Filter Design

♦ Introduction

- Filter An important class of LTI systems
- We discuss frequency-selective filters mostly: LP, HP, ...
- We concentrate on the design of *causal* filters.
- Three stages in filter design:
 - Specification: application dependent
 - "Design": approximate the given spec using a causal discrete-time system
 - Realization: architectures and circuits (IC) implementation
- IIR filter design techniques
- FIR filter design techniques

Frequency domain specifications

Magnitude: $|H(e^{j\omega})|$, Phase: $\angle H(e^{j\omega})$

Ex., Low-pass filter: Passband , Transition, Stopband

Frequencies: Passband cutoff ω_p

Stopband cutoff ω_s Transition bandwidth $\omega_s - \omega_p$ Error tolerance δ_1, δ_2

Figure 7.2 (a) Specifications for effective frequency response of overall system in Figure 7.1 for the case of a lowpass filter. (b) Corresponding specifications for the discrete-time system in Figure 7.1.

♦ Analog Filters

- Monotonic magnitude response in the passband and stopband
- The magnitude response is maximally flat in the passband.

For an Nth-order lowpass filter

 \Rightarrow The first (2N-1) derivatives of $|H_c(j\Omega)|^2$ are zero at $\Omega = 0$.

$$|H_c(j\Omega)|^2 = \frac{1}{1 + (\frac{j\Omega}{j\Omega_c})^{2N}}$$

N: filter order

- Ω_c : 3-dB cutoff frequency (magnitude = 0.707)
- Properties

(a)
$$|H_c(j\Omega)|_{\Omega=0} = 1$$

- (b) $|H_c(j\Omega)|^2_{\Omega=\Omega_c} = 1/2$ or $|H_c(j\Omega)|_{\Omega=\Omega_c} = 0.707$
- (c) $|H_c(j\Omega)|^2$ is monotonically decreasing (of Ω)
- (d) $N \to \infty \Rightarrow |H_c(j\Omega)| \to \text{ideal lowpass}$

Figure B.2 Dependence of Butterworth magnitude characteristics on the order *N*.

Poles

$$H_{c}(s)H_{c}(-s) = \frac{1}{1 + (\frac{s}{j\Omega_{c}})^{2N}}$$

Roots:
$$s_k = (-1)^{\frac{1}{2N}} (j\Omega_c) = \Omega_c e^{j\frac{\pi}{2N}(2k+N-1)}, \quad k = 0, 1, \dots, 2N-1$$

- (a) 2N poles in pairs: S_k , $-S_k$ symmetric w.r.t. the imaginary axis; never on the imaginary axis. If N odd, poles on the real axis.
- (b) Equally spaced on a circle of radius Ω_c
- (c) $H_c(s)$ causal, stable \leftarrow all poles on the left half plane

Figure B.3 *s*-plane pole locations for a third-order Butterworth filter.

• Usage (There are only two parameters N, Ω_c) Given specifications $\varepsilon, \Omega_p, \delta_2, \Omega_s \rightarrow N, \Omega_c$ $|H(j\Omega)|^2 = \frac{1}{1 + (\frac{\Omega}{\Omega_c})^{2N}} = \frac{1}{1 + \varepsilon^2 (\frac{\Omega}{\Omega_p})^{2N}}$ Thus, $|H(j\Omega)|^2 = \frac{1}{1 + \varepsilon^2}$ at $\Omega = \Omega_p \implies \Omega_c = \frac{\Omega_p}{\varepsilon^{\frac{1}{N}}}$

At
$$\Omega = \Omega_s$$
, $|H(j\Omega)|^2_{\Omega_x} = \delta_2^2 = \frac{1}{1 + \varepsilon^2 (\frac{\Omega_s}{\Omega_p})^{2N}}$ $N = \frac{\log[(\frac{1}{\delta_2})^2 - 1]}{2\log(\frac{\Omega_s}{\Omega_c})}$

• Chebyshev Filters

- Type I: Equiripple in the passband; monotonic in the stopband
 Type II: Equiripple in the stopband; monotonic in the passband
- Same N as the Butterworth filter, it would have a sharper transition band. (A smaller N would satisfy the spec.)
- **Type I:**

$$|H_c(j\Omega)|^2 = \frac{1}{1 + \varepsilon^2 V_N^2(\Omega_{\Omega_c})}$$

where $V_N(x)$ is the Nth-order Chebyshev polynomiaal

$$V_N(x) = \cos(N\cos^{-1}(x)), \ 0 < V_N(x) < 1 \ for \ 0 < x < 1$$

$$V_{N+1}(x) = 2xV_N(x) - V_{N-1}(x)$$

 $V_N(x)|_{x=1} = 1$ for all N

<The first several Chebyshev polynominals>

N	$V_N(x)$
0	1
1	x
2	$2x^2 - 1$
3	$4x^3-3x$
4	$8x^4 - 8x^2 + 1$

■ Properties (Type I)

^(a)
$$|H_c(j\Omega)|^2_{\Omega=0} = \begin{cases} 1, & \text{if N odd} \\ \frac{1}{1+\varepsilon^2}, & \text{if N even} \end{cases}$$

(b) The magnitude squared frequency response oscillates between 1 and $\frac{1}{1+\varepsilon^2}$ within the

passband:

$$|H_c(j\Omega)|^2_{\Omega=\Omega_c} = \frac{1}{1+\varepsilon^2}$$
 at $\Omega = \Omega_c$

(c) $|H_c(j\Omega)|^2$ is monotonic outside the passband.

Figure B.4 Type I Chebyshev lowpass filter approximation.

Poles (Type I)

On the ellipse specified by the following:

Length of minor axis =
$$2a\Omega_c$$
, $a = \frac{1}{2} \left(\alpha^{\frac{1}{N}} - \alpha^{-\frac{1}{N}} \right)$
Length of major axis = $2b\Omega_c$, $b = \frac{1}{2} \left(\alpha^{\frac{1}{N}} + \alpha^{-\frac{1}{N}} \right)$

and $\alpha = \varepsilon^{-1} + \sqrt{1 + \varepsilon^{-2}}$

(a) Locate equal-spaced points on the major circle and minor circle with angle

$$\Phi_k = \frac{\pi}{2} + \frac{(2k+1)\pi}{N}, \ k = 0, 1, \cdots, N-1$$

(b) The poles are (x_k, y_k) : $x_k = a\Omega_c \cos \phi_k$, $y_k = b\Omega_c \sin \phi_k$

Figure B.5 Location of poles for a third-order type I lowpass Chebyshev filter.

Type II:

$$|H_{a}(j\Omega)|^{2} = \frac{1}{1 + [\varepsilon^{2}V_{N}^{2}(\Omega_{c}/\Omega)]^{-1}}$$

has both poles and zeros.

■ Usage (There are only two parameters N, Ω_c) Given specifications $\varepsilon, \Omega_p, \delta_2, \Omega_s \rightarrow N, \Omega_c$ $\Omega_c = \Omega_p$

$$N = \frac{\log[(\sqrt{1 - \delta_2^2} + \sqrt{1 - \delta_2^2(1 + \varepsilon^2)})/\varepsilon \delta_2]}{\log[(\Omega_s/\Omega_p) + \sqrt{(\Omega_s/\Omega_p)^2 - 1}]}$$
$$= \frac{\cosh^{-1}(\delta/\varepsilon)}{\cosh^{-1}(\Omega_s/\Omega_p)} \qquad \left(\delta_2 = \frac{1}{\sqrt{1 + \delta^2}}\right)$$

- Equiripple at both the passband and the stopband
- Optimum: smallest $(\Omega_s \Omega_p)$ at the same N

$$|H_a(j\Omega)|^2 = \frac{1}{1 + \varepsilon^2 U_N^2(\Omega/\Omega_p)}$$

where $U_N(x)$: Jacobian elliptic function (Very complicated! Skip!)

■ Usage (There are only two parameters N, Ω_c) Given specifications $\varepsilon, \Omega_p, \delta_2, \Omega_s \rightarrow N, \Omega_c$

$$N = \frac{K(\Omega_p / \Omega_s) K(\sqrt{1 - (\varepsilon^2 / \delta^2)})}{K(\varepsilon / \delta) K(\sqrt{1 - (\Omega_p / \Omega_s)^2})} \qquad \left(\delta_2 = \frac{1}{\sqrt{1 + \delta^2}}\right)$$

where K(x) is the complete elliptic integral of the first kind

$$K(x) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - x^2 \sin^2 \theta}}$$

Remark: The drawback of the elliptic filters: They have more nonlinear phase response in the passband than a comparable Butterworth filter or a Chebyshev filter, particularly, near the passband edge.

♦ Design Digital IIR Filters from Analog Filters

- Why based on analog filters?
 - Analog filter design methods have been well developed.
 - Analog filters often have simple *closed-from* design formulas.

← Direct digital filter design methods often don't have *closed-form* formulas.

- There are two types of transformations
 - Transformation from analog to discrete-time
 - Transformation from one type filter to another type (so called *frequency transformation*)

- Methods in analog to discrete-time transformation
- Impulse invariance
- Bilinear transformation
- Matched-z transformation
- Desired properties of the transformations
- Imaginary axis of the s-plane \rightarrow The unit circle of the z-plane
- Stable analog system \rightarrow Stable discrete-time system

(Poles in the left s-plane \rightarrow Poles inside the unit circle)

- Steps in the design
 - (1) Digital specifications \rightarrow Analog specifications
 - (2) Design the desired analog filter
 - (3) Analog filter \rightarrow Discrete-time filter

• Impulse Invariance

-- Sampling the impulse of a continuous-time system

$$h[n] = T_d h_c (nT_d)$$
$$= T_d h_c (t) \mid_{t=nT_d}$$

- T_d : Sampling period
- ✓ *Important:* to avoid aliasing
- ✓ Does not show up in the final discrete formula if we start from the digital specifications, ...
- Frequency response

Sampling in time \rightarrow Sifted duplication in frequency

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} H_c(j\frac{\omega}{T_d} + j\frac{2\pi}{T_d}k)$$

If $H_c(j\Omega)$ is band-limited and $f_d = \frac{1}{T_d}$ is higher than the Nyquist sampling fre-

quency (no aliasing)

$$H(e^{j\omega}) = H_c(j\frac{\omega}{T_d}) \qquad |\omega| \le \pi$$

Remark: This is not possible because the IIR analog filter is typically not bandlimited.

Figure 7.3 Illustration of aliasing in the impulse invariance design technique.

Filter Design

Approach 1: Sampling *h*[*n*]

Approach 2: Map $H_c(s)$ to H(z) because we need H(z) to implement a digital filter

anyway.

$$H_{c}(s) = \sum_{k=1}^{N} \frac{A_{k}}{s - s_{k}}$$
$$h_{c}(t) = \begin{cases} \sum_{k=1}^{N} A_{k} e^{s_{k}t}, & t \ge 0\\ 0, & t < 0 \end{cases}$$

$$h[n] = T_d h_c (nT_d)$$

= $T_d \sum_{K=1}^N A_k e^{s_k nT_d} u[n]$
= $\sum_{K=1}^N (T_d A_k) (e^{s_k T_d})^n u[n]$
 $H(z) = \sum_{K=1}^N \frac{T_d A_k}{1 - e^{s_k T_d} z^{-1}}$

Essentially, factorize and map:

Analog pole

↓

Discrete-time pole

Remarks: (1) Stability is preserved:

LHS poles \rightarrow poles inside the unit circle

(2) No simple correspondence for zeros

Design Example: Low-pass filter

Using Butterworth continuous-time filter Given specifications in the digital domain "-1 dB in passband" and "-15 dB in stopband"

 $\begin{array}{ll} 0.89125 \leq \mid H(e^{j\omega}) \mid \leq 1, & 0 \leq \mid \omega \mid \leq 0.2\pi \\ \mid H(e^{j\omega}) \mid \leq 0.17783, & 0.3\pi \leq \mid \omega \mid \leq \pi \end{array}$

Step 1: Convert the above specifications to the analog domain

(Assume "negligible aliasing")

$$H(e^{j\omega}) = H_c(j\frac{\omega}{T_d}) \qquad |\omega| \le \pi$$

0.89125 \le |H(j\Omega)|\le 1, \quad 0 \le |\Omega |\le 0.2\pi/T_d
|H(j\Omega)|\le 0.17783, \quad \begin{array}{c} 0.3\pi/T_d \le |\Omega |\le \pi/T_d \le 0.17783, \end{array} \text{ for a log |\Omega |\Omega |\Delta |\Del

Step 2: Design a Butterworth filter that satisfies the above specifications. That is, select

proper N, Ω_c .
$\int H_{c}(j\frac{0.2\pi}{T_{d}}) \ge 0.89125$
$\left H_{c}(j\frac{0.3\pi}{T_{d}}) \leq 0.17783 \right $
$ H_c(j\Omega) ^2 = \frac{1}{1 + (\Omega/\Omega_c)^{2N}}$
Thus, $\int 1 + \left(\frac{0.2\pi}{T_d \Omega_c}\right)^{2N} = \left(\frac{1}{0.89125}\right)^2$
$\left 1 + \left(\frac{0.3\pi}{T_d \Omega_c}\right)^{2N} = \left(\frac{1}{0.17783}\right)^2\right $
→ $N = 5.8858, T_d \Omega_c = 0.70474$
→ (Taking integer) $N = 6$, $T_d \Omega_c = 0.7032$
(Meet passband spec. exactly; overdesign at stopband)

 $< \text{Case 1: Assume } T_d = 1 \implies s_k = \Omega_c e^{j\frac{\pi}{2N}(2k+N-1)}$ $< \text{Case 2: Assume } T_d \neq 1 \implies s_k = \left(\frac{0.7032}{T_d}\right) e^{j\frac{\pi}{2N}(2k+N-1)}$ $H_c(s) = \frac{0.12093}{(s^2 + 0.365s + 0.495)(s^2 + 0.995s + 0.495)(s^2 + 1.359s + 0.495)}$

Step 3: Convert analog filter to discrete-time

Remarks: (1) In some filter design problems, a primary objective maybe to control some aspect of the time response. \Rightarrow design the discrete-time filter by impulse invariance or by step invariance.

(Note: Designs by impulse invariance and by step invariance don't lead to the same discrete-time filter!)

(2) Impulse invariance method has a precise control on the shape of the time signal.

Except for aliasing, the shape of the frequency response is preserved.

(3) Impulse invariance technique is appropriate only for bandlimited filters.

Bilinear Transform

Avoid aliasing but distort the frequency response – uneven stretch of the frequency axis.

$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \text{ or } z = \frac{1 + \frac{sT_d}{2}}{1 - \frac{sT_d}{2}}$$
$$H_c(s) \to H(z) = H_c \left(\frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \right)$$

Note: $j\Omega$ axis on the s-plane \rightarrow unit circle on the z-plane

LHS of the s-plane \rightarrow Interior of the unit circle on the z-plane

• How the $j\Omega$ axis is mapped to the unit circle?

$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \Big|_{z=e^{j\omega}} = \frac{2}{T_d} \left(\frac{1 - e^{-j\omega}}{1 + e^{-j\omega}} \right)$$
$$= \sigma + j\Omega = \frac{2}{T_d} \left[\frac{2e^{-j\omega/2} \left(j\sin\frac{\omega}{2} \right)}{2e^{-j\omega/w} \left(\cos\frac{\omega}{2} \right)} \right]$$
$$= \frac{2j}{T_d} \tan\left(\frac{\omega}{2}\right)$$
$$\Rightarrow \Omega = \frac{2}{T_d} \tan\left(\frac{\omega}{2}\right) \text{ or } \omega = 2\tan^{-1} \left(\frac{\Omega T_d}{2}\right)$$

Problem in design – nonlinear distortion in magnitude and phase

■ Steps in the design

- (1) Digital specifications to analog specifications: prewarp
- (2) Design the desired analog filter
- (3) Analog filter to discrete-time filter: bilinear transform

Design Example: Lowpass filter

Using Butterworth continuous-time filter

Given specifications in the digital domain (same as the previous ex.)

$0.89125 \leq H(e^{j\omega}) \leq 1,$	$0 \leq \omega \leq 0.2\pi$
$ H(e^{j\omega}) \le 0.17783,$	$0.3\pi \le \omega \le \pi$

Step 1: Prewarp $\Omega = \frac{2}{T_d} \tan\left(\frac{\omega}{2}\right)$ Passband freq. $\Omega_p = \frac{2}{T_d} \tan\left(\frac{0.2\pi}{2}\right)$ Stopband freq. $\Omega_s = \frac{2}{T_d} \tan\left(\frac{0.3\pi}{2}\right)$

Let $T_d = 1$ since T_d will disappear after "analog to discrete".

Step 2: Design a Butterworth filter -- select proper N, Ω_c .

$$\begin{cases} |H_c(j2\tan(0.1\pi))| \ge 0.89125 \\ |H_c(j2\tan(0.15\pi))| \le 0.17783 \end{cases}$$

Because

$$|H_c(j\Omega)|^2 = \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{2N}}$$

$$\Rightarrow \qquad \begin{cases} 1 + \left(\frac{2\tan(0.1\pi)}{\Omega_c}\right)^{2N} = \left(\frac{1}{0.89125}\right)^2 \\ 1 + \left(\frac{2\tan(0.15\pi)}{\Omega_c}\right)^{2N} = \left(\frac{1}{0.17783}\right)^2 \end{cases}$$

→ N = 5.30466,

$$\rightarrow$$
 N = 6, $T_d \Omega_c = 0.76622$

(Meet stopband spec. exactly; exceed passband spec.)

$$H_c(s) = \frac{0.20238}{(s^2 + 0.3996s + 0.5871)(s^2 + 1.0836s + 0.5871)(s^2 + 1.4802s + 0.5871)}$$

- *Remarks:* (1) Bilinear transforms warps frequency values but preserves the magnitude. Therefore, the discrete-time Butterworth filter still has the maximal flat property; Chebyshev and Ellipic filters have equal ripple property.
 - (2) Although we may obtain $H_c(s)$ in closed form, it is often difficult to find the locations of poles and zeros of H(z) from $H_c(s)$ directly.

Bilinear Transform Design Example using 4 analog filters:

passband edge frequency $\omega_p = 0.5\pi$
stopband edge frequency $\omega_s = 0.6\pi$
maximum passband gain $= 0 dB$
minimum passband gain $= -0.3$ dB
maximum stopband gain $= -30$ dB

(d)

Elliptic: 5th order

• Frequency Transformation

-- Transform one-type (often lowpass) filter to another type.

Typically, we first design a *frequency-normalized prototype lowpass* filter. Then, use an algebraic transformation to derive the desired lowpass, high pass, ..., filters from the prototype lowpass filter.

<Prototype filter> \rightarrow <Desired filter>

$$Z \xrightarrow{} Z$$
$$Z^{-1} = G(z^{-1})$$
$$H_{lp}(Z)\Big|_{Z^{-1} = G(z^{-1})} \xrightarrow{} H(z)$$

Typically, this transform is made of all-pass like factors

$$G(z^{-1}) = \pm \prod_{K=1}^{N} \left(\frac{z^{-1} - \alpha_k}{1 - \alpha_k z^{-1}} \right)$$

Remarks: The desired properties of G(.) are

(1) transforms the unit circle in Z to the unit circle in z,

(2) transforms the interior of the unit circle in Z to the interior of the unit circle in z,

(3) G(.) is rational.

Example: Lowpass to lowpass (with different passband and stopband frequency, but magni-

tude is not changed)

$$Z^{-1} = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}$$

Check the relationship between θ (the Z filter) and ω (the z filter). α is a parameter. Different α offers different "shapes" of the transformed filters in ω .

$$e^{-j\theta} = \frac{e^{-j\omega} - \alpha}{1 - \alpha e^{-j\omega}}$$
$$\omega = \tan^{-1} \left[\frac{(1 - \alpha^2)\sin\theta}{2\alpha + (1 + \alpha^2)\cos\theta} \right]$$

If θ_p is to be mapped to ω_p , then

■ Various Digital to Digital Transformations

TABLE 7.1TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPEOF CUTOFF FREQUENCY θ_{ρ} TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

Filter Type	Transformations	Associated Design Formulas
Lowpass	$Z^{-1} = \frac{z^{-1} - \alpha}{1 - az^{-1}}$	$\alpha = \frac{\sin\left(\frac{\theta_p - \omega_p}{2}\right)}{\sin\left(\frac{\theta_p + \omega_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Highpass	$Z^{-1} = -\frac{z^{-1} + \alpha}{1 + \alpha z^{-1}}$	$\alpha = -\frac{\cos\left(\frac{\theta_p + \omega_p}{2}\right)}{\cos\left(\frac{\theta_p - \omega_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Bandpass	$Z^{-1} = -\frac{z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + \frac{k-1}{k+1}}{\frac{k-1}{k+1}z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$ $k = \cot\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)\tan\left(\frac{\theta_p}{2}\right)$ $\omega_{p1} = \text{desired lower cutoff frequency}$ $\omega_{p2} = \text{desired upper cutoff frequency}$
Bandstop	$Z^{-1} = \frac{z^{-2} - \frac{2\alpha}{1+k}z^{-1} + \frac{1-k}{1+k}}{\frac{1-k}{1+k}z^{-2} - \frac{2\alpha}{1+k}z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$ $k = \tan\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)\tan\left(\frac{\theta_{p}}{2}\right)$ $\omega_{p1} = \text{desired lower cutoff frequency}$ $\omega_{p2} = \text{desired upper cutoff frequency}$

♦ Design of FIR Filters by Windowing

- Why FIR filters?
 - -- Always stable
 - -- Exact linear phase
 - -- Less sensitive to inaccurate coefficients
 - <Disadvantage> Higher complexity (storage, multiplication) due to higher orders
- Design Methods
 - (1) Windowing
 - (2) Frequency sampling
 - (3) Computer-aided design

Remark: No meaningful analog FIR filters

- Windowing technique advantages
 - -- Simple
 - -- Pick up a "segment" (window) of the ideal (infinite) $h_d[n]$
 - -- Filter order = window length = (M+1)

General form: $h[n] = h_d[n]w[n]$

Filter impulse response = Desired response x Window

Example: Rectangular window

Window shape: $w[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$

→
$$h[n] = \begin{cases} h_d[n], & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$$

• Because the filter specifications are (often) given in the frequency domain $H_d(e^{j\omega})$.

We take the inverse DTFT to obtain $h_d[n]$.

$$h_{\rm d}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{\rm d}(e^{j\omega}) \cdot e^{j\omega n} d\omega$$

or,
$$H_{\rm d}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h_{\rm d}[n] e^{-j\omega n}$$

Now, because of the inclusion of *w*[*n*],

$$H(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{\rm d}(e^{j\theta}) \cdot W(e^{j(\omega-\theta)}) d\theta \quad \text{(A periodic convolution)}$$

That is, $H(e^{j\omega})$ is "smeared" version of $H_d(e^{j\omega})$.

Why
$$W(e^{j\omega})$$
 cannot be $\delta(e^{j\omega})$? (If so, $H(e^{j\omega}) = H_d(e^{j\omega})$!)

Parameters (to choose): (1) Window size (order of filter)

(2) Window shape

- **Rectangular Window**: $w[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$
 - -- Narrow mainlobe
 - -- High sidelobe (Gibbs phenomenon)
 - -- Frequency response

$$W(e^{j\omega}) = \sum_{n=0}^{M} 1 \cdot e^{-j\omega n}$$
$$= \frac{1 - e^{-j\omega(M+1)}}{1 - e^{-j\omega}}$$
$$= e^{-j\omega \frac{M}{2}} \frac{\sin\left[\omega \frac{(M+1)}{2}\right]}{\sin\left(\frac{\omega}{2}\right)}$$

-- Peak sidelobe ~ -13 dB (lower than the mainlobe)

Area under each lobe remains constant with increasing M

 \rightarrow Increasing M does not lower the (relative) amplitude of the sidelobe.

(Gibbs phenomemnon)

Remarks: For frequency selective filters (ideal lowpass, highpass, ...),

narrow mainlobe \rightarrow sharp transition

lower sidelobe \rightarrow oscillation reduction

Commonly Used Windows

- -- Sidelobe amplitude (area) vs. mainlobe width
- -- Closed form, easy to compute

Bartlett (triangular) Window:

$$w[n] = \begin{cases} \frac{2n}{M}, & 0 \le n \le \frac{M}{2} \\ 2 - \frac{2n}{M}, & \frac{M}{2} < n \le M \\ 0, & \text{otherwise} \end{cases}$$

Hanning Window:

$$w[n] = \begin{cases} 0.5 - 0.5 \cos\left(\frac{2n}{M}\right), & 0 \le n \le M\\ 0, & \text{otherwise} \end{cases}$$

Hamming Window:

$$w[n] = \begin{cases} 0.54 - 0.46 \cos\left(\frac{2\,\mathrm{n}}{\mathrm{M}}\right), & 0 \le n \le M\\ 0, & \text{otherwise} \end{cases}$$

Blackman Window:

Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe	Peak Approximation Error, 20 log ₁₀ δ (dB)	Equivalent Kaiser Window, β	Transition Width of Equivalent Kaiser Window
Rectangular	-13	$4\pi/(M+1)$	-21	0	$1.81\pi/M$
Bartlett	-25	$8\pi/M$	-25	1.33	$2.37\pi/M$
Hann	-31	$8\pi/M$	-44	3.86	$5.01\pi/M$
Hamming	-41	$8\pi/M$	-53	4.86	$6.27\pi/M$
Blackman	-57	$12\pi/M$	-74	7.04	$9.19\pi/M$

 TABLE 7.2
 COMPARISON OF COMMONLY USED WINDOWS

• Generalized Linear Phase Filters

-- We wish $H(e^{j\omega})$ be (general) linear phase.

 Choose windows such that

$$w[n] = w[M - n], \quad 0 \le n \le M$$

That is, symmetric about M/2 (samples)

$$W(e^{j\omega}) = W_{e}(e^{j\omega}) \cdot e^{-j\omega \frac{M}{2}}$$
, where $W_{e}(e^{j\omega})$ is real.

<Desired filter> Suppose the desired filter is also generalized linear phase

$$H_{\rm d}\left(e^{j\omega}\right) = H_{\rm e}\left(e^{j\omega}\right) \cdot e^{-j\omega\frac{M}{2}}$$

<Filter> $H(e^{j\omega})$ is a periodic convolution of $H_d(e^{j\omega})$ and $W(e^{j\omega})$

$$H(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{e}(e^{j\theta}) \cdot W_{e}(e^{j(\omega-\theta)}) \cdot e^{-j\theta \frac{M}{2}} e^{-j\frac{(\omega-\theta)M}{2}} d\theta$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{e}(e^{j\theta}) \cdot W_{e}(e^{j(\omega-\theta)}) d\theta \cdot e^{-j\omega \frac{M}{2}}$$

 $A_{\rm e}(e^{j\omega})$ is real.

Thus, $H(e^{j\omega})$ is also generalized linear phase.

Example: Linear phase lowpass filter

Ideal lowpass:
$$H_{lp}(e^{j\omega}) = \begin{cases} e^{-j\omega\frac{M}{2}}, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

Impulse response:
 $h_{lp}[n] = \frac{\sin\left[\omega_c\left(n - \frac{M}{2}\right)\right]}{\pi\left(n - \frac{M}{2}\right)}$
Designed filter:
 $h[n] = \frac{\sin\left[\omega_c\left(n - \frac{M}{2}\right)\right]}{\pi\left(n - \frac{M}{2}\right)} \cdot w[n]$

 ω_c : 1/2 amplitude of $H(e^{j\omega}) =$ cutoff frequency of the dieal lowpass filter Peak to the left of ω_c occurs at ~ 1/2 mainlobe width -Peak to the right of ω_c occurs at ~ 1/2 mainlobe width Transition bandwidth $\Delta \omega$ ~ mainlobe width- (smaller) Peak approximation error: proportional to sidelobe area

Figure 7.23 Illustration of type of approximation obtained at a discontinuity of the ideal frequency response.

• Kaiser Window

-- Nearly optimal trade-off between mainlobe width and sidelobe area

$$w[n] = \begin{cases} I_0 \left[\beta \left(1 - \left[\binom{(n-\alpha)}{\alpha} \right]^2 \right)^{1/2} \right] \\ \hline I_0(\beta) \\ 0, & \text{otherwise} \end{cases}$$

where ${I_0}(\cdot)$: zeroth-order modified Bessel function of the first kind

 $\alpha : M/2$ $\beta : \text{shape parameter; } \beta = 0, \text{ rectangular window}$ $\beta \uparrow, \text{ mainlobe width } \uparrow, \text{ sidelobe area } \downarrow$ $-A \equiv -20 \cdot \log_{10} \delta$ $\beta = \begin{cases} 0.1102(A - 8.7), & A > 50\\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21), & 21 \le A \le 50\\ 0.0 & A < 21 \end{cases}$

--
$$\Delta \omega = \omega_{\rm s} - \omega_{\rm p}$$
 (stopband – passband)

$$M = \frac{A-8}{2.285 \cdot \Delta \omega}$$
 (within +-2 over a wide range of $\Delta \omega$ and A)

Filter Design

Kaiser window example – lowpass

Specifications: $\delta_1 = \delta_2 = 0.001$

Ideal lowpass cutoff: $\omega_{\rm c} = \frac{\omega_{\rm s} + \omega_{\rm p}}{2} = 0.5\pi$

Select parameters:
$$\begin{cases} \Delta \omega = \omega_{\rm s} - \omega_{\rm p} = 0.2\pi \\ A = -20 \log_{10} \delta = 60 \end{cases} \longrightarrow \begin{cases} \beta = 5.653 \\ M = 37 \end{cases}$$
$$\alpha = \frac{M}{2} = 18.5 \end{cases}$$

This is a type II, linear phase (odd M, even symmetry) filter.

Approximation error: $|H_d(e^{j\omega})| - |H(e^{j\omega})|$

$$E_{A}(e^{j\omega}) = \begin{cases} 1 - A_{e}(e^{j\omega}), & 0 \le \omega < \omega_{p} \\ 0 - A_{e}(e^{j\omega}), & \omega_{s} < \omega \le \pi \end{cases}$$

Kaiser window example – highpass

Ideal highpass: $H_{\rm hp}(e^{j\omega}) = \begin{cases} 0, & 0 \le |\omega| < \omega_{\rm c} \\ e^{-j\omega\frac{M}{2}}, & \omega_{\rm c} < |\omega| \le \pi \end{cases}$

$$h_{\rm hp}[n] = \frac{\sin \pi \left(n - \frac{M}{2}\right)}{\pi \left(n - \frac{M}{2}\right)} - \frac{\sin \omega_{\rm c} \left(n - \frac{M}{2}\right)}{\pi \left(n - \frac{M}{2}\right)}$$

Specifications: $\delta_1 = \delta_2 = 0.021$

Highpass cutoff: $\omega_{c} = \frac{\omega_{s} + \omega_{p}}{2} = \frac{0.35\pi + 0.5\pi}{2}$ Select parameters: $\begin{cases} \Delta \omega \\ A \end{cases} \rightarrow \begin{cases} \beta = 2.6 \\ M = 24 \end{cases}$

This is a Type I filter.

Check! Approximation error = 0.0213 > 0.021!!

Increase M to 25 \rightarrow Not good! This is a Type II filter: a zero at -1. $\rightarrow H_d(e^{j\pi}) = 0$ But we want it to be 1 because this is a highpass filter.

Increase M to 26. Okay!

Kaiser window example - differentiator

Ideal differentiator:
$$\sim \frac{d}{dt}$$

 $H_{\text{diff}}\left(e^{j\omega}\right) = (j\omega) \cdot e^{-j\omega \frac{M}{2}}, \quad -\pi < \omega < \pi$
 $h_{\text{diff}}\left[n\right] = \frac{\cos \pi \left(n - \frac{M}{2}\right)}{\left(n - \frac{M}{2}\right)} - \frac{\sin \pi \left(n - \frac{M}{2}\right)}{\pi \left(n - \frac{M}{2}\right)^2}$

Note that both terms in $h_{diff}[n]$ are odd symmetric.

Hence,
$$h[n] = -h[M - n]$$
.

This must be a Type III or Type IV system.

<Comparison>

Case 1: M=10, $\beta = 2.4 \rightarrow$ Type III

Zeros at 0 and –1. Approximation is not good at $\omega = \pi$.

Case 2: M=5, $\beta = 2.4 \rightarrow$ Type IV

Zeros at 0. Approximation error is smaller.

♦ Optimum Approximation of FIR Filters

- Why computer-aided design?
 - -- Optimum: minimize an error criterion
 - -- More freedom in selecting constraints.

(In windowing method: must $\delta_1 = \delta_2 = \delta$)

• Several algorithms – *Parks-McClellan algorithm* (1972)

Type I linear phase FIR filter

Its symmetry property: $h_{e}[n] = h_{e}[-n]$ (omit delay)

Check its frequency response:

$$A_{e}(e^{j\omega}) = \sum_{n=-L}^{L} h_{e}[n] \cdot e^{-j\omega n}$$

= $h_{e}[0] + \sum_{n=1}^{L} 2h_{e}[n] \cdot \cos(\omega n)$
= $a_{0} + \sum_{n=1}^{L} a_{k} \cdot (\cos(\omega))^{k}$
= $\sum_{n=0}^{L} a_{k} \cdot (\cos(\omega))^{k}$
= $P(x)|_{x=\cos\omega}$

Note that $P(x) = \sum a_k x^k$ is an *L*th-order polynominal. In the above process, we use a polynominal expression of $\cos(.)$, $\cos(\omega n) = T_n(\cos \omega)$, where $T_n(\cdot)$ is the *n*th-order Chebyshev polynominal. Thus, we shift our goal from finding (*L*+1) values of $\{h_e[n]\}$ to finding (*L*+1) values of $\{a_k\}$.

(want to use the polynominal approximation algorithms.)

<Our Problem now>

Adjustable parameters: $\{a_k\}, (L+1)$ values Specifications: $\omega_p, \omega_p, \frac{\delta_1}{\delta_2} = K$, and *L* (*L* is often preselected)

Error criterion: $E(\omega) = W(\omega) \cdot \left[H_{d}\left(e^{j\omega}\right) - A_{e}\left(e^{j\omega}\right) \right]$

Goal: minimize the maximum error

 $\min_{\{h_{e}[n]\}^{L}} \left(\max_{\omega \in F} |E(\omega)| \right), F: \text{ passband and stopband}$

(Note: Often, no constraint on the transition band)

(Why choose this minimization target? Even error values!

Recall: In the rectangular windowing method, we actually minimize

 $\varepsilon^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_{d}(e^{j\omega}) - H(e^{j\omega})|^{2} d\omega$. Although the total squared error can be small but errors

at some frequencies may be large.)

<Alternation Theorem>

 F_p :closed subset consists of (the union) of
disjoint closed subsets of the real axis*Example*, lowpass:
 $[0, \omega_p], [\omega_s, \pi]$ x $\rightarrow x = \cos \omega \rightarrow$
 $[1, \cos \omega_p], [\cos \omega_s, 1]$

P(x):	rth-order polynominal	
	$P(x) = \sum_{k=0}^{r} a_k x^k$	$P(\cos\omega) = \sum_{k=0}^{L} a_k (\cos\omega)^k$
$D_P(x)$:	desired function of x continuous on F_P	$D_{p}(x) = \begin{cases} 1, & x_{p} \le x \le 1 \\ 0, & -1 \le x \le x_{s} \end{cases}$
	2	$x = \cos \omega$

$$\begin{split} W_{P}(x): & \text{weighting: positive, continuous on} \\ F_{P} & W_{P}(x) = \begin{cases} 1/K, & x_{p} \leq x \leq 1 \\ 1, & -1 \leq x \leq x_{s} \end{cases} \\ E_{P}(x): & \text{weighted error} \\ & E_{P}(x) = W_{P}(x)[D_{P}(x) - P(x)] & E_{P}(x) = W_{P}(x)[D_{P}(x) - P(x)] \\ \|E\|: & \text{maximum error} \\ \|E\| = \max_{x \in F_{P}} E_{P}(x) & \|E\| = \delta_{2} \end{split}$$

P(x) is the *unique* rth-order polynomial that minimizes ||E||

if and only if $E_P(x)$ exhibits at least (r+2) alternations

Alternation: There exist (r+2) values x_i in F_p such that

$$E_P(x_i) = -E_P(x_{i+1}) = \pm ||E||, i = 1, 2, \dots, (r+1), \text{ where } x_1 < x_2 < \dots < x_{r+2}.$$

Remark: Two conditions here for alternation: value and sign.

Type I linear phase FIR filter

- (1) Maximum number of alternations of errors = (L+3)
- (2) Alternations always occur at \mathcal{O}_p and \mathcal{O}_s
- (3) Equiripple except possibly at $\omega = 0$ and $\omega = \pi$

(Reasons)

- (a) Locations of extrema: *L*th-order polynominal has at most *L*-1 extrema. Now, in addition, the local extrema may locate at band edges ω = 0, π, ω_p, ω_s. Hence, at most, there are (*L*+3) extrema or alternations.
 (Note: Because x = cosω, dP(cosω)/dω = 0, at ω = 0 and ω = π.)
- (b) If 𝒫_p is not an alternation, for example, then because of the +- sign sequence, we loose two alternations → (L+1) alternations
 (L+1) alternations

(c) The only possibility that the extrema can be a non-alternation is that it locates at $\omega = 0$ or $\omega = \pi$. In either case, we have (*L*+2) alternations – minimum requirement.

Type II linear phase FIR filter

Its symmetry property: $h_e[n] = h_e[M - n]$, *M* odd Frequency response:

$$H(e^{j\omega}) = e^{-j\omega\frac{M}{2}} \left\{ \sum_{n=1}^{(M+1)/2} \tilde{b}[n] \cdot \cos(\omega(n-1/2)) \right\}$$
$$= e^{-j\omega\frac{M}{2}} \cos\left(\frac{\omega}{2}\right) \left\{ \sum_{n=1}^{(M+1)/2} \tilde{b}[n] \cdot \cos(\omega n) \right\}$$

$$\Rightarrow H(e^{j\omega}) = e^{-j\omega \frac{M}{2}} \cos\left(\frac{\omega}{2}\right) P(\cos\omega),$$

where
$$P(\cos \omega) = \sum_{k=0}^{L} a_k (\cos \omega)^k$$

Problem: How to handle
$$\cos\left(\frac{\omega}{2}\right)$$
?

Transfer specifications!

Let

$$H_{d}(e^{j\omega}) = D_{p}(\cos\omega) = \begin{cases} \frac{1}{\cos\left(\frac{\omega}{2}\right)}, & 0 \le \omega \le \omega_{p} \\ 0, & \omega_{s} \le \omega \le \pi \end{cases}$$

Original	New
Ideal: $D(\cos \omega) \Leftarrow \cos\left(\frac{\omega}{2}\right) P(\cos \omega)$	Ideal: $\frac{D(\cos \omega)}{\cos\left(\frac{\omega}{2}\right)} \Leftarrow P(\cos \omega)$

Thus,

$$W(\omega) = W_{\rm p}(\cos\omega) = \begin{cases} \frac{\cos\left(\frac{\omega}{2}\right)}{K}, & 0 \le \omega \le \omega_{\rm p}\\ \cos\left(\frac{\omega}{2}\right), & \omega_{\rm s} \le \omega \le \pi \end{cases}$$

• Parks-McClellan Algorithm

<Type I Lowpass>

According to the preceding theorems, errors

$$E(\omega) = W(\omega) \cdot \left[H_{\rm d}\left(e^{j\omega}\right) - A_{\rm e}\left(e^{j\omega}\right) \right] \text{ has alternations at } \omega_i, i = 1, \dots, L+2, \text{ if } A_{\rm e}\left(e^{j\omega}\right)$$

is the optimum solution.

That is, let $\delta = ||E||$, the maximum error,

$$W(\omega_i) \cdot \left[H_{\mathrm{d}} \left(e^{j\omega_i} \right) - A_{\mathrm{e}} \left(e^{j\omega_i} \right) \right] = (-1)^{i+1} \delta, \quad i = 1, 2, \dots, L+2.$$

Because $A_e(e^{j\omega}) = \sum_{k=0}^{L} a_k (\cos \omega)^k = a_0 1 + a_1 \cos \omega + a_2 (\cos \omega)^2 + \dots,$

at $\mathcal{O}_1: a_0 1 + a_1 \cos \omega_1 + a_2 (\cos \omega_1)^2 + \cdots \iff a_0 1 + a_1 x_1 + a_2 (x_1)^2 + \cdots$ at $\mathcal{O}_2: a_0 1 + a_1 \cos \omega_2 + a_2 (\cos \omega_2)^2 + \cdots \iff a_0 1 + a_1 x_2 + a_2 (x_2)^2 + \cdots$

Hence,

. . .

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^L & \frac{1}{W(\omega_1)} \\ 1 & x_2 & x_2^2 & \cdots & x_2^L & \frac{-1}{W(\omega_2)} \\ \vdots & \ddots & \ddots & & \\ 1 & x_{L+2} & x_{L+2}^2 & \cdots & x_{L+2}^L & \frac{(-1)^{L+2}}{W(\omega_{L+2})} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ \delta \end{bmatrix} = \begin{bmatrix} H_d(e^{j\omega_1}) \\ H_d(e^{j\omega_2}) \\ \vdots \\ H_d(e^{j\omega_{L+2}}) \end{bmatrix}$$

Remark: For Type I lowpass filter, ω_p and ω_s must be two of the alternation frequencies $\{\omega_i\}$.

Now, we have L+2 simultaneous equations and L+2 unknowns, $\{a_i\}$ and δ . The solutions are

$$\delta = \frac{\sum_{k=1}^{L+2} b_k H_d(e^{j\omega_k})}{\sum_{k=1}^{L+2} \frac{b_k (-1)^{k+1}}{W(\omega_k)}}, \quad b_k = \prod_{\substack{i=1\\i\neq k}}^{L+2} \frac{1}{(x_k - x_i)}.$$

Once we know $\{a_i\}$, we can calculate $A_e(e^{j\omega})$ for all ω .

However, there is short cut. We can calculate $A_{\rm e}(e^{j\omega})$ for all ω directly based on $W(\omega_k), H_d(e^{j\omega_k})$ and ω_k without solving for $\{a_i\}$. $A_{e}(e^{j\omega}) = P(\cos\omega) = \frac{\sum_{k=1}^{L+1} \left[\frac{d_{k}}{(x-x_{k})}\right]^{c_{k}}}{\sum_{k=1}^{L+1} \left[\frac{d_{k}}{(x-x_{k})}\right]},$ where $c_{k} = H_{d}(e^{j\omega_{k}}) - \frac{(-1)^{k+1}\delta}{W(\omega_{k})},$ $d_k = \prod_{i=1, i \neq k}^{L+1} \frac{1}{(x_k - x_i)}$ w Initial guess of (L+2) extremal frequencies Calculate the optimum δ on extremal set Interpolate through (L + 1)points to obtain $A_e(e^{j\omega})$ Calculate error $E(\omega)$ and find local maxima where $|E(\omega)| \ge \delta$ More than Retain (L+2)Yes (L + 2)largest extrema? extrema No Changed Check whether the extremal points changed Unchanged Best approximation

-- How to decide *M* (for lowpass)? (Experimental formula)

$$M = \frac{-10\log_{10}(\delta_{1}\delta_{2}) - 13}{2.324 \cdot \Delta\omega}$$
$$\Delta\omega = \omega_{\rm s} - \omega_{\rm p}$$

Example: Lowpass Filter

$$K = \frac{\delta_1}{\delta_2} = 10$$
$$M = \frac{-10\log_{10}(\delta_1\delta_2) - 13}{2.324 \cdot \Delta\omega} \implies M = 26$$

But the maximum errors in the passband and stopband are 0.0116 and 0.00116, respectively. $\Rightarrow M = 27$

Remark: The Kaiser window method requires a value M = 38 to meet or exceed the same specifications.

Example: Bandpass filter

Note: (1) From the alternation theorem

 \Rightarrow the minimum number of alternations for the optimum approximation is L + 2.

- (2) Multiband filters can have more than L+3 alternations.
- (3) Local extrema can occur in the transition regions.

• IIR vs. FIR Filters

Property	FIR	IIR	
Stability	Always stable	Incorporate stability constraint	
		in design	
Analog design	No meaningful analog equiv-	Simple transformation from an-	
	alent	alog filters	
Phase linearity	Can be exact linear	Nonlinear typically	
Computation	More multiplications and ad-	Fewer	
	ditions		
Storage	More coefficients	Fewer	
Sensitivity to coefficient	Low sensitivity	Higher	
inaccuracy			
Adaptivity	Easy	Difficult	