VEP)

ANDES ConfidentialPage 10

In
te

gr
at

ed
 D

ev
el

op
m

en
t

En
vi

ro
n

m
en

t

S/W Development with Andes ToolsS/W Development with Andes Tools

SW Developer Desktop (AndeSightTM)

DEVICE SOFTWARE STACK

VEP (AndESLiveTM)

Operating Systems

BSP/Device Drivers

Middleware

Applications

Operating Systems

BSP/Device Drivers

Middleware

Applications

Editor

Compiler

Debugger

Assembler

Program Builder

Profiler

SOC Builder

Other plug-in tools

AndESLiveTM/API

AndeSoftTM

Virtual I/O
Connectivity

ANDES ConfidentialPage 11

AndESLive™ VEP EnvironmentAndESLive™ VEP Environment

Cycle-accurate CPU simulation model (ISS)
Speed: 30 MIPS

Pre-built IP models
Generic: dram controller, bus controller, DMA, GPIO, etc.
Controllers for LCD, MAC, USB, etc.
Virtual IO service to speed up simulation for non-focused modules

Customer’s IP models
Thru C++ interface

SoC Builder
Construct SoC thru GUI drag-and-drop
List memory/interrupt mapping for SW engineers

Demo available:
Linux booting; JPEG/MP3 decode; run ftp and NFS

ANDES ConfidentialPage 12

AndESLiveTM VEP EnvironmentAndESLiveTM VEP Environment

VEP module

Module descriptor

SID component

User-defined Models

Peripheral IP Models

AndesCore Model

Customer SoC

Andes AG101Andes AG101

AndESLive™

C/C++

ANDES ConfidentialPage 13

VEP Module VEP Module

User-defined Models

Essential IP Models

AndesCore

Customer SoC

Andes AG101Andes AG101

AndESLive™
VEP module

Module descriptor

SID component

C/C++

slave port

master port

write port read port

bus port

ANDES ConfidentialPage 14

Andes VEP (a quick summary)Andes VEP (a quick summary)

SID, an open-source framework for building simulated
Embedded Systems, has been integrated into AndESLive
as backbone simulator
Simulated component, or a SID component, can be
written in C/C++, or Tcl to which the SID API is bound
VEP module is a SID component wrapped with XML-
based Module Descriptor in which the parameters and
attributes are described (and can be changed)

Andes provides sample code (C++-based) and SID
example for modeling target (bus slave) and initiator (bus
master) components that run on AndESLive

Depending on the requirements from customers, Andes
can provide Modeling Training and Services as well

WWW.ANDESTECH.COM

SID SimulatorSID Simulator
AndESLiveTM simulation backbone

ANDES ConfidentialPage 16

SID OverviewSID Overview

The SID simulator consists of an engine that loads and connects simulated
components, based on a simulator configuration file, and runs simulation
sessions.

SID comes with a number of simulated components, or SID components,
each of which can be modified, configured, or connected to any other
independently.

The SID simulator configuration file (or command file) is a text file that
configures a SID simulation run. The configuration file defines the simulation
contents (which components are used?), connections (how the components
connect together?), and initial states (properties).

Adding new components is straightforward and does not require any
modifications to SID. More info on SID Component Library, refer to the SID
Simulator Component Developer’s Guide.

While running a simulation, SID can interface with standard I/O, such as a Tk-
based visual simulation monitor, the gdb debugger, and the gprof profiler.

ANDES ConfidentialPage 17

SID Architecture (1/2)SID Architecture (1/2)

SID is a simulation framework for supporting embedded systems
software development.

SID features a modular architecture of loosely-coupled software
components that interact with each other to simulate the behavior of
physical hardware parts.

SID components share a fixed low-level API, which defines all
possible inter-component communication mechanisms.

SID is packaged as a standalone command-line program that reads
and executes a configuration file (ie, to run a simulation.)

A typical session with SID begins with compiling or assembling code
for the simulated system to run (using standard cross-development
toolchains), and proceeds through loading the target binary into the
simulation environment.

ANDES ConfidentialPage 18

SID Architecture (2/2)SID Architecture (2/2)

Four Component types are supported in SID
Hardware model (hw-xxx)
Software model (sw-xxx)
Bridge (Tcl/Tk bridge)
Special function (event scheduler, host network interface,
etc)

Communication mechanisms between Components:
SID API is used to model these mechanisms:

• pin and bus
• attribute and relation

The SID API can be thought as the socket on a circuit
board. The SID Component is like the IC that plugs into
these sockets and the SID simulator configuration file is
like the circuit wiring that connects the sockets to each
other

ANDES ConfidentialPage 19

SID API (1/2)SID API (1/2)

sid::component Interface
Attributes
• vector<string> attribute_names(); // return attributes for a

component
• string attribute_value (const string& name); // query
• string set_attribute_value(const string& name, const string& value);

Pins
• vector<string> pin_names(); // return pins for a component
• pin* find_pin (const string& name); // input pins
• status connect_pin (const string& name, pin *pin); // out -> in
• Status disconnect_pin (const string& name, pin *pin);

Buses
• vector<string> bus_names(); //return buses for a component
• vector<string> accessor_names();
• bus* find_bus (const string& name); // bus slave
• status connect_accessor (const string& name, bus *bus); // bus master
• Status disconnect_accessor (const string& name, bus *bus);

Relationships
• vector<string> relationship_names ();
• status relate (const string& name, component *comp);
• status unrelate (const string& name, component *comp);

ANDES ConfidentialPage 20

SID API (2/2)SID API (2/2)

sid::bus Interface
All bus transactions (read or write) are initiated by a bus master,
and respond with a status code object
Read (byte addressable,1, 2, 4, 8, little and big order)
• status read (host_int_4 addr, little_int_1& data);

Write (byte addressable, 1, 2, 4, 8, little and big order)
• status write (host_int_4 addr, little_in_1 data);

Status codes
• return status (); // status = ok
• return status (unmapped);
• Return status (unpermitted);
• return status (ok, 5); // latency = 5
• return status (not_found);
• return status (misaligned);

sid::pin Interface
Only the API for input pins is provided
• void driven(host_int_4 value);

ANDES ConfidentialPage 21

SID Configuration FileSID Configuration File

The configuration file is composed of commands which
map to a small number of SID API calls
The configuration file consists of three major sections:

A listing of component libraries to be loaded (dynamically
loaded libraries)
• load

A command to instantiate components
• new

A set of commands that connect and configure the
components
• set
• connect-pin, disconnect-pin (point-to-pint)
• connect-bus, disconnect-bus (broadcast)
• relate, unrelate

ANDES ConfidentialPage 22

Component Connection in SIDComponent Connection in SID

CPU
(master)

Memory
(slave)

system-mem
(accessor)

data-bus
(bus)

bus port

bus port

connect-bus CPU system-mem Memory data-bus

CPU
(master)

Timer
(slave)

write port

read port

connect-pin CPU out1 -> Timer in1

out1 in1

CPU
(master)

Memory
(slave)

system-mem
(accessor)

data-bus
(bus)

master port

slave port

ANDES ConfidentialPage 23

Event Scheduling in SIDEvent Scheduling in SID

Events in a SID component are scheduled by
communicating to the scheduler using special pin
interface (divided-clock-control and divided-clock-
event)

Scheduler
(sid-sched)

SID component
(sid::component)

divided-clock-eventdivided-clock-control

N-eventN-control

schedule evaluate

WWW.ANDESTECH.COM

SID Component ModelingSID Component Modeling
User-defined Components

ANDES ConfidentialPage 25

#include <sidcomp.h>
#include <sidtypes.h>
#include <iostream>

using namespace sid;
using namespace sidutil;

class sp_timer : public virtual component
{
public: sp_timer();

~sp_timer() throw() {}

protected:
input_pin a, b, c;
output_pin d, e, f;

private:
in_out_handler();

};

Basic Component Outline (Class Declaration)Basic Component Outline (Class Declaration)

SID and C++ header files

Namespace

Declare this class as
SID component and use
other predefined utilities

Data I/O

Inaccessible data and function

ANDES ConfidentialPage 26

Component Declaration (1/3)
common header files & utility
Component Declaration (1/3)
common header files & utility

Header files
sidattrutil.h
sidbusutil.h
sidcomp.h
sidcomputil.h
sidmiscutil.h
sidpinattrutil.h
sidpinutil.h
sidscheutil.h
sidtypes.h
sidwatchutil.h

Tens of utilities
For simplicity issue

using namespace sid;
using namespace sidutil;

ANDES ConfidentialPage 27

Component Declaration (2/3)
class inheritance
Component Declaration (2/3)
class inheritance

class sp_timer
: public virtual component

//each component class need to inherit from this
, public fixed_attribute_map_component

//if the component provide configure attribute such as “verbose?” else use
//“no_attribute_map_component”

, public fixed_pin_map_component
//if the component provide input/output pin else use “no_pin_map_component”

, public fixed_bus_component
//if the component provide bus access else use “no_bus_map_component”

, public no_relation_component
//no relation utility requirement

, public no_accessor_component
//not a bus master

ANDES ConfidentialPage 28

Component Declaration (3/3)
Data I/O
Component Declaration (3/3)
Data I/O

//input type
input_pin din_pin;

friend class callback_pin<sp_timer>;
callback_pin<sp_timer> rst_pin;

//output type
output_pin intr_pin;

//clock type (connected to scheduler)
friend class scheduler_event_subscription<sp_timer>;

scheduler_event_subscription<sp_timer> clk;

WWW.ANDESTECH.COM

Integrating SID Component in AndESLiveIntegrating SID Component in AndESLive
Wrapping SID component with Module Descriptor

ANDES ConfidentialPage 30

Integrating Component in AndESLiveTMIntegrating Component in AndESLiveTM

To integrate SID component in AndESLive,
an XML-based component descriptor is
created for each component. The
component descriptor defines the properties
to be used in AndESLive (such as bus, pin,
and attributes)

Once the user-defined component descriptor
is completed, save the XML file in the folder:

$ANDESIGHT_ROOT/vep/component/user

Under this directory, a sample component
descriptor, sample.comp.xml, is provided
for reference

VEP module
component
descriptor

SID
component

slave port

master port

write port read port

bus port

ANDES ConfidentialPage 31

Sample Component Descriptor (1/2) Sample Component Descriptor (1/2)

Component Definition:
<defcomponent name="hw-sample" shortname="sample" type="SID">

<sid-lib dlsym="sample_component_library" name="libsample.la" />
</defcomponent>

Bus Definition:
<!—sid bus accessor-- >

<busmaster name="master" type="AHB"/>
<!—sid bus interface-- >

<busslave name="registers" type="AHB"/>

Pin Definition:
<!—pin-- >
<defpins name="sample-out-" from="0" to="5" direction="out"/>
<defpins name="sample-in-" from="0" to="5" direction="in"/>
<defpin name=“out” direction=“out”/>
<defpin name=“in” direction=“in”/>
<defpin name=“intr” direction=“out” type=“interrupt”/>

ANDES ConfidentialPage 32

Sample Component Descriptor (2/2)Sample Component Descriptor (2/2)
Attribute Definition:

<!—sample attributes-- >
<defattribute category=“setting” name=“string” type=“string” default=“any string”/>
<defattribute category=“setting” name=“boolean” type=“{0, 1}” default=“0”/>
<defattribute category=“setting” name=“truth” type=“{true, false}” default=“true”/>
<defattribute category=“setting” name=“integer” type=“integer” default=“-65536”/>
<defattribute category=“setting” name=“range_ex” type=“[0..100]” default=“50”/>

Schedule Event and Time:
Clock definition:

• <defclockinput name=“clockIn” event=“event” control=“control” />
Time Query definition:

• <time-query-client query=“time-query” high=“time-high” low=“time-low” />

Life Cycle Control Pin:
<!—to initialize, de-initialize, or reset component-- >

• <control-pin init=“init” deinit=“deinit” reset=“reset” />

ANDES ConfidentialPage 33

VEP component (sample)VEP component (sample)

WWW.ANDESTECH.COM

Questions/AnswersQuestions/Answers

ANDES ConfidentialPage 35

QuestionsQuestions

We want to know how a component is modeled in
AndESLive and what language/description by
which the modeling is based upon?

Where can we find the document/tutorial for
modeling user-defined components and if Andes
can provide modeling training/services?

Will Andes support SystemC as a modeling
constructor and what if we have SystemC models,
how can we incorporate them into AndESLive?

ANDES ConfidentialPage 36

AnswersAnswers

We want to know how a component is modeled in
AndESLive and what language/description by
which the modeling is based upon?

Where can we find the document/tutorial for
modeling user-defined components and if Andes
can provide modeling training/services?

Will Andes support SystemC as a modeling
interface and what if we have SystemC models,
how can we incorporate them into AndESLive?

The behavior of user-defined model can be written in
C/C++ and the SID API is used to compose a SID
component by which a VEP-based module is created that
runs on AndESLive.
There is a document in User Manual (release 1.3.1) for
creating a user-defined model. Tutorial is also being
prepared as well as application notes. Andes can provide
modeling training and/or services based on customer
requests.
In the current release (1.3.3), SystemC modeling/import
is NOT supported in AndESLive. Andes is now
developing SID-SystemC bridge which can communicate
SystemC interface with SID-based pin and bus. Untimed
SystemC models will be supported first.

