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Filter Design 
 Introduction 
 Filter – An important class of LTI systems 

 We discuss frequency-selective filters mostly: LP, HP, … 

 We concentrate on the design of causal filters. 

 Three stages in filter design: 

 Specification: application dependent 

 “Design”: approximate the given spec using a causal discrete-time system 

 Realization: architectures and circuits (IC) implementation 

 IIR filter design techniques 

 FIR filter design techniques 

 

Frequency domain specifications    

   Magnitude: )( jeH   ,      Phase: )( jeH  

  Ex., Low-pass filter: Passband , Transition, Stopband  

 Frequencies: Passband cutoff  p 

                      Stopband cutoff s 

                       Transition bandwidth  s -p 

                       Error tolerance 1, 2 
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 Analog Filters  
 Butterworth Lowpass Filters 

 Monotonic magnitude response in the passband and stopband 

 The magnitude response is maximally flat in the passband. 

For an Nth-order lowpass filter 

  The first (2N-1) derivatives of 2|)(| jH c
 are zero at 0 . 
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N: filter order 

    
c : 3-dB cutoff frequency (magnitude = 0.707) 

 Properties 

(a) 1|)(| 0 jH c
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(a) 2N poles in pairs: kk ss ,  symmetric w.r.t. the imaginary axis; never on the imag-

inary axis. If N odd, poles on the real axis. 

(b) Equally spaced on a circle of radius c   

(c) )(sH c
 causal, stable  all poles on the left half plane 

 

 
 
 

 

 

 

 

 Usage (There are only two parameters cN , ) 

Given specifications 
sp  ,,, 2  

cN ,  
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 Chebyshev Filters 

 Type I: Equiripple in the passband; monotonic in the stopband 

Type II: Equiripple in the stopband; monotonic in the passband 

 Same N as the Butterworth filter, it would have a sharper transition band. (A smaller N 

would satisfy the spec.) 

 Type I:   
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where )(xVN
 is the Nth-order Chebyshev polynominal  

))(coscos()( 1 xNxVN
 , 101)(0  xforxVN

 

)()(2)( 11 xVxxVxV NNN    

NxV xN allfor1|)( 1
 

<The first several Chebyshev polynominals> 

 

 N  VN(x) 

 0  1 

 1  x 

 2 2x2-1 

 3  4x3-3x 

 4  8x4-8x2+1 

 

 Properties (Type I) 

          (a) 











 
even N  if   ,
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(b) The magnitude squared frequency response oscillates between 1 and 
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(c) 2|)(| jH c
 is monotonic outside the passband. 
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 Poles (Type I) 

On the ellipse specified by the following:  

Length of minor axis = 
ca2 , 

















NNa

11

2

1
  

     Length of major axis = 
cb2 , 

















NNb

11

2

1
  

                   and 21 1     

           (a) Locate equal-spaced points on the major circle and minor circle with angle  
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           (b) The poles are ),( kk yx : 
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             has both poles and zeros. 

 Usage (There are only two parameters 
cN , ) 

Given specifications sp  ,,, 2  cN ,  
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 Elliptic Filters 

 Equiripple at both the passband and the stopband  

 Optimum: smallest )( ps   at the same N 
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where )(xU N
: Jacobian elliptic function (Very complicated! Skip!) 

 Usage (There are only two parameters 
cN , ) 

Given specifications sp  ,,, 2  cN ,  
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               where )(xK  is the complete elliptic integral of the first kind  
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Remark:  The drawback of the elliptic filters: They have more nonlinear phase response in 

the passband than a comparable Butterworth filter or a Chebyshev filter, particu-

larly, near the passband edge. 
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 Design Digital IIR Filters from Analog Filters  

 Why based on analog filters? 

 Analog filter design methods have been well developed. 

 Analog filters often have simple closed-from design formulas.  

    Direct digital filter design methods often don’t have closed-form formulas. 

 There are two types of transformations 

 Transformation from analog to discrete-time 

 Transformation from one type filter to another type (so called frequency transformation) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Methods in analog to discrete-time transformation 

 Impulse invariance 

 Bilinear transformation 

 Matched-z transformation 

 Desired properties of the transformations 

 Imaginary axis of the s-plane  The unit circle of the z-plane 

 Stable analog system  Stable discrete-time system 

(Poles in the left s-plane  Poles inside the unit circle)  

Analog 

lowpass 

Discrete-time 

lowpass 

Analog 

highpass, 

bandpass, … 

Discrete-time 

highpass, 

bandpass, … 

Analog to discrete- 

time transform 

Analog to discrete- 

time transform 

(Analog) 

frequency 

transform 

(Digital) 

frequency 

transform 
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 Steps in the design 

(1) Digital specifications  Analog specifications 

(2) Design the desired analog filter 

(3) Analog filter  Discrete-time filter 

 

 Impulse Invariance 

-- Sampling the impulse of a continuous-time system 

   

dnTtcd

dcd

thT

nThTnh





|)(        
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dT : Sampling period 

 Important: to avoid aliasing 

 Does not show up in the final discrete formula if we start from the digital speci-

fications, ... 

 Frequency response 

Sampling in time  Sifted duplication in frequency 
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If )( jH c
 is band-limited and 

d
d T

f 1  is higher than the Nyquist sampling fre-

quency (no aliasing) 


  ||)()(

d

c
j

T
jHeH

 

     Remark: This is not possible because the IIR analog filter is typically not bandlimited. 

 
 
 

 

 Here are two approaches: 
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            Approach 1: Sampling ][nh   

            Approach 2: Map )(sH c
 to )(zH  because we need )(zH  to implement a digital filter 

anyway. 
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            Essentially, factorize and map: 

      Analog pole  

                 

              Discrete-time pole 

Remarks:  (1) Stability is preserved:  

                        LHS poles  poles inside the unit circle 

(2) No simple correspondence for zeros 

 

Design Example:  Low-pass filter 

        Using Butterworth continuous-time filter 

Given specifications in the digital domain 

   “-1 dB in passband” and “-15 dB in stopband” 

       













||0.3               ,17783.0|)(|

2.0||0          ,1|)(|89125.0

j

j

eH

eH        



DSP  (Spring, 2020)                                                                                                                                 Filter Design                                

NCTU EE 10 

Step 1:  Convert the above specifications to the analog domain 

(Assume “negligible aliasing”) 
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Step 2:  Design a Butterworth filter that satisfies the above specifications. That is, select 

proper 
cN , . 

    

















17783.0|)
3.0

(|

89125.0|)
2.0

(|

d

c

d

c

T
jH

T
jH




 

          
N

c

c jH
2

2

)(1

1
|)(|





 

Thus, 























































22

22

17783.0

13.0
1

89125.0

12.0
1

N

cd

N

cd

T

T




 

 70474.0,8858.5  cdTN   

 (Taking integer) 7032.0,6  cdTN   

(Meet passband spec. exactly; overdesign at stopband) 

<Case 1: Assume 1dT     
)12(

2



Nk

N
j

ck es



 

<Case 2: Assume 1dT     
)12(

2
7032.0 











Nk
N

j

d

k e
T

s



 

)495.0359.1)(495.0995.0)(495.0365.0(

12093.0
)(

222 


ssssss
sHc

 

 

 

 

 



DSP  (Spring, 2020)                                                                                                                                 Filter Design                                

NCTU EE 11 

    Step 3:  Convert analog filter to discrete-time 

      Analog pole ks  

                 

Discrete-time pole  ks
e  

<Case 1: Assume 1dT    
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They are identical!  (In general, this is true.) 
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          Remarks: (1) In some filter design problems, a primary objective maybe to control some 

aspect of the time response.  design the discrete-time filter by impulse in-

variance or by step invariance. 

(Note: Designs by impulse invariance and by step invariance don’t lead to the 

same discrete-time filter!) 

Group Delay 



DSP  (Spring, 2020)                                                                                                                                 Filter Design                                

NCTU EE 12 

(2) Impulse invariance method has a precise control on the shape of the time signal. 

Except for aliasing, the shape of the frequency response is preserved. 

(3) Impulse invariance technique is appropriate only for bandlimited filters. 

 

 

 Bilinear Transform  

 Avoid aliasing but distort the frequency response – uneven stretch of the frequency axis. 
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Note: j  axis on the s-plane  unit circle on the z-plane 

        LHS of the s-plane  Interior of the unit circle on the z-plane 

 

 

 How the j  axis is mapped to the unit circle? 
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   Problem in design – nonlinear distortion in magnitude and phase 

 

 Steps in the design 

   (1) Digital specifications to analog specifications: prewarp 

(2) Design the desired analog filter 

(3) Analog filter to discrete-time filter: bilinear transform 
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Design Example:  Lowpass filter 

    Using Butterworth continuous-time filter 

Given specifications in the digital domain (same as the previous ex.) 
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Step 1:  Prewarp 
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Let 1dT  since dT  will disappear after “analog to discrete”. 

 

Step 2:  Design a Butterworth filter -- select proper 
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Step 3:  Convert analog filter to discrete-time 
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Remarks: (1) Bilinear transforms warps frequency values but preserves the magnitude. 

Therefore, the discrete-time Butterworth filter still has the maximal flat 

property; Chebyshev and Ellipic filