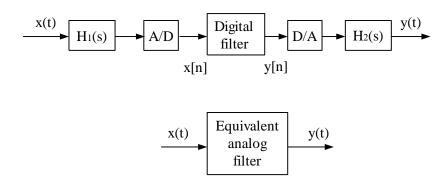
Discrete-Time Signals and Systems

♦ Introduction

- Signal processing (system analysis and design)
 - Analog
 - Digital
- History

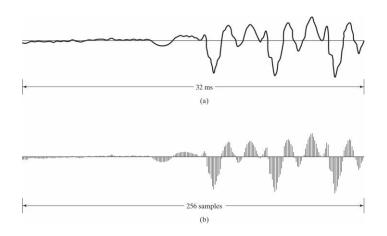
Before 1950s: analog signals/systems

- 1950s: Digital computer
- 1960s: Fast Fourier Transform (FFT)
- 1980s: Real-time VLSI digital signal processors
- Discrete-time signals are represented as sequences of numbers
- A typical digital signal processing system



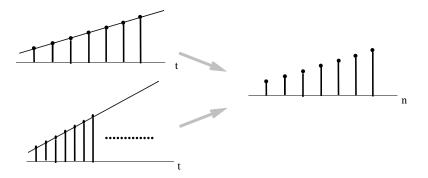
♦ 2.1 Discrete-time Signals: Sequences

Continuous-time signal – Defined along a continuum of times: x(t)
 Continuous-time system – Operates on and produces continuous-time signals.
 Discrete-time signal – Defined at discrete times: x[n]
 Discrete-time system – Operates on and produces discrete-time signals.



Remarks: Digital signals usually refer to the *quantized* discrete-time signals.

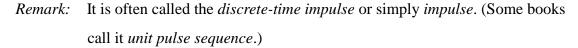
• **Sampling:** Very often, x[n] is obtained by sampling x(t). "the *n*th sample of the sequence" That is, x[n]=x(nT), *T*: is the sampling period. But *T* is often not important in the discrete-time signal analysis.



• Basic Sequences:

■ Unit Sample Sequence

s[n]_	1,	n = 0,
$\delta[n] = \begin{cases} \\ \\ \\ \end{cases}$	0,	$n \neq 0.$



■ Unit Step Sequence

$$u[n] = \begin{cases} 1, & n \ge 0, \\ 0, & n < 0. \end{cases}$$

Note 1: u[0]=1, well-defined.

Note 2: $u[n] = \sum_{m=-\infty}^{n} \delta[m]$; accumulated sum of all previous impulses $\delta[n] = u[n] - u[n-1]$

Exponential Sequences

 $x[n] = A\alpha^n$ A and α are real numbers

-- Combining basic sequences:

$$x[n] = \begin{cases} A\alpha^n & n \ge 0\\ 0 & n < 0 \end{cases} \Rightarrow \qquad x[n] = A\alpha^n u[n]$$

Sinusoidal Sequences

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

A: amplitude, $\omega_0 = 2\pi f_0$: frequency, ϕ : phase

- It can be viewed as a sampled continuous-time sinusoidal. However, it is not always periodic!
- Condition for being periodic with period N: x[n] = x[n+N]That is, $A\cos(\omega_0 n + \phi) = A\cos(\omega_0 (n+N) + \phi)$ Or, $\omega_0(n+N) = \omega_0 n + 2\pi k$, where k, n are integers (k, a fixed number; n, a running index, $-\infty < n < \infty$).

$$\Rightarrow \omega_0 N = 2\pi k \Rightarrow \omega_0 = 2\pi k / N.$$

Hence, f_0 must be a rational number.

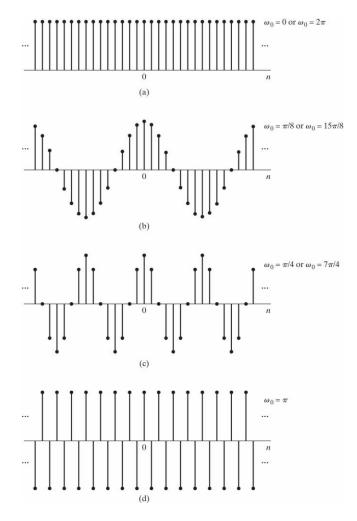
One discrete-time sinusoid corresponds to multiple continuous-time sinusoids of different frequencies.

$$x[n] = A\cos(\omega_0 n + \phi)$$

= $A\cos((\omega_0 + 2\pi r)n + \phi)$ for all n

where r is any integer

Typically, we pick up the lowest frequency (r=0) under the assumption that the original continuous-time sinusoidal has a limited frequency value, $0 \le \omega_0 < 2\pi$ or $-\pi \le \omega_0 < \pi$. This is the *unambiguous* frequency interval.



■ Complex Exponential Sequences

$$x[n] = A\alpha^n$$
, $A = |A|e^{j\phi}$, and $\alpha = |\alpha|e^{j\omega_0}$

Hence,

$$x[n] = |A||\alpha|^{n} e^{j(\omega_{0}n+\phi)} = |A||\alpha|^{n} \cos(\omega_{0}n+\phi) + j|A||\alpha|^{n} \sin(\omega_{0}n+\phi)$$

♦ 2.2 Discrete-Time Systems

• A discrete-time system is defined mathematically as a transformation or operator that maps an input sequence with values x[n] into an output sequence with values y[n].

$$y[n] = T\{x[n]\}$$

Ideal Delay

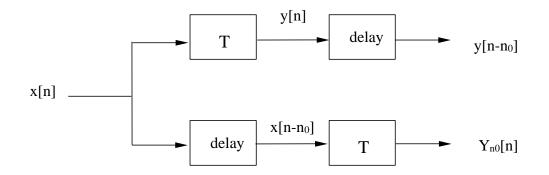
 $y[n] = x[n - n_d], \quad -\infty < n < \infty,$

where n_d is a fixed positive integer called the delay of the system.

Moving Average

$$y[n] = \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_1}^{M_2} x[n-k]$$

- Memoryless: If the output y[n] at every value of *n* depends only on the input x[n] at the same value of *n*.
- Linear: If it satisfies the principle of superposition.
 (a) Additivity: T{x₁[n] + x₂[n]} = T{x₁[n]} + T{x₂[n]}
 (b) Homogeneity or scaling: T{ax[n]} = aT{x[n]}
- **Time-invariant** (shift-invariant): A time shift or delay of the input sequence causes a corresponding shift in the output sequence.



e.g. $y[n] = x[\alpha n]$ is not time-invariant.

- Causality: For any n_0 , the output sequence value at the index $n = n_0$ depends only on the input sequence values for $n \le n_0$
- **Stability** in the bounded-input, bounded-output sense (BIBO): If and only if every bounded input sequence produces a bounded output sequence.

♦ Linear Time-invariant (LTI) Systems

- A linear system is completely characterized by its impulse response.
 - (1) Sequence as a sum of delayed impulses: $x[n] = \sum_{m=-\infty}^{\infty} x[m]\delta[n-m]$
 - (2) An LTI system due to $\delta[n]$ input

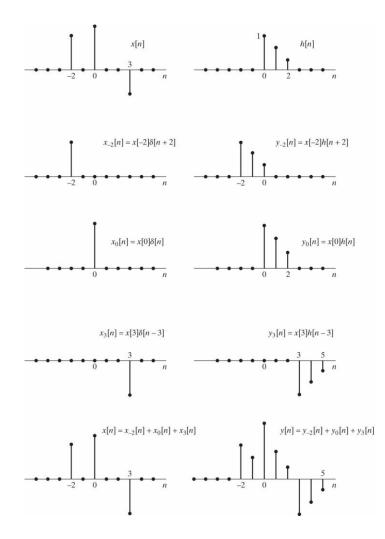
$$x[n] = \delta[n]$$
 yields $y[n] = h[n]$ (impulse response)

(3)
$$x[n] = \sum_{m=-\infty}^{\infty} x[m] \delta[n-m]$$
 yields $y[n] = \sum_{m=-\infty}^{\infty} x[m] h[n-m]$

• Convolution sum:
$$f_3[n] = \sum_{m=-\infty}^{\infty} f_1[m] f_2[n-m] = f_1[n] * f_2[n]$$

- Procedure of convolution
- 1. Time-reverse: $h[m] \rightarrow h[-m]$
- 2. Choose an *n* value
- 3. Shift h[-m] by n: h[n-m]
- 4. Multiplication: $x[n] \cdot h[n-m]$
- 5. Summation over *m*: $y[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$

Choose another *n* value, go to Step 3.



♦ Properties of LTI Systems

- The properties of an LTI system can be observed from its impulse response.
- **Commutative**: x[n] * h[n] = h[n] * x[n]
- **Distributive**: $x[n]*(h_1[n]+h_2[n]) = x[n]*h_1[n]+x[n]*h_2[n]$
- **Cascade** connection: $h[n] = h_1[n] * h_2[n]$
- **Parallel** connection: $h[n] = h_1[n] + h_2[n]$
- **BIBO stability:** If *h*[*n*] is *absolutely summable*, i.e.,

$$\sum_{k=-\infty}^{\infty} \left| h[k] \right| = S < \infty$$

- **Casual** sequence \rightarrow **Causal** system: h[n] = 0, n < 0
- Memoryless LTI: $h[n] = k\delta[n]$

- Some frequently used systems:
 - -- Ideal Delay

$$y[n] = x[n - n_d] \qquad \qquad h[n] = \delta[n - n_d]$$

-- Moving Average

$$y[n] = \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_1}^{M_2} x[n-k] \quad h[n] = \begin{cases} \frac{1}{M_1 + M_2 + 1}, & -M_1 \le n \le M_2 \\ 0, & \text{otherwise} \end{cases}$$

-- Accumulator

$$y[n] = \sum_{k=-\infty}^{n} x[k] \qquad \qquad h[n] = u[n], \text{ unit step}$$

• Finite-duration Impulse Response (FIR):

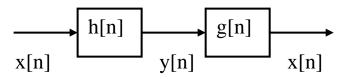
Its impulse response has only a finite number of nonzero samples.

-- FIR systems are always stable.

• Infinite-duration Impulse Response (IIR):

Its impulse response is infinite in duration.

• Inverse System:



System g[n] is the inverse of h[n] $h[n] * g[n] = \delta[n]$

♦ Linear Constant-Coefficient Difference Equations

- An important class of LTI system is described by linear constant-coefficient equation.
 - **Difference Equation:** (general form) •

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{m=0}^{M} b_m x[n-m]$$

First-order system:
$$y[n] = ay[n-1] + bx[n]$$

Solution:

 $y[n] = y_p[n] + y_h[n] =$ particular solution + homogeneous solution

Homogeneous solution:
$$\sum_{k=0}^{N} a_k y[n-k] = 0$$
 (x[n]=0)

Particular solution: (experience!)

♦ Frequency-Domain Representation

Eigenfunction and eigenvalue

What is eigenfunction of a system $T\{.\}$?

 $Cf[n] = T\{f[n]\}\$, where C is a complex constant, *eigenvalue*.

The output waveform has the same shape of the input waveform.

The complex exponential sequence is the eigenfunction of any LTI system.

$$x[n] = e^{j\omega n} \longrightarrow \text{LTI } h[n] \longrightarrow y[n] = H(e^{j\omega})e^{j\omega n}$$

$$H(e^{j\omega}) = \sum_{k=-\infty} h[k] e^{-j\omega k}$$

Magnitude: $\left|H(e^{j\omega})\right|$ Phase: $\angle H(e^{j\omega})$

- $H(e^{j\omega})$ is periodic.
- The above eigenfunction analysis is valid when the input is applied to the system at $n = -\infty$.

♦ Fourier Transform of Sequences

- <u>Interpretation</u>: Decompose an "arbitrary" sequence into "sinusoidal components" of different frequencies.
 - DTFT: Discrete-time Fourier Transform

Analysis:
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \equiv F\{x[n]\} - \pi < \omega \le \pi$$

Synthesis: $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \equiv F^{-1} \{ X(e^{j\omega}) \}$

 $x[n] \leftrightarrow X(e^{j\omega})$ Discrete-Time Fourier Transform pair

Remarks: Fourier transform is also called Fourier spectrum.

Magnitude spectrum: $|X(e^{j\omega})|$ Phase spectrum: $\angle X(e^{j\omega})$ $X(e^{j\omega})$ is continuous in frequency, ω . $X(e^{j\omega})$ is "periodic" with period 2π .

• Does every *x*[*n*] have DTFT?

Convergence conditions: "error" $\rightarrow 0$ as N (samples) $\rightarrow \infty$

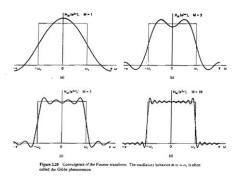
(A) Absolutely summable

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty \qquad \text{(uniform convergence)}$$

(B) Finite energy (square-summable) \implies mean-square error $\rightarrow 0$

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty \quad \text{(mean-square convergence)}$$

Gibbs phenomenon



- DTFT of Special Functions
 - -- Impulse

$$\delta[n] \leftrightarrow 1$$
$$\delta[n - n_0] \leftrightarrow e^{-j\omega n_0}$$

-- Constant

$$1 \leftrightarrow \sum_{r=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi r);$$
 An periodic impulse train.