WWW.ANDESTECH.COM

SystemC ModelingSystemC Modeling

WWW.ANDESTECH.COM

How VEP can be used in
Development Cycle

How VEP can be used in
Development Cycle

Enable early S/W development

ANDES ConfidentialPage 39

VEP Use ModelsVEP Use Models

VEP as an Early (or pre-silicon) Software Development
and Software Validation Platform

Reduce SW bring-up and system test time
Ideally start SW dev. in parallel to HW dev.
Leave more time for SW dev. and quality assurance

VEP as an Architecture Exploration Platform
Evaluate HW/SW configuration and/or system partitioning
Optimize system architecture

VEP as a RTL Verification Platform
Golden reference models for functional verification
Verify architecture and system validation

ANDES ConfidentialPage 40

VEP as Early SW Development & ValidationVEP as Early SW Development & Validation

VEP can be used for developing & testing SW
(only if the VEP can run as fast as HW board does)

Low-level device drivers and kernel
OS and middleware porting
App. SW development

One scenario is as follows:
SW team extends existing device drivers based on updated
IP spec
At the same time, Platform team enhances/creates models
(ex. new features added) based on the VEP
SW team completely debugs and tests the driver
functionality early on the VEP
SW ‘bring-up’ in a shorter time after the HW (FPGA) is
available

ANDES ConfidentialPage 41

Development Cycle ImpactDevelopment Cycle Impact

Platform
Specification

Hardware Development
Integration & Bring-up Debug

SW Development (OS & Device Driver Dev, Apps Dev) Final
System
Testing

Scalable Development Reducing bring-up and
final system test time

Traditional (or Past) Approach:

Platform
Specification

Hardware Development

Scalable VEP

SW Development Pre-silicon
System Test Integration

Bring-up
Debug

Final
System
Testing

VEP-based Approach:

• Enable Early SW Development

• Enable Scalable Development

• Pre-Silicon System Test

• Reduce Bring-up time

• Reduce Post-Silicon System Test

ANDES ConfidentialPage 42

VEP as Architecture ExplorationVEP as Architecture Exploration

VEP can be used to explore design alternatives to
determine the appropriate architecture (or system)

Some alternatives to evaluate are:
AndesCore configuration

• Cache, MMU, Local memory, branch prediction, etc
SW profiling (in AndESLive)

• code optimization
HW/SW partitioning

• HW accelerator engine or SW oriented
• Performance and cost tradeoff

Bus Matrix or Multi-layer
• currently NOT supported in AndESLive

ANDES ConfidentialPage 43

VEP as RTL VerificationVEP as RTL Verification

Currently NOT supported in AndESLive!

Team-up Partnership possibilities
GUC (porting AndesCore ISS with SystemC TLM2.0)
EVE (compiling AndesCore on ZeBu)
CoWare (porting AndesCore ISS with SystemC/AMBA)
Carbon (porting AndesCore ISS with CASI/SystemC)
Cadence/Synopsys/Mentor…

Speed is always an important concern and incentive
Transaction-based interface is the key
HW accelerator/emulator may be too expensive to be
justified

WWW.ANDESTECH.COM

THANK YOU!THANK YOU!

WWW.ANDESTECH.COM

Supplement SlidesSupplement Slides

ANDES ConfidentialPage 46

Andes ADP-AG101 FeaturesAndes ADP-AG101 Features

AMBA 2.0 based AHB
environment for new IP verification
High integration flexibility for bus
extension
On-board 64MB SDRAM with one
SODIMM slot
On-board 512KB Boot ROM with
32MB flash memory
On-board header for LCD plus
touch screen module
15 on-board GPIO keypads
On-board 10/100 PHY and RJ45
connector
On-board T&MT interface
connector for USB 2.0 PHY
On-board CF & SD slot, providing
CF & SD/MMC card access
On-board AC97 & I2S codec,
selected by switch
2 on-board UART interfaces with
level-shifting on board for
asynchronous serial data transfer
On-board Andes ICE interface for
function debugging

ANDES ConfidentialPage 47

Devices on AHB
SDRAM controller
LCD controller
DMA controller
MAC controller
USB 2.0 controller
SRAM controller
Flash controller
AHB Bus controller

Devices on APB
AHB-APB bridge
PMU
PWM
I2C
GPIO
Interrupt controller
Watch dog timer
Timer
RTC
UART
SSP
CF controller
I2S/AC97
SD/MMC

