Computation of DFT

- Efficient algorithms for computing DFT - Fast Fourier Transform.
(a) Compute only a few points out of all N points
(b) Compute all N points
- What are the efficiency criteria?
- Number of multiplications
- Number of additions
- Chip area in VLSI implementation

DFT as a Linear Transformation

- Matrix representation of DFT

Definition of DFT:

$$
\begin{gathered}
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}, \quad k=0,1, \ldots, N-1 \\
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k n}, \quad n=0,1, \ldots, N-1
\end{gathered}
$$

where
Let $\mathbf{x}_{N}=\left[\begin{array}{c}x(0) \\ x(1) \\ \vdots \\ x(N-1)\end{array}\right], \quad \mathbf{X}_{N}=\left[\begin{array}{c}X(0) \\ X(1) \\ \vdots \\ X(N-1)\end{array}\right]$,
and
$\mathbf{W}_{N}=\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & W_{N} & W_{N}^{2} & \cdots & W_{N}^{N-1} \\ 1 & W_{N}^{2} & W_{N}^{4} & \cdots & W_{N}^{2(N-1)} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & W_{N}^{(N-1)} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)(N-1)}\end{array}\right]$
Thus,

$$
\begin{array}{rlr}
\mathbf{X}_{N} & =\mathbf{W}_{N} \mathbf{x}_{N} & \\
\mathbf{x}_{N} & =\mathbf{W}_{N}^{-1} \mathbf{X}_{N} & N \text { point DFT } \\
& =\frac{1}{N} \mathbf{W}_{N}^{*} \mathbf{X}_{N} &
\end{array}
$$

Because the matrix (transformation) \mathbf{W}_{N} has a specific structure and because W_{N}^{k} has particular values (for some k and n), we can reduce the number of arithmetic operations for computing this transform.

Example $\quad x[n]=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right]$

$$
\begin{aligned}
\mathbf{W}_{4} & =\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{4} & W_{4}^{6} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{6} & W_{4}^{9}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
1 & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\
1 & W_{4}^{3} & W_{4}^{2} & W_{4}^{1}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right]
\end{aligned}
$$

Only additions are needed to compute this specific transform.
(This is a well-known radix-4 FFT)
Thus, the DFT of $x[n]$ is $\mathbf{X}_{4}=\mathbf{W}_{4} \mathbf{x}_{4}=\left[\begin{array}{c}6 \\ -2+2 j \\ -2 \\ -2-2 j\end{array}\right]$

Fast Fourier Transform

-- Highly efficient algorithms for computing DFT

- General principle: Divide-and-conquer
- Specific properties of W_{N}^{k}

■ Complex conjugate symmetry: $W_{N}^{-k n}=\left(W_{N}^{k n}\right)^{*}$
■ Symmetry: $W_{N}^{k+N / 2}=-W_{N}^{k}$

- Periodicity: $W_{N}^{k+N}=W_{N}^{k}$

■ Particular values of k and n : e.g., radix-4 FFT (no multiplications)

- Direct computation of DFT

$$
\left.\begin{array}{rl}
X[k] & =\sum_{n=0}^{N-1} x[n] \cdot W_{N}^{k n}, \quad k=0,1, \ldots, N-1 \\
& =\sum_{n=0}^{N-1}\left\{\left[\operatorname{Re}(x[n]) \cdot \operatorname{Re}\left(W_{N}^{k n}\right)-\operatorname{Im}(x[n]) \cdot \operatorname{Im}\left(W_{N}^{k n}\right)\right]++\right. \\
j\left[\operatorname{Re}(x[n]) \cdot \operatorname{Im}\left(W_{N}^{k n}\right)+\operatorname{Im}(x[n]) \operatorname{Re}\left(W_{N}^{k n}\right)\right]
\end{array}\right\}
$$

For each k, we need N complex multiplications and $N-1$ complex additions. $\rightarrow 4 N$ real multiplications and $4 N-2$ real additions.

We will show how to use the properties of W_{N}^{k} to reduce computations.

