DSP (Spring, 2020) Sampling of Continuous-time Signals

Sampling of Continuous-time Signals

® Advantages of digital signal processing, e.g., audio/video CD.
® Things to look at:

B Continuous-to-discrete (C/D)

B Discrete-to-continuous (D/C) — perfect reconstruction

B Frequency-domain analysis of sampling process

B Sampling rate conversion

< Periodic Sampling

e |deal continuous-to-discrete-time (C/D) converter

S C/D —
x.(1) x[n]=x.(nT)

Continuous-time signal: X, (t)

Discrete-time signal: X[N] = X.(NT), —oo <N < oo, T: sampling period
In theory, we break the C/D operation into two steps:
(1) Ideal sampling using “analog delta function (impulse)”
(2) Conversion from impulse train to discrete-time sequence
Step (1) can be modeled by mathematical equation.
Step (2) is a “concept”, no mathematical model.
In reality, the electronic analog-to-digital (A/D) circuits can approximate the ideal C/D

operation. This circuitry is one piece; it cannot be split into two steps.
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DSP (Spring, 2020) Sampling of Continuous-time Signals

(b)

® Ideal sampling

Xc (t) XS (t)

—— Sampling ——

Ideal sampling signal: impulse train (an analog signal)

s(t): ig(t -nT ) T: sampling period

N=—0

Analog (continuous-time) signal: X, (t)

Sampled (continuous-time) signal: Xg (t)

0

X (t) =%, (t)s(t) = x.(t) > 5t —nT)

N=—o0

= Y060 -0T)= X x0Tt )

N=—o0 n=
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DSP (Spring, 2020) Sampling of Continuous-time Signals

< Frequency-domain Representation of Sampling
s(t)<—>s(jQ):2T’z ia(g_kgs), where O =27/T

Remark: €2: analog frequency (radians/s)

@ : discrete (normalized) frequency (radians/sample)
Q=0/T;, —T<OST, _ % _ 7~
T T
Step 1: Ideal Sampling (all in analog domain)

X,(9)= o= X.(12)(j0) =2 X () Yole-ka)

Tkz_wx(,g)*a(g kQ) = iZXC(j(Q—kQS))

The sampled signal spectrum is the sum of shifted copies of the original.

Remark: In analog domain,
x@®yt) <« X(F)*Y(f)

1 . .
=5 XU*Y ()
T
Step 2: Analog Impulses to Sequence (analog to discrete-time)
No mathematical model. The spectrum of X (), X, (jQ), is the same as the
spectrum of x[n] X (e¥°T). (See the Appendix at the end.)
N, X @) =1 T X, (il ke,)

Thus, joy_ 1 < (o 27K
w2 (o2

K=
Remark: In time domain, Xg (t) and x[n] are two very different signals but they
have the “same” spectra in frequency domain.
Two Cases:
(1) no aliasing: Q, >2Q,, and
(2) aliasing: Q) < 2Q), where Q) is the highest nonzero frequency component

of X, (j€2).
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After sampling, the replicas of X _(jQ) overlap (in frequency domain). That is, the
higher frequency components of X ( j€2) overlap with the lower frequency com-

ponents of X _(j(Q-Q,))

T
U FT U FT
4 X(iQ) 4 X(i2)

Qv

AN\

S

m Nyquist Sampling Theorem:
Let x(t) be a bandlimited signal with X_(j€2) =0 for | 2[> Q. (i.e., no compo-

nents at frequencies greater than €3 ) Then X ('[) is uniquely determined by its sam-

ples X[n]=x.(nT),n=0,£1+2,....if o - 27 20, - (Nyquist, Shannon)
T

-- Nyquist frequency =2, the bandwidth of signal.

-- Nyquist rate =22 N » the minimum sampling rate without distortion. (In some books,
Nyquist frequency = Nyquist rate.)

-- Undersampling: Q, < 2Q)

-- Overdampling: €2 > 2Q
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<> Fourier Series, Fourier Transform, Discrete-Time

Fourier Series & Discrete-Time Fourier Transform

® F[ourier Series
X(t): periodic continuous-time signal with period Ty

X(t) Xk

complex
valued

. = ||| ||| ‘

.

To

t
© j2nk— 0 .
x() =Y Xe =Xl
k=—o0 k=—o0

1 _ ikt 2z
xk=T—ojTox(t)e gt QO—T—O
: _ 1 2 . X 2
Power: P, _ﬁJ‘TO|x(t)| dt_k;JXk|
® [ourier Transform
X(t): continuous-time signal
X(t) X(j)
complex
valued
o I
t 9
1 = ; jQt
x(t):—j X (jQ)edQ
27 o
X(jQ) = j“" x(t)e dt
o 1 (= .2
Energy: P, =[ |x(®)| dt=—/[" |[X(jQ) dQ
gy:  P.=[ X de=——[ [X(i)
Remark: (1) Other Notations
1 (= it . o
X0 = [ X(wye™dw x(®) = [ X(F)erdf
X(w) = [~ x(t)e Mt X(f)=[" x(t)e > "dt
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(2) Relationships between F.S. & F.T.

L, e I t

= |

To

U Fs. U FT.
Xk X(iQ)
k ‘ Q
Power Spectrum Energy Spectrum
— l — jkQt . 0 .
X, ‘ﬁfn X(t)e " dt X(jQ) = x(tye *™dt
To—o

To Xy —=22 X (j) = lim (T, X, )

(3) Periodic Signal

m I,

I
e

To
\f.T_
X(i0)

27/To

B
-/

® Discrete-Time Fourier Series
X[n]: periodic discrete-time signal with period N.

X[n] Xk

complex
valued

1NN
N k

D.F.S.

)
X(3iQ)
F.T.
R | TR 1 ERI IR
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13,
x[n]==>X,e N
N i

N-1 _j2mk
X, =) X[nle N

I
o

n

1 N-1 2 N-1 2
Power: P, ==>|x[n]" =Y |X,]
N n=0 k=0

® Discrete-Time Fourier Transform
X[n]: discrete-time signal

+ x[n] X(")
DTFT
T N

X(t) b X(i0)
]l D0

1 om0 e
x[n]=—1] X(e")e™"dw
[n] 2;er (e™)

X (M) = ix[n]e’jWn
2 1 4 . 2
Energy: E, = Z|x[n]|2 :z.[ﬂ‘X(e‘W)‘ dw
Remark: X(e™) v.s. X(j©2)
X(e™) is a frequency-scaled version of X(jQ)

X(jQ)=X(™)

w=QT
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<> Reconstruction of a Band-limited Signal from Its

Samples

-- Perfect reconstruction: recover the original continuous-time signal without distortion,

e.g., ideal lowpass (bandpass) filter

Ideal reconstruction system

Ideal

Convert from on
—>{ sequence to r“m:.?“l.lic 190 —‘—»I
x[n] | | impulse train | x = %
x[n] ’ impulse train | x,(¢) H,(jQ) : x,(1)
|
|
! 1 |
| Sampling |
. J
(a)
H,(j)
T
T ™ Q
T 8
(b)
h,(t)
1
=~ N\ VN —
4T~0T \_J-T o T\ / 3r~4T

(c)

Based on the frequency-domain analysis, if we can “clip” one copy of the original spectrum,
X (jQ), without distortion, we can achieve the perfect reconstruction. For example, we
use the ideal low-pass filter as the reconstruction filter.

Remark: Note that X (t) is an analog signal (impulses).

X, (t) > sampling — x,(t) = > x(nT)&(t —nT) — seq.—convr. — x[n]

x[n] — impulse — convr. — x, (t) = > x[n]&(t —nT) — recon. —x, (t)

X () =%, O *h, 0 = | { 3 X[ (A—NT)h, (t—4) (dA

—oo (N=—00

o0

-y {x[n] [© 8(2-nT)h(t —z)dz}= 2 x[nlh, (t—nT)

— N=—o0
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0

X, (iQ)= > x[nlH, (jQ)e ™ = Hr(jQ){iX[n]e’jm”}

N=—00 =

=H (JOX (™) =H (JQXE")=H,(jQ)X(ie)

Ideal low-pass reconstruction filter:

T —7/T<Q<x/T
0 otherwise

_sin(at/T)
(7/T)

Hr(jm:{ h, (t)

< Discrete-time Processing of Continuous-time Sig-

nals
— |cp |—— D'S;ztz;:me _ JpiCc — o0
X (t) X[n] y[n] Y, ()
L |-|(eiw)JA
Heff(jQ)

® |[f thisis an LTI system,

(1) x[n] = y[n]: Y(!*)=HE”)X ")
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@ %O > H xem-1 S 2-24))

) yInl =y, (0 Y, (i) =H, (i)Y ")

Note that “T” is included in the expression of Y (ej‘”), w < QT . This means
“physical” frequency (not normalized).
4) X, () —>---—>y,(t):

Y, (1) = H, (JOH ()X (")

“H,(jQHE™E S XC[JQ—J'Z”“)
T, T

If H,(jQ) is an ideal low-pass reconstruction filter, then

v JHEEHX (JQ), |Q<zIT
Y (JQ)= { 0, otherwise

In other words, if X, (t) is band-limited and is ideally sampled at a rate above the
Nyquist rate, and the reconstruction filter is the ideal low-pass filter, then the equiv-

alent analog filter has the same spectrum shape of the discrete-time filter.

, HE*™), |1QkzIT
H (J€) = :
o (12) { 0, otherwise

Remark: In order to have the above equivalent relation between H (e”) and H. (jQ),

we need

(i) The system is LTI;

(i) The input is bandlimited;

(iti) The input is sampled without aliasing and the ideal impulse train is

used in sampling;

(iv) The ideal reconstruction filter is used to produce the analog output.
In practice, the above conditions are only approximately valid at best.
However, there are methods in designing the sampling and the reconstruction

processes to make the approximation better.
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X8
1
—Oy @) Qy Q0

Xo(j) = X(e'"y

ANV ANEVAN

|
_2im . Qy Q
T T
(b)
e (]
T Hie!™)
/
4 AN / \
“m o, e, QT b 2a @
0T Q27— QyT)
(c)
PRGR!
T,
l h A
2@ —w, W, 27 @
(d)
1 Y(eT
T~ ]T / H,(j61)
| |
m | ? | m
| |
| I | |
_2z T 9% % T 2m Q
T T T T T T
(e)
Y, ()
N
wl LUL. g
T

Figure 4.12 (a) Fourier transform of a bandlimited input signal. (b) Fourier trans-
form of sampled input plotted as a function of continuous-time frequency Q.
(c) Fourier transform X (&) of sequence of samples and frequency response
H(e!) of discrete-time system plotted versus w. (d) Fourier transform of output
of discrete-time system. (e) Fourier transform of output of discrete-time system
and frequency response of ideal reconstruction filter plotted versus <. (f) Fourier
transform of output.

H (1) =H_ (jQ)
H(e"w):HC(j¥) w|< 7

T is chosens.t. H,(jQ) =0, for |Q|z$

— h[n]=Th,(nT)

The impulse response of the discrete-time system is a scaled, sampled version of h_(t).

NCTU EE
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< Continuous-time Processing of Discrete-time Signals

X[n] X.(t) | Continu.-time | Y.(t) y[n]
- D/C > System > C/D —
$ H.(JQ) $

H(e!?)
X (jQ) =TX (e, |Q|<$
Y. (JQ) = H, (JO) X, (j©), |Q|<$
Y(e"W):Tch(j¥), W<z
= Y(e"W):$Hc(j$)xc(j$)=Hc(j$)><(e"W) i< 7
= HE")=H,(D) W< 7
or, equivalently, H(Ee")=H_(jQ) Q) < %

Example: Noninteger Delay
He")=eM w|< 7

aENANES

T 7T
(a)

\ () =x, I.)

11T W{"

T 7/
(b)
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<> Change the Sampling Rate Using Discrete-time

Processing

X (1) —-T - Xx[n]=x.(nT)
¢ —>T'> X[n]=x(nT")
Original sampling period: T
New sampling period: T' T#T'

e Sampling rate reduction by an integer factor
m Sampling rate compressor:
T'=MT , where M is an integer
X4[N]=X[nNM ] = X, (nMT)

> | M -
x|[n] x4[n] =x[nM]
Sampling Sampling
period T period 7, = MT
Compressor

1
=X (i
T, (i)

-~ ! - Q
T T
/\—/ U Downsampling .
_ T X (i)
/I/" FT /
=
t
- - A
T,=MT, Q
2z

Aliasing: If the original signal BW is not small enough to meet the Nyquist rate requirement,
prefiltering is needed.

The Original The Downsampled

L Sy (@ 2 Ly (0 2m
X )‘Tk§X°[’(T T D Xa (&™) T'rzz_ooXC[’[T' TD
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r .- -2 -1 01 2 M-) M (M+]
i - M=-2 M-1) 0 1 2 M- 1 2
k .- -1 -1 0 0O 0 1 1
Old and new index: r =i+ kM rk=—0,--2-1012, - 00,
1=012,---,M -1
; 1 (o 2ar
X joy _ — X w
o) =5 2 °(‘(T' TD
1 & [ o 2ar
i 2%t
eSSl )
k=—00 i=0

i 1M1 & .o-2n .27k

X e")==3|=Y X -

0™ M,:OTE@ {J MT TH
1 M4 j”i”i]
=—>X|eMM

The down-sampled spectrum = sum of shifted replica of the original

X(i)

(a)

X,(j) = X(e ™)
1
T
| |
_2m 0 Qy 2 Q
T T
(b)
X(elv)
1
T
|
2 T —wy wy=O\T 7 2 w=0T
(<)
X, (eh) = Tx(e"?) + X( )l
(M=2) -
L
MT
W\A
2 ™ 77 27 w=0T,
(d)
X, (efT)
(M=2)
1
Ty
| I | |
_4m _2= =T dw_ 2w n-=2
Ty Ty Ty T, T Ty

(e)

Figure 4.20 Frequency-domain illustration of downsampling.
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Downsampling with aliasing

X, (i)

Figure 4.21 (a)—(c) Downsampling with aliasing. (d}~(f) Downsampling with

prefiltering to avoid aliasing

To avoid aliasing

= wM<=rx

Lowpass filter
——>1 Gain=1 — ¢ M i
x[n] Cutoff = w/M [ x[n] Xq[n] = x[nM]
Sampling Sampling Sampling
period T period T period T;= MT

General System for Sampling Rate Reduction by M

NCTU EE
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e Increasing sampling rate by an integer factor

A

ARSI NN

t >
- P
T -z
T,
/_\_/ U Downsampling
_
A
' FT
Hivetl, = =
» e t Q
T2=TiL il
rZ
m Sampling rate expander
1 - -
T'=T /L, where L is an integer
T
x;[n]= xc(n L
Lowpass filter
S L > Gain=L |—>
x[n] x.[n] | Cutoff==/L | x;[n]
Sampling Sampling Sampling
period T period T; = T/L period T; = T/L
X.(j&)
0 0Oy Q
(a)
X(ek)
(b)
X, (e) = X(elek)
T (L=2
| | | |
(c)
Hy(el)
L
| | | | | | | |
X w B s = 2 =0T,
L L
(d)
Xy(el”)
1L
T
| | | |
27 -z T = P w=0T
L L

(¢)

Figure 4.24  Frequency-domain illustration of interpolation.

(1) shape is compressed; (2) replicas are removed
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(1) Increase samples
<Time-domain>

n — e &
[ = XYL n=0#L#2L, KIS — kL]
0, otherwise K=o

<Frequency-domain>

X, ()= ( S X(K]STn — kL] i

N=—00 \ k=—00

-y x[k][ i&[n—kL]e‘j“’”j — X (el)
K=o

n=—o0

Note that 3" 5[ — kLJe /" = itk

n=—oo
Remark: Essentially, the horizontal frequency axis is compressed.
The shape of the spectrum is not changed.
old_w=QT.new_wo=QT'=QT/L,old_wo=new_w-L
Remark: At this point, we only insert zeros into the original signal. In time domain,

this signal doesn’t look like the original.

(2) ldeal lowpass filtering

<Frequency-domain>

. [1 —z/(TL) < Q< 7/(TL)
Hi(19) = {0 otherwise

<Time-domain>

h;[n]

_sin(zn/L), an interpolator!

(/L)
- 3 g

B Linear interpolation

_|I=In|/L, |n£L
h””[n]_{ 0, otherwise

) hyja[n]

4/5
35 L=5
2/5
111 I [T
! ! Figure 4.26 Impulse response for

0 nlinear interpolation.
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sin(wl/2)

joy_ 1
Hin (8 )_L sin(w/2)

{z23]

Xiin [N] = Z x[k]hy, [n —kL]

Sampling of Continuous-time Signals

k=—c0
] Pl K .
1 I I rab } 1
0 L 2L 3L n 4L 5L k

(a)

n

Hi(eiw)

I

e Changing sampling rate

iy

by a rational factor

. i i interpolat ion T decimation M
Idea: Sampling period T p >E >TT
Interpolator Decimator
e e R e b e 1 | e e S S AL S e ]
| | | |
| | | I
| Lowpass filter | | | Lowpass filter |
T L2 Gain=1 [ : Gain = 1 WM L
x[n] x,[n] | Cutoff = #/L : xi[n] | Cutoff = #/M | X[n] : Xy(n]
| |
L L i
Sampling
period: T T T T ™
L L L L
(a)
Lowpass filter
Gain =L |
1L = - ™M -
x[n] x[n] mm?;j‘;_f‘f;m) %[n) %yln]
Sampling
period: . T T ™
L L L
(b)
Figure 4.28 (a) System for changing the sampling rate by a noninteger factor. (b)

Simplified system in which the decimation and i

nterpolation filters are combined.

Remark: In general, if the factor is not rational, go back to the continuous signals.

NCTU EE
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Sampling of Continuous-time Signals

X, (e™)
1
-
|
et 1 |
4 2 =
L L I 1
(c)
| Hate™)

1 . [T

(M=3)

2 w=07L

e _m
M

(d)

w=1
M

1| Kilem) = Hate) X, ()

T
‘
2 o

/\ —
27 w=

.4 T_T

3 M3

QrL

4 w=0TM/L

Figure 4.29 lllustration of ch: the rate by a factor.
e Insummary:
-- Sampling
Time-domain Frequency -domain
Prefiltering Limit bandwidth (2, > 20

Analog sampling (impulse train)

Duplicate and shift (€2)

Analog to discrete O (t) — O[N]

Q- w

-- Reconstruction

Time-domain

Frequency -domain

Discrete to analog O[N] — & (t)

o — Q

Interpolation

Remove extra copies (£2)

NCTU EE
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-- Down-sampling

Time-domain Frequency -domain
Prefiltering Limit bandwidth
Drop samples (rearrange index) Expand (by a factor of M) and duplicate
(insert (M-1) copies)

-- Up-sampling

Time-domain Frequency -domain
Insert zeros Shrink (by a factor of L)
Interpolation Remove extra copies ina 277 period

< Digital Processing of Analog Signals

Ideal C/D converter - (approximation) analog-to-digital (A/D) converter

Ideal D/C converter - (approximation) digital-to-analog (D/A) converter

oD Dlssrillv:*l-]llnme l D/C
x.(1) x[n] WS y(n] y,(1)
T T

— ] afiasing S A/D Discrete-time D/A eetrieution |—-
x, (f) ﬁllCl’L ‘\,”(,) hold ,\'(](f) converter ;[H] S}/SlCII] 'G[H] converter ,"/)/1([) filter ("([)
Hy(j) ? 4 t H,(j2)
T T T
(b)

Prefiltering to Avoid Aliasing
Ideal antialiasing filter: Ideal low-pass filter (difficult to implement sharp-cutoff analog

filters).

€ A solution: simple prefilter and oversampling followed by sharp antialiasing filters in

discrete-time domain.