Andes ADP-XC5 FeaturesAndes ADP-XC5 Features

ANDES ConfidentialPage 48

Virtual Platforms Authoring ToolsVirtual Platforms Authoring Tools

ESL Model and Virtual Platform Creation

SystemC support Pre-assembled platform Tool-chain Targeted CPU

IBM ChipBench

SLD Y Y GNU-based PPC 405

ARM System Generator Y Y native ARM9,11, Cortex

MIPS ICS Y N native MIPS

Tensilica TurboXim Y N native Diamond

ARC
VTOC & IP eXchange Y N GNU-based ARC 600

Andes AndESLive Y (partial) Y GNU-based AndesCore

Synopsys Innovator Y Y GNU-based ARM, etc

Mentor Graphics
Visual Elite Y Y GNU-based ARM, etc

Carbon SOC Designer Y Y GNU-based ARM, etc

CoWare PA Y Y GNU-based many

Virtutech

Simics Y Y GNU-based many

ANDES ConfidentialPage 49

Target Manager Target Manager

Allow application executables to run on a simulator or a
real board (Target)
All Targets are available on different places but within a
LAN environment to allow sharing among all users easily
All Targets are queried automatically to save the set up
efforts

ANDES ConfidentialPage 50

Targets on networkingTargets on networking

VEP 1 VEP 2

EVB 2

Program
Development

Performance
Profiling

Debugging

SQA
Project
Management

SoC

EVB 1

ICEICESoC

Verification

LANLAN

Users

Shared
Environment

ANDES ConfidentialPage 51

(VEP) Target Manager(VEP) Target Manager

user

VEP
GDBAgent

VEP
GDBAgent

AndeSight IDE
VEP

Target Manager

Local Host
(Client)

VEP
Target
VEP

Target

Remote Host
(SID Server)
VEP Target

Target Query
port: 9898

VEP
configuration

VEP Initiation
Invoking SID

LANLAN

Debugger
gdb

gdb port

Load
user program
and run

ANDES ConfidentialPage 52

Basic VEP CreationBasic VEP Creation

Create a basic VEP configuration file (vep file) for Project “Hello”
Right-click on Project “Hello”>New>New VEP Config>enter file
name Hello.vep>Basic platform for N903>Finish a basic VEP
configuration (N903, Memory, and AHB) is created

Invoke GDBAgent (can be on local or remote system)
GDBAgent.exe –v none (on Windows)
GDBAgent –v none –d (on Linux)

Query VEP Target
Target>Query Target available VEP target(s) are shown in
Target Manager View

Initiate VEP Target with the Hello VEP configuration
Expand Project “Hello”>click, drag, and drop “Hello.vep” onto an
available VEP target

VEP target is connected through the GDB agent
Project “Hello” is now ready to run, debug, and profile

ANDES ConfidentialPage 53

Running Program through Command-line ModeRunning Program through Command-line Mode

Click the Hello.vep on Editor View
File>Export SID Config>type “Hello” for the output file->a
SID configuration with filename Hello.conf is created

On a Cygwin terminal (SID server)
$sid.exe Hello.conf
Look for the gdb port showing on the last line (server at
0.0.0.0:port)

On another Cygwin terminal
nds32le-elf-gdb.exe Hello.adx
(gdb)target remote :port*

(gdb)load
(gdb)list
(gdb)c

*target remote hostname:port (if on another
machine)

ANDES ConfidentialPage 54

Command-line ModeCommand-line Mode

	AndESLive™ Modeling Training
	Outline
	Virtual Platform Introduction
	What is Virtual Platform?
	S/W Development with Physical EVB
	S/W Development with Virtual Platform
	Andes Virtual Evaluation Platform
	AndeShape™ Platform SoC: AG101
	AG101 Virtual Evaluation Platform (VEP)
	S/W Development with Andes Tools
	AndESLive™ VEP Environment
	AndESLiveTM VEP Environment
	VEP Module
	Andes VEP (a quick summary)
	SID Simulator
	SID Overview
	SID Architecture (1/2)
	SID Architecture (2/2)
	SID API (1/2)
	SID API (2/2)
	SID Configuration File
	Component Connection in SID
	Event Scheduling in SID
	SID Component Modeling
	Basic Component Outline (Class Declaration)
	Component Declaration (1/3)�common header files & utility
	Component Declaration (2/3) �class inheritance
	Component Declaration (3/3)�Data I/O
	Integrating SID Component in AndESLive
	Integrating Component in AndESLiveTM
	Sample Component Descriptor (1/2)
	Sample Component Descriptor (2/2)
	VEP component (sample)
	Questions/Answers
	Questions	
	Answers	
	SystemC Modeling
	How VEP can be used in Development Cycle
	VEP Use Models
	VEP as Early SW Development & Validation
	Development Cycle Impact
	VEP as Architecture Exploration
	VEP as RTL Verification
	THANK YOU!
	Supplement Slides
	Andes ADP-AG101 Features
	
	Virtual Platforms Authoring Tools
	Target Manager
	Targets on networking
	(VEP) Target Manager
	Basic VEP Creation
	Running Program through Command-line Mode
	Command-line Mode