Note: This is the analog impulse (delta) function.

-- Cosine sequence

$$\cos(\omega_0 n + \theta) \leftrightarrow \sum_{k=-\infty}^{\infty} \pi \Big[e^{j\theta} \delta(\omega - \omega_0 + 2\pi k) + e^{-j\theta} \delta(\omega + \omega_0 + 2\pi k) \Big]$$

-- Complex exponential

$$e^{j\omega_0 n} \leftrightarrow \sum_{r=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 - 2\pi r)$$

-- Unit step

$$u[n] \leftrightarrow \frac{1}{1 - e^{-j\omega}} + \pi \sum_{r = -\infty}^{\infty} \delta(\omega + 2\pi r)$$

♦ Symmetry Properties of Fourier Transform

Any (complex) x[n] can be decomposed into $x[n] = x_e[n] + x_0[n]$ where *Conjugate-symmetric part*: $x_e[n] = (x[n] + x^*[-n])/2$ *Conjugate-antisymmetric part*: $x_0[n] = (x[n] - x^*[-n])/2$ *Remark*: x[n] is conjugate-symmetric if $x[n] = x^*[-n]$ x[n] is conjugate-antisymmetric if $x[n] = -x^*[-n]$ On the other hand, $X(e^{j\omega}) = \operatorname{Re}[X(e^{j\omega})] + j\operatorname{Im}[X(e^{j\omega})]$

Key 1: $x_e[n] \leftrightarrow \operatorname{Re}[X(e^{j\omega})], \quad x_o[n] \leftrightarrow j \operatorname{Im}[X(e^{j\omega})]$

Similarly, $X(e^{j\omega})$ can be decomposed into

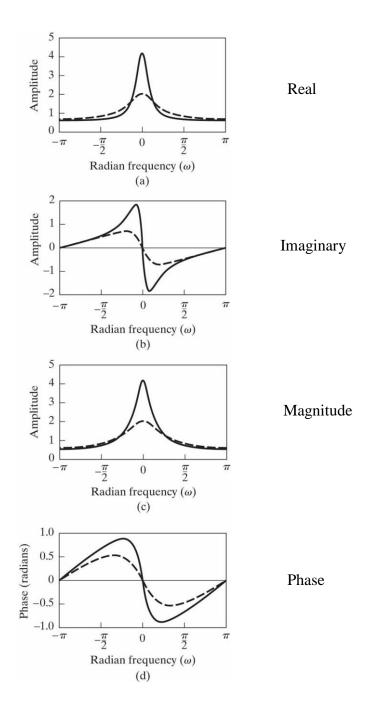
$$X(e^{j\omega}) = X_e(e^{j\omega}) + X_o(e^{j\omega})$$

where $X_e(e^{j\omega})$ is the *conjugate-symmetric part* and $X_o(e^{j\omega})$ is the *conjugate-antisymmetric part*

Key 2: $\operatorname{Re}[x[n]] \leftrightarrow X_e(e^{j\omega}), \quad j\operatorname{Im}[x[n]] \leftrightarrow X_o(e^{j\omega})$

Special case 1: If x[n] is real, $X(e^{j\omega})$ is conjugate symmetric (magnitude –even, phase – odd)

Special case 2: If x[n] is conjugate-symmetric, $X(e^{j\omega})$ is real.



Sequence x[n]	Fourier Transform $X(e^{j\omega})$
1. x*[n]	$X^*(e^{-j\omega})$
2. $x^*[-n]$	$X^*(e^{j\omega})$
3. $\mathcal{R}e\{x[n]\}$	$X_e(e^{j\omega})$ (conjugate-symmetric part of $X(e^{j\omega})$)
4. $j\mathcal{I}m\{x[n]\}$	$X_o(e^{j\omega})$ (conjugate-antisymmetric part of $X(e^{j\omega})$)
5. $x_e[n]$ (conjugate-symmetric part of $x[n]$)	$X_R(e^{j\omega}) = \mathcal{R}e\{X(e^{j\omega})\}$
6. $x_o[n]$ (conjugate-antisymmetric part of $x[n]$)	$j X_I(e^{j\omega}) = j \mathcal{I}m\{X(e^{j\omega})\}$
The following p	properties apply only when x[n] is real:
7. Any real $x[n]$	$X(e^{j\omega}) = X^*(e^{-j\omega})$ (Fourier transform is conjugate symmetric
8. Any real <i>x</i> [<i>n</i>]	$X_R(e^{j\omega}) = X_R(e^{-j\omega})$ (real part is even)
9. Any real $x[n]$	$X_I(e^{j\omega}) = -X_I(e^{-j\omega})$ (imaginary part is odd)
10. Any real $x[n]$	$ X(e^{j\omega}) = X(e^{-j\omega}) $ (magnitude is even)
11. Any real $x[n]$	$\angle X(e^{j\omega}) = -\angle X(e^{-j\omega})$ (phase is odd)
12. $x_e[n]$ (even part of $x[n]$)	$X_R(e^{j\omega})$
13. $x_o[n]$ (odd part of $x[n]$)	$jX_I(e^{j\omega})$

TABLE 2.1 SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM

♦ Fourier Transform Theorems

-- Linearity

If $x[n] \leftrightarrow X(e^{j\omega})$ and $y[n] \leftrightarrow Y(e^{j\omega})$ then $ax[n] + by[n] \leftrightarrow aX(e^{j\omega}) + bY(e^{j\omega})$

-- Time Shift

If $x[n] \leftrightarrow X(e^{j\omega})$ then $x[n-n_d] \leftrightarrow X(e^{j\omega})e^{-j\omega n_d}$

-- Frequency Modulation

If $x[n] \leftrightarrow X(e^{j\omega})$ then $e^{j\omega_0 n} x[n] \leftrightarrow X(e^{j(\omega-\omega_0)})$

--Time Reversal

If $x[n] \leftrightarrow X(e^{j\omega})$ then $x[-n] \leftrightarrow X(e^{-j\omega})$

-- Differentiation in frequency

If
$$x[n] \leftrightarrow X(e^{j\omega})$$

then $nx[n] \leftrightarrow j \frac{dX(e^{j\omega})}{d\omega}$

-- Convolution

If
$$x[n] \leftrightarrow X(e^{j\omega})$$
 and $h[n] \leftrightarrow H(e^{j\omega})$
then $x[n] * h[n] \leftrightarrow X(e^{j\omega}) H(e^{j\omega})$

-- Multiplication

If
$$x[n] \leftrightarrow X(e^{j\omega})$$
 and $w[n] \leftrightarrow W(e^{j\omega})$
then $x[n]w[n] \leftrightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) W(e^{j(\omega-\theta)}) d\theta$

-- Parseval's Theorem

If
$$x[n] \leftrightarrow X(e^{j\omega})$$

then $E = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$

TABLE 2.2 FOURIER TRANSFORM THEOREMS

Sequence	Fourier Transform
x[n]	$X\left(e^{j\omega} ight)$
y[n]	$Y(e^{j\omega})$
1. $ax[n] + by[n]$	$aX(e^{j\omega})+bY(e^{j\omega})$
2. $x[n - n_d]$ (n_d an integer)	$e^{-j\omega n_d}X(e^{j\omega})$
3. $e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$
4. $x[-n]$	$X(e^{-j\omega})$ $X^*(e^{j\omega})$ if $x[n]$ real.
5. <i>nx</i> [<i>n</i>]	$j \frac{dX \left(e^{j\omega}\right)}{d\omega}$
6. $x[n] * y[n]$	$X(e^{j\omega})Y(e^{j\omega})$
7. $x[n]y[n]$	$\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
Parseval's theorem:	
$8.\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	
9. $\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$	

Sequence Fourier Transform	
 δ[n] 	1
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
4. $a^n u[n]$ (<i>a</i> < 1)	$\frac{1}{1 - ae^{-j\omega}}$
5. <i>u</i> [<i>n</i>]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
6. $(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$
7. $\frac{r^n \sin \omega_p (n+1)}{\sin \omega_p} u[n] (r < 1)$	$\frac{1}{1 - 2r\cos\omega_p e^{-j\omega} + r^2 e^{-j2\omega}}$
8. $\frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_{c}, \\ 0, & \omega_{c} < \omega \le \pi \end{cases}$
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} [\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)$

 TABLE 2.3
 FOURIER TRANSFORM PAIRS