NCTU EE 20



DSP (Spring, 2020) Sampling of Continuous-time Signals

Anti- Discrete-
—_— ali.asing > C/D > time > D/C pF——
x.(1) filter | x,(r) x[n] | system | y[n] yr(1)
(/) 1 1
T T

Remark: Sharp cutoff analog filters are expensive and difficult to implement.
A/D conversion = the input continuous-time signal is sampled at a very high

sampling rate.

Sampling rate reduction by M

| |
| Sharp |
Simple | Ao |
Szt 2 = antialiasing
——>| antialiasing C/D = ; ¢ fill;r & ‘M I
x(t ilter Xq(t X[n 5 xqln
(1) filter (1) [n] I cutoff = /M | alnl
|
1 e ]
el (1)
M \Qy
X.(jQ) Simple anti-
aliasing filter
rameagbisann High-frequency
AN S : noise
Qy Q, Q
a)
X,(j)
Signal Filtered
Oy Q, Q
(b)
1 X(el)
T=m/(MQy)
Sharp-cutoff I A
7 decimation filter s === Aliased noise ===
| | | |
|
27 —wy P :11\7',; 27 w=0T

(¢)

Xy(e)
Ty=MT

™ 2 w=QT,

(d)

® A/D Conversion

Digital: discrete in time and discrete in amplitude

Sample
—> and > A/,Dt‘ >
x,(0) |_hold | xo(n) [T Rpin]
T 7y

Ideal sample-and-hold: Sample the (input) analog signal and hold its value for T secnds.

0

X ()= Y x[nlhy (t -nT)

N=—o0
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1, O<t<T
ho (t) = .
0, otherwise

X0 = 3 % (Tt —nT) ={ 3 %, (NT)S(t—nT)}xhy (1)

N=—o0

Sample and hold

s()=Y &(t-nT)
=

I
|
|
1
: % Zero-order
hold  f———
X, (1) ! x (1) xo (1)

ho(1)

Quantization: Transform the input sample x[n] into one of a finite set of prescribed
values.

f[n] = Q(x[n]), RX[n] is the quantized sample

Note: Quantization is a non-linear operation.

(1) Uniform quantizer — uniformly spaced quantization levels; very popular (also
called linear quantizer)

(if) Nonuniform quantizer — may be more efficient for certain applicaitons

B Parameters in a quantizer
(1) Decision levels — partition the dynamic range of input signal
(2) Quantization (representation) levels — the output values of a quantizer; a quanti-
zation level represents all samples between two nearby decision levels
(3) Full-scale level — the quantizer input dynamic range
Note: Typically, when the decision levels are first chosen, then the best quantization
levels are decided (for a given input probability distribution). On the other hand,

when the quantization levels are chosen, the best decision levels are decided.
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T=0(x)
Two’s-complement Offset binary
code code
3AH 011 111

2A 010 110

A 001 101

000 100
—-A 111 011
110 010

3A 101 001

100 000

\ -
{ 2

B Quantization error analysis
For a uniform quantizer, there are two key parameters:
(i)step size A, and (ii) full-scale level (+ X )

Assume (B+1) bits are used to represent the quantized values.

2X X
A= 2B+T :Tg]

Quantization error: e[n] = R[n] — x[n] = quanitized value — true value

It is clear that _é <e[n] < é.

Statistical characteristics of €[N]:
(1) e[n] is stationary (probability distribution unchanged)
(2) e[n] is uncorrelated with x[n]
(3) e[n], e[n+1]. ... are uncorrelated (white)
(4) e[n] has a uniform distribution
The preceding assumptions are (approximately) valid if the signal is sufficiently com-

plex and the quantization steps are sufficiently small, ...

Mean square error (MSE) of €[N] (= variance if zero mean)

_ 1 A?
«%)2=Eke—ef}={j;ezgde——f

12
- Expressed in terms of 2° and X

2 _27°Xy

e

Y

O,
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-- SNR (signal-to-noise ratio) due to quantization

2 12.2%8 & X
SNR =10log,, % =10log,, T =10.8+6.02B — 20log,, —™
e

m X

Remarks:
(1) One bit buys a 6dB SNR improvement.

(2) If the input is Gaussian, a small percentage of the input samples would have an

amplitude greater than 4o, .
If we choose X =40, SNR ~6B—-1.25dB

For example, a 96dB SNR requires a 16-bit quantizer.

1
Original signal o Wﬂmm. o F .rﬂﬂmwmﬂmﬁm_% I .mﬂmwmmmw
L @ il [

0 50 100 150 n
(a)
i . L
Quantized signal ()W}%::::::::::M i:::::::::::ﬂﬂm:
. —— e ———s | 1] Mﬂk’i‘::::::::::?ﬂﬂ
3-bit 1""""% i o o v sl 11111111111 e ntm et mem mom e,
) bt 1111 gt e — e ——
0 50 100 150 n
()
02} ' '
Quantization error NEETIN T‘T";:T:Tf 1l ﬂvlTr ***** 1 TT;TTW:;;T:‘? :Tﬁrn““:.T_Tf.Gﬂ
3-bit ﬂl I e O R L llﬂl PO AT lJH ﬂJI[LU__l_‘_l
-0.2 4
0 5I() l(}() 150 n
10 ©
T
Quantization error ;) ..TT T[ T W:TE;W%{J """""""" ;”:“: **********
8-bit ” “lll L9 _11_{‘_1__‘1__Jf‘_l*_“_ll@)lﬂ.‘f)fﬂﬁﬁ_U'.'UJ
0 SI() l()() 150 n

(d)
® D/A Conversion
The ideal lowpass filter is replaced by a “practical” filter.

Examples of practical filters: zero-order hold and first-order hold.

Mathematical model:

. Sczi\l/e by — > Cig]nvl(:lrste tSo . Zerl?é(l)(;der
xpn] i x[n] p Xpa (1)

NCTU EE 24



DSP (Spring, 2020) Sampling of Continuous-time Signals

Xpa(t) = Z X[n]h, (t —nT)
n=—o0
= quantized input * impulse response of “practical” interpolation filter

Xoa®) = S x[nlhy(t—nT)+ 3 e[nlhy (t —nT)

N=—o0 N=-0

=X (t) + €f(t)
Purpose: Find a compensation filter N (t) to compensate for the distortion caused by the

non-ideal N, (t) so that its output X () is close to the analog original

X, (1)
Compensated
D/A o reconstruction
2[n] converter c (5 filter Q(’[)
i e H,(jQ) &
T

In frequency domain:

Xo(JV) = Ft{ > xnlh ¢ - nT)} = Y AInIH o j)e "

N=—ow0 N=—o0

= ( i X[n]e™ " jH o(JQ) = X (" )H (i)

n=—o0

Because x (¢7)= Tli ([Q kZﬂKD
£ (o2 o)

k=—c0

Xo(jQ)=

—HH

[The interpolation filter H,(jQ) is used to remove the replicas.]

If H,(JQ) is not an ideal lowpass filter, we design a compensated reconstruction filter,

H, (iQ), where H_(jQ) is the ideal lowpass filter.

H, (jQ) = H0)

(1) Zero-order hold

1, O<t<T
o (1) = {0, otherwise

or H,(jQ) = ZSIn(gT /2) o-iaT/2

Thus, the compensated reconstruction filter is
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Qriz .
- _ 2L gtz Q< /T
H, (J©) =1sin(QT /2) Q<7
0, Q> 7/T

Remark: A “practical” filter cannot achieve this approximation.

T Ideal interpolating

filter H,(jQ)
Zero-order / \/ ilter 1,(j
hold

Il“\(/.‘m)/ \/
2

Overall system:

%0 o) ] Heom) | 1) =] A, (o) 289

A\ 4

A\ 4

Anti-aliasing Processing Zero-order-hold Compensated reconstruction.
Ho (1) = H, (JQ)-H, (JO)-H(e) - H,, (i)

2

P, (1Q) =[H,(JO) - Hy(j) - HE™ ) 02  where o =f_2
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