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Discrete-Time Signals and Systems

< Introduction

® Signal processing (system analysis and design)
H Analog
W Digital
® History
Before 1950s: analog signals/systems
W 1950s: Digital computer
W 1960s: Fast Fourier Transform (FFT)
M 1980s: Real-time VLSI digital signal processors
® Discrete-time signals are represented as sequences of numbers
® A typical digital signal processing system
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< 2.1 Discrete-time Signals: Sequences

e Continuous-time signal — Defined along a continuum of times: x(t)
Continuous-time system — Operates on and produces continuous-time signals.
Discrete-time signal — Defined at discrete times: x[n]

Discrete-time system — Operates on and produces discrete-time signals.
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Remarks: Digital signals usually refer to the quantized discrete-time signals.
® Sampling: Very often, x[n] is obtained by sampling x(t). “the nth sample of the se-
quence” Thatis, x[n]=x(nT), T: is the sampling period. But T is often not important in

the discrete-time signal analysis.

e
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® Basic Sequences:

B Unit Sample Sequence
1, =0,
5[n]={ n ‘

0, n=0.
Remark: It is often called the discrete-time impulse or simply impulse. (Some books

call it unit pulse sequence.)

B Unit Step Sequence

A i
u[n]= .........
0, n<O.

Note 1: u[0]=1, well-defined.

Note 2: u[n] = Z"m:m5[m]; accumulated sum of all previous impulses

o[n]=u[n]-u[n-1]
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B Exponential Sequences
X[n]=Aa" Aand o are real numbers

-- Combining basic sequences:

x[n]:{OA“n ”nioo,.) x[n] = Aa"u[n]

B Sinusoidal Sequences

x[n]= Acos(w,n+¢)  foralln

A: amplitude, «, =24f,: frequency, ¢: phase

» It can be viewed as a sampled continuous-time sinusoidal. However, it is not
always periodic!
»  Condition for being periodic with period N: x[n] = Xx[n + N]
Thatis, Ac0S(@yn+¢)= Acos(w,(n+N)+¢)
or, @y(n+ N)=m,n+ 27K, where k, n are integers (k, a fixed number; n, a
running index, —o0 <N < 0).
2> o,N=27K 2 w,=27K/N.
Hence, f, must be a rational number.

»  One discrete-time sinusoid corresponds to multiple continuous-time sinusoids of

different frequencies.
x[n]= Acos(w,n + @)
= Acos((w, + 22r)n+ @) for all n

where r is any integer

Typically, we pick up the lowest frequency (r=0) under the assumption that the
original continuous-time sinusoidal has a limited frequency value, 0<w, <27

or —7 <, <. Thisis the unambiguous frequency interval.
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A E

wo =74 or wy=Tml4

B Complex Exponential Sequences
x[n]= Ac", A=|Ae’, and o =|ale’

Hence,

x[n]=|Ale|"e! "™ =| Ala|" cos(wn + @) + j|Ale|" sin(a,n + ¢)

<> 2.2 Discrete-Time Systems

® A discrete-time system is defined mathematically as a transformation or operator that
maps an input sequence with values X[N] into an output sequence with values Yy[N].
y[n]=T {x[n]}
B Ideal Delay
y[n]=x[n-n,], —co<n<oo,

where Ny is a fixed positive integer called the delay of the system.
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B Moving Average

M,

1
n=——— X[n—k

® Memoryless: If the output Y[N] at every value of n depends only on the input X[N]

at the same value of n.

® Linear: If it satisfies the principle of superposition.
() Additivity: T {x [n]+X,[n]} =T {x,[n]}+ T {x,[n]}
(b) Homogeneity or scaling: T {ax[n]} = aT {x[n]}

® Time-invariant (shift-invariant): A time shift or delay of the input sequence causes a

corresponding shift in the output sequence.

y[n]

— - T » delay — =

y[n-no]

X[n] |

X[n-no]

—=| delay —  Ywo[n]

\
—

e.g. y[n] = x[an] is not time-invariant.
® Causality: Forany N, the output sequence value at the index N = N, depends only

on the input sequence values for N <N,

@ Stability in the bounded-input, bounded-output sense (BIBO): If and only if every

bounded input sequence produces a bounded output sequence.
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<> Linear Time-invariant (LTI) Systems

® Alinear system is completely characterized by its impulse response.

e 0]

(1) Sequence as a sum of delayed impulses: x[n] = Z x[m]S[n—m]

(2 A

M=—o0

n LTI system due to O[N] input

X[n]=9[n] yields y[n] =h[n] (impulse response)

o0

@) xin]= Y x[mlo[n—m] vields y[n]= 3 x[m]n[n—m]

m=—oco

M=—c0

® Convolution sum: f,[n]= :i fiIm]f,[n—m]= f;[n]* f,[n]

A w0 N PR

M=—o0

Procedure of convolution
Time-reverse: h[m] > h[-m]
Choose an n value
shift h[-m] byn: h[n—m]
Multiplication: ~ X[n]-h[n —m]

o0
Summation overm:  y[n] = Z X[m]h[n—m]