- Radix-2 algorithms: Decimation-in-time; Decimation-in-frequency
- Composite N algorithms: Cooley-Tukey; Prime factor
- Winograd algorithm
- Chirp transform algorithm

Radix-2 Decimation-in-time Algorithms

-- Assume N-point DFT and $N=2^{v}$
■ Idea: N-point $\mathrm{DFT} \rightarrow N / 2$-point $\mathrm{DFT} \rightarrow N / 4$-point DFT

$$
N / 4 \text {-point DFT }
$$

$$
\begin{aligned}
\mathrm{N} / 2 \text {-point } \mathrm{DFT} \rightarrow & \mathrm{~N} / 4 \text {-point } \mathrm{DFT} \\
& \mathrm{~N} / 4 \text {-point } \mathrm{DFT}
\end{aligned}
$$

■ Sequence: $x[0] \quad x[1] \quad x[2] x[3] \quad \cdots \quad x[n / 2] \cdots \quad x[N-1]$
Even index: $x[0] \quad x[2] \quad \cdots \quad x[N-2]$
Odd index: $x[1] \quad x[3] \quad \cdots \quad x[N-1]$

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \quad k=0,1, \ldots, N-1 \\
& =\underbrace{\sum_{n \text { even }} x[n] W_{N}^{k n}}_{n=2 r}+\underbrace{\sum_{n \text { odd }} x[n] W_{N}^{k n}}_{n=2 r+1} \\
& =\sum_{r=0}^{\frac{N}{2}-1} x[2 r] W_{N}^{2 r k}+\sum_{r=0}^{\frac{N}{2}-1} x[2 r+1] W_{N}^{(2 r+1) k} \\
& \because W_{N}^{2}=e^{-2 j\left(\frac{2 \pi}{N}\right)}=e^{-2 j\left(\frac{\pi}{N / 2}\right)}=W_{N / 2}
\end{aligned}
$$

$$
\begin{aligned}
X[k] & =\underbrace{\sum_{r=0}^{\frac{N}{2}-1} x[2 r] W_{N / 2}^{r k}}_{\frac{N}{2} \text {-point DFT }}+\underbrace{W_{N}^{k} \sum_{r=0}^{\frac{N}{2}-1} x[2 r+1] W_{N / 2}^{r k}}_{\frac{N}{2} \text {-point DFT }} \\
& =G[k]+W_{N}^{k} H[k]
\end{aligned}
$$

- Comparison:
(a) Direct computation of N-point DFT (N frequency samples):
$\sim N^{2}$ complex multiplications and N^{2} complex adds
(b) Direct computation of $\mathrm{N} / 2$-point DFT:
$\sim\left(\frac{N}{2}\right)^{2}$ complex multiplications and $\left(\frac{N}{2}\right)^{2}$ complex adds
+ additional N complex multis and N complex adds
\sim (Total:) $N+2\left(\frac{N}{2}\right)^{2}=N+\frac{N^{2}}{2}$ complex multis and adds
(c) $\log _{2} N$-stage FFT

Since $N=2^{v}$, we can further break $N / 2$-point DFT into two $N / 4$-point DFT and so on.

At each stage: $\sim N$ complex multis and adds
Total: $\sim N \log _{2} N$ complex multis and adds (--> $\frac{N}{2} \log _{2} N$)

Number of points, N	Direct Computation: Complex Multis	FFT: Complex Multis	Speed Im- provement Factor
4	16	4	4.0
8	64	12	5.3
16	256	32	8
64	4,096	192	21.3
256	65,536	1,024	64.0
1024	$1,048,576$	5,120	204.8

- Butterfly: Basic unit in FFT

Two multiplications:

One multiplication:

■ In-place computations

Only two registers are needed for computing a butterfly unit.

$$
\begin{aligned}
& X_{m}[p]=X_{m-1}[p]+W_{N}^{r} X_{m-1}[q] \\
& X_{m}[q]=X_{m-1}[p]-W_{N}^{r} X_{m-1}[q]
\end{aligned}
$$

Advantage: less storage!

- In order to retain the in-place computation property, the input data are accessed in the bit-reversed order.
Note: The outputs are in the normal order (same as the "position")

Position	Binary equivalent	Bit reversed	Sequence index
6	110	011	3
2	010	010	2

Remark: Index 3 input data is placed at position 6.

We may also place the inputs in the normal order; then the outputs are in the bit-reversed order.

- If we try to maintain the normal order of both inputs and outputs, then in-place computation structure is destroyed.

\diamond Radix-2 Decimation-in-frequency Algorithms

■ Dividing the output sequence $X[k]$ into smaller pieces.

$$
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}, \quad k=0,1, \ldots, N-1
$$

If k is even, $k=2 r$.

$$
\begin{aligned}
X[2 r] & =\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \quad r=0,1, \cdots, \frac{N}{2}-1 \\
& =\sum_{n=0}^{\frac{N}{2}-1} x[n] W_{N}^{2 n r}+\sum_{n=\frac{N}{2}}^{N-1} x[n] W_{N}^{2 n r} \quad n \leftarrow(n+N / 2) \\
& =\sum_{n=0}^{\frac{N}{2}-1} x[n] W_{N}^{2 n r}+\sum_{n=0}^{\frac{N}{2}-1} x\left[n+\frac{N}{2}\right] \cdot W_{N}^{2 r\left(n+\frac{N}{2}\right)} \\
& \because W_{N}^{2 r[n+N / 2]}=W_{N}^{2 r n} W_{N}^{r N}=W_{N}^{2 r n} \\
& =\sum_{n=0}^{\frac{N}{2}-1}\left(x[n]+x\left[n+\frac{N}{2}\right]\right) \cdot W_{N}^{2 n r} \\
& =\sum_{n=0}^{\frac{N}{2}-1}\left(x[n]+x\left[n+\frac{N}{2}\right]\right) \cdot W_{N / 2}^{n r}
\end{aligned}
$$

Similarly, if k is odd, $k=2 r+1$.

$$
X[2 r+1]=\sum_{n=0}^{\frac{N}{2}-1}\left(x[n]-x\left[n+\frac{N}{2}\right]\right) \cdot W_{N}^{n} \cdot W_{N / 2}^{n r}
$$

$$
\left\{\begin{array}{c}
X[2 r]=\sum_{n=0}^{\frac{N}{2}-1}\left(x[n]+x\left[n+\frac{N}{2}\right]\right) \cdot W_{N / 2}^{n r} \\
X[2 r+1]=\sum_{n=0}^{\frac{N}{2}-1}\left(x[n]-x\left[n+\frac{N}{2}\right]\right) \cdot W_{N}^{n} \cdot W_{N / 2}^{n r}
\end{array}\right.
$$

$$
\text { Let }\left\{\begin{array}{l}
g[n]=x[n]+x\left[n+\frac{N}{2}\right] \\
h[n]=x[n]-x\left[n+\frac{N}{2}\right]
\end{array}\right.
$$

We can further break $X[2 r]$ into even and odd groups ...
Again, we can reduce the two-multiplication butterfly into one multiplication. Hence, the computational complexity is bout $\frac{N}{2} \log _{2} N$. The in-place computation property holds if the outputs are in bit-reversed order (when inputs are in the normal order).

FFT for Composite \mathbf{N}

-- Cooley-Tukey Algorithm: $N=N_{1} N_{2}$

$$
\left\{\begin{array}{lll}
\text { Time index : } & n=N_{2} n_{1}+n_{2} & \left\{\begin{array}{l}
0 \leq n_{1} \leq N_{1}-1 \\
0 \leq n_{2} \leq N_{2}-1
\end{array}\right. \\
\text { Freq. index : } & k=k_{1}+N_{1} k_{2} & \left\{\begin{array}{l}
0 \leq k_{1} \leq N_{1}-1 \\
0 \leq k_{2} \leq N_{2}-1
\end{array}\right.
\end{array}\right.
$$

Remark: $n \leftrightarrow\left(n_{1}, n_{2}\right)$ and $k \leftrightarrow\left(k_{1}, k_{2}\right)$
■ Goal: Decompose N-point DFT into two stages:

$$
\begin{aligned}
& N_{1} \text {-point } \operatorname{DFT} \otimes N_{2} \text {-point DFT } \\
& X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \quad 0 \leq k \leq N-1 \\
&=X\left[k_{1}+N_{1} k_{2}\right] \\
&=\sum_{n_{2}=0}^{N_{2}-1} \sum_{n_{1}=0}^{N_{1}-1} x\left[N_{2} n_{1}+n_{2}\right] \cdot W_{N}^{\left(k_{1}+N_{1} k_{2}\right)\left(N_{2} n_{1}+n_{2}\right)} \\
&=\sum_{n_{2}=0}^{N_{2}-1} \sum_{n_{1}=0}^{N_{1}-1} x\left[N_{2} n_{1}+n_{2}\right] \cdot \underbrace{W_{N}^{N_{2} k_{1} n_{1}}}_{W_{N_{1}}^{k_{1} n_{1}}} \cdot W_{N}^{W_{1} n_{2} n_{2}} \cdot \underbrace{W_{N}^{k_{1} N_{1} n_{2}}}_{N_{2} \text {-point }} \cdot \underbrace{W_{N}^{W_{1} N_{2} N_{2} k_{2} n_{1}}}_{1} \\
&=\sum_{n_{2}=0}^{W_{N_{2}}^{N_{2}-1}}\{\underbrace{}_{\substack{\sum_{n_{1}=0}^{N_{1}-1} x\left[N_{2} n_{1}+n_{2}\right] \cdot W_{N_{1}}^{k_{1} n_{1}}} \cdot \underbrace{W_{\text {twaddle }}^{k_{1} n_{2}}}_{N}\} \cdot W_{N_{2}}^{k_{2} n_{2}}}
\end{aligned}
$$

- Procedure

(1) Compute N_{1}-point DFT: (row transform)

$$
G\left[n_{2}, k_{1}\right]=\sum_{n_{1}=0}^{N_{1}-1} x\left[N_{2} n_{1}+n_{2}\right] \cdot W_{N_{1}}^{k_{1} n_{1}}
$$

(2) Multiply twiddle factors:

$$
\tilde{G}\left[n_{2}, k_{1}\right]=W_{N}^{k_{1} n_{2}} \cdot G\left[n_{2}, k_{1}\right]
$$

(3) Compute N_{2}-point DFT: (column transform)

$$
X\left[k_{1}+N_{1} k_{2}\right]=\sum_{n_{2}=0}^{N_{2}-1} \widetilde{G}\left[n_{2}, k_{1}\right] \cdot W_{N_{2}}^{k_{2} n_{2}}
$$

DFTSCN : 1 H
(Computation of $N=15$-point DFT by means of 3-point and 5-point DFTs.)

■ Extension: $N=N_{1} N_{2} \cdots N_{v}$
Let $\mu(N) \equiv$ number of multiplications for N - point DFT
If $N=N_{1} N_{2}$
$\begin{cases}\text { 1. row transform: } & N_{2} \cdot \mu\left(N_{1}\right) \\ \text { 2. twiddle factors: } & N_{1} N_{2}=N \\ \text { 3. column transfrm: } & N_{1} \cdot \mu\left(N_{2}\right)\end{cases}$

$$
\begin{aligned}
\mu(N) & =N_{2} \cdot \mu\left(N_{1}\right)+N_{1} \cdot \mu\left(N_{2}\right)+N \\
& =N\left(\frac{\mu\left(N_{1}\right)}{N_{1}}+\frac{\mu\left(N_{2}\right)}{N_{2}}+1\right)
\end{aligned}
$$

In general, $\mu(N)=N\left(\sum_{i=1}^{v} \frac{\mu\left(N_{i}\right)}{N_{i}}+(v-1)\right)$
In fact, the term $(v-1)$ should be $(v-1) / 2$ because rearranging the butterfly structure would make half of the branches becoming " 1 ".

■ Special Case: $N_{1}=N_{2}=\cdots=N_{v}=2$
Radix-2: $N_{1}=N_{2}=\cdots=N_{v}=2$ and $v=\log _{2} N$ $\mu(N)=N(v-1) / 2$ multiplications because $\mu(2)$ requires no multiplications.

Radix-4: $N_{1}=N_{2}=\cdots=N_{v}=4$ and $v=\log _{4} N$ $\mu(N)=N(v-1) / 2$ multiplications because $\mu(4)$ requires no multiplications. This FFT has fewer stages than Radix-2 ==> fewer multiplications.

$$
\mathbf{W}_{4}=\left[\begin{array}{cccc}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{4} & W_{4}^{6} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{6} & W_{4}^{9}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
1 & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\
1 & W_{4}^{3} & W_{4}^{2} & W_{4}^{1}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right]
$$

Inverse FFT

■ IDFT: $x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] \cdot W_{N}^{-k n}$
DFT: $\quad X[k]=\sum_{n=0}^{N-1} x[n] \cdot W_{N}^{n k}$
Hence, take the conjugate of $(*)$:

$$
\begin{aligned}
x^{*}[n] & =\frac{1}{N}\left(\sum_{k=0}^{N-1} X[k] \cdot W_{N}^{-k n}\right)^{*} \\
& =\frac{1}{N} \sum_{k=0}^{N-1}\left(X[k] \cdot W_{N}^{-k n}\right)^{*} \\
& =\frac{1}{N} \sum_{k=0}^{N-1}\left(X^{*}[k] \cdot W_{N}^{k n}\right) \\
& =\frac{1}{N} \operatorname{DFT}\left[X^{*}(k)\right]
\end{aligned}
$$

Take the conjugate of the above equation:

$$
\begin{aligned}
x[n] & =\frac{1}{N}\left(\operatorname{DFT}\left[X^{*}(k)\right]\right)^{*} \\
& =\frac{1}{N}\left(\operatorname{FFT}\left[X^{*}(k)\right]\right)^{*}
\end{aligned}
$$

Thus, we can use the FFT algorithm to compute the inverse DFT.

> The Goertzel Algorithm

$W_{N}^{-k N}=e^{j\left(\frac{2 \pi}{N}\right) N k}=e^{j 2 \pi k}=1$

$$
X[k]=W_{N}^{-k N} \sum_{r=0}^{N-1} x[r] W_{N}^{k r}=\sum_{r=0}^{N-1} x[r] W_{N}^{-k(N-r)}
$$

If we define $\mathrm{x}[\mathrm{n}]=0$ for $\mathrm{n}<0$ and $\mathrm{n} \geq \mathrm{N}$

$$
\begin{aligned}
& \text { and } y_{k}[n]=\sum_{r=-\infty}^{\infty} x[r] W_{N}^{-k(N-r)} u[n-r]=x[n] *\left(W_{N}^{-k n} u[n]\right), \\
& \Rightarrow X[k]=\left.y_{k}[n]\right|_{n=N}
\end{aligned}
$$

$$
H_{k}(z)=\frac{1}{1-W_{N}^{-k} z^{-1}}
$$

If $x[n]$ is complex, we need 4 real multiplications and 4 real additions to compute each $\mathrm{y}_{\mathrm{k}}[\mathrm{n}]$.
To compute $\mathrm{y}_{\mathrm{k}}[\mathrm{N}]$, we need to compute $\mathrm{y}_{\mathrm{k}}[1], \mathrm{y}_{\mathrm{k}}[2], \ldots, \mathrm{y}_{\mathrm{k}}[\mathrm{N}-1]$.
\Rightarrow We need 4 N real multiplications and 4 N real additions to compute $\mathrm{X}[\mathrm{k}]$.
Remarks:
$>$ less efficient than the direct method.
> Avoid the computation or storage of the coefficients $W_{N}^{k n}$.

To reduce the number of multiplications,

$$
H_{k}(z)=\frac{1-W_{N}^{k} z^{-1}}{\left(1-W_{N}^{-k} z^{-1}\right)\left(1-W_{N}^{k} z^{-1}\right)}=\frac{1-W_{N}^{k} z^{-1}}{1-2 \cos (2 \pi k / N) z^{-1}+z^{-2}}
$$

If $x[n]$ is complex, we only need 2 real multiplications and 4 real additions to implement the poles of the system.
(The complex multiplication by $-W_{N}^{k}$ needs not be performed at every iteration.)
\Rightarrow To compute $\mathrm{X}[\mathrm{k}]$, we need 2 N real multiplications and 4 N real additions for the poles and 4 real multiplications and 4 real additions for the zero.
Remarks:
$>$ Avoid the computation or storage of the coefficients $W_{N}^{k n}$.
$>$ Only need to compute and save W_{N}^{k} and $\cos (2 \pi k / N)$.