M=—0o0

Choose another n value, go to Step 3.
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‘ X 5[n] = x[-2]8[n + 2] voaln] = x[-2]h[n + 2]

I

{ xg[n] = x[0]8[n] [ ‘ Yoln] = x[0)h[n]

0 n 0 2 n

x3[n) = x[3]8[n - 3] ys3[n] = x[3]h[n - 3]

e

x[n] = x_5[n] + xg[n] + x3[n)

ylnl =y aln] + yoln] + y3[n]

<> Properties of LTI Systems

The properties of an LTI system can be observed from its impulse response.
Commutative: Xx[n]*h[n]=h[n]*x[n]

Distributive: x[n]:*(h,[n]+h,[n]) = x[n]*h,[n]+ X[n]*h,[n]

Cascade connection:  h[n]=h,[n]*h,[n]

Parallel connection: ~ h[n] =h,[n]+h,[n]

BIBO stability: If h[n] is absolutely summable , i.e.,

S|hk] =S <o
K=o

® Casual sequence - Causal system: h[n]=0, n<0
Memoryless LT1: h[n]=kd[n]
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® Some frequently used systems:

-- Ideal Delay

yInl=x[n-ny] h[n]=S[n—n,]
-- Moving Average

= 1 - k . M, <n<M
A=, 1, 20 =g T
P T 0, otherwise

-- Accumulator

y[n] = Zn: X[K] h[n] = u[n], unit step

k=—0

® Finite-duration Impulse Response (FIR):
Its impulse response has only a finite number of nonzero samples.
-- FIR systems are always stable.
® Infinite-duration Impulse Response (IIR):
Its impulse response is infinite in duration.

® Inverse System:

aln] ——

x[n] y[n] x[n]

— . h[n]

\ 4

System g[n] is the inverse of h[n]
h[n]*g[n]=4&[n]
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< Linear Constant-Coefficient Difference Equations
B An important class of LTI system is described by linear constant-coefficient equation.

® Difference Equation: (general form)
N M
> a,yIn—k]= > b,x[n—m]
k=0 m=0

First-order system: y[n]=ay[n—1] + bx[n]
Solution:

y[n]=yp[n]+ yn[n] = particular solution + homogeneous solution

Homogeneous solution: iak y[n—k]=0 (x[n]=0)
k=0

Particular solution:  (experience!)

< Freguency-Domain Representation
® Eigenfunction and eigenvalue
What is eigenfunction of a system T{.}?
Cf[n]=T{f[n]} , where C is a complex constant, eigenvalue.
The output waveform has the same shape of the input waveform.

The complex exponential sequence is the eigenfunction of any LTI system.

x[n]=e! —f LTINh[n] —s y[n]=H(e!*)el"

H(e™”)= 3 hlk]e ™

k=—o0
Magnitude: ‘H (ej”)‘ Phase: ~H (e?)
® H(e') is periodic.

® The above eigenfunction analysis is valid when the input is applied to the system at

n=—oo.
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< Fourier Transform of Sequences

B Interpretation: Decompose an “arbitrary” sequence into “sinusoidal components” of dif-

ferent frequencies.
® DTFT: Discrete-time Fourier Transform

Analysis: X (e1”) = ix[n]e‘j"’” =F{x[n]} -7<w<~x

n=-o0
Synthesis: x[n]:zij‘” X (e')el"dw = F{X (e'*)}
72' -

x[n] <> X (ej“’) Discrete-Time Fourier Transform pair
Remarks: Fourier transform is also called Fourier spectrum.
Magnitude spectrum: | X (ej‘”) |
Phase spectrum: X (&1%)
X (e1”) is continuous in frequency, @ .
X (e jw) is “periodic” with period 27 .

® Does every x[n] have DTFT?
Convergence conditions: “error”>0 as N (samples)—> o0
(A) Absolutely summable

i\x[n]\ <oo  (uniform convergence)

N=-—0

(B) Finite energy (square-summable) => mean-square error >0

i \x[n]\z <o (mean-square convergence)

N=—o0

Gibbs phenomenon
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® DTFT of Special Functions
-- Impulse
o[n] <1
S[n—n,] <> e 1"
-- Constant
l< i 2706 (e + 2ar); An periodic impulse train.
r=—o

Note: This is the analog impulse (delta) function.
-- Cosine sequence

cos(won+0) < > 715 (0 — @y + 27K) + €95 (@ + @, + 27K) |
k=—o0
-- Complex exponential

)" & > 275 (0 — wy — 271)

r=—o0

-- Unit step

u[n] < +7 i5(a)+2m‘)

_e_j‘”

< Symmetry Properties of Fourier Transform
Any (complex) x[n] can be decomposed into ~ X[N] = X, [N] + X,[N]
where  Conjugate-symmetric part: X,[n] = (x[n]+ x*[-n])/2
Conjugate-antisymmetric part: X,[n] = (X[n]—x*[-n])/2
Remark: x[n] is conjugate-symmetric if x[n] = x*[-n]

x[n] is conjugate-antisymmetric if X[n] = —x*[-n]

On the other hand, X (€'“) = Re[X (e'*)]+ j Im[X (e'*)]
Key1: x,[n]<>Re[X(e')], x,[n]<> jIm[X(e!)]

Similarly, X (e') can be decomposed into

X (€)= X (") + X, (e')
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where xe(eia’) is the conjugate-symmetric part and

X, (e1”) is the conjugate-antisymmetric part
Key2: Re[x[n]]<> X, ('), jIm[x[n]]< X,(e')
Special case 1: If x[n] is real, X (e!”) is conjugate symmetric

(magnitude —even, phase — odd)

Special case 2: If x[n] is conjugate-symmitric, X (ej“’) is real.
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TABLE2.1 SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM

Sequence Fourier Transform
x[n] X (ed*)
1. x%[n] X*e 1)
2. x¥[—n] X*(el™)
3. Relx|n]} X o(e!™)  (conjugate-symmetric part of X (e/))
4. jIm{x[n]) X ,(e/®)  (conjugate-antisymmetric part of X (¢/*))
5. xeln] (conjugate-symmetric part of x[n]) Xplel®) = Re[X (ef))

6. xp[n] (conjugate-antisymmetric part of x[n])  jX;(e/™) = jIm{X (/™))

The following properties apply only when x[n] is real:

7. Any real x[n] X (el™) = X*(e” 1)y (Fourier transform is conjugate symmetric)
8. Any real x[n] Xp(el®) = Xple i) (real part is even)

9. Any real x[n] X,r(rf“'] =—Xjle Jjwy (imaginary part is odd)

10. Any real x[n] X (e = |X (e77™)| (magnitude is even)

11. Any real x[n] LX (@)= —LX (e7T®) (phase is odd)

12, xe[n] (even part of x[n]) X ped®™)

13. xp[n]  (odd part of x[n]) JXie!™)

< Fourier Transform Theorems
-- Linearity
If x[n] & X(*) and y[n] & Y(!*)
then ax[n]+by[n] <« aX(e')+byY (™)

-- Time Shift
If  x[n] < X

then x[n—-n,] <«  X(e!?)e 1M

-- Frequency Modulation

If  xn] <  X(E"7)

then el"x[n] <«  X(e!“ ™))
--Time Reversal

If xn] <  XE'")

then x[-n] <« X(e7)
-- Differentiation in frequency

If  x[n] << X

jo
then nx[n] < jM
dw
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-- Convolution
If xn] <« X)) and
then  x[n]*h[n] <> X (e!”)H (e!*)

-- Multiplication
If x[n] < X(e'”) and

Discrete-Time Signals and Systems

h[n] < H(Ee")

o W)

then  X[nwin] &> — [ X (&)W (&/“?)do
2 "

-- Parseval’s Theorem

If xn] << X&)

then E= nP=—1/ | X(")]d
> IxIn]| 2ﬂ-[—ﬂ| ') do

n=—o0

TABLE2.2 FOURIER TRANSFORM THEOREMS

Sequence
x[n]

vln]

Fourier Transform
X (e/®)

Y(ed®)

1. ax|n| + by|n]
2. x[n = ny4]l (ng aninteger)
3. ¢/?0" x[n]

4, x[—n]

Lh

. nx[n]
6. x[n] = v[n]
7. x[n]y[n]

Parseval’s theorem:

oo o
) ) 2 1 . ’ fery 12
8. Z |x[n]|® = F/_-r |X (/") “dw
n=-=nc
s )

. 1 T . .
9. Z x[n]y[n] = gf X (/Y (e!dew
T

n=—oC

aX () + bY (eJ®)
e TG X (pd
X (ej.i(z.'*t.d“]]

X (e~ /@)
X*(el”) if x[n] real.

dX (el
J dw

X (e/?)Y (/™)

1 T .
— f X (e/yy e/ @ )qp
27 .
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TABLE 2.3 FOURIER TRANSFORM PAIRS
Sequence Fourier Transform
1. 8n] 1
2. 8[n — ngl e~ Jony
o0
3.1 (—oc < n < o0) Z 2w + 27k)
k=—00
4. a"ulnl (lal < 1) ;
1—ae J®
l oo
5. uln] [y=rm + Z m8(w 4+ 27k)
k=-nrc
1
6. (n+ Da" ( 1) _
n a'uln) la] < a —ae’J“")Z
n \-' ] 1
7. MMMI (Irl < - =
sinwp 1 —2rcos wpe™ I + rle—ilw
sin @en ; 1. |@| < o.
oW Jwy —
8 an X (™) !O. we <o <w
9. x[n] = 1, 0=n < M sinl&{(M + 11/2]e_jﬂ,M;3
0, otherwise sinfw/2)
) a0
10, e/@0n Z 2r8(w — g + 27k)
k=-o0c
~ _ .
11. cos(wgn + ¢) 3 mels(w—wg+27k) + e 18w + wg + 21K))

k=—00
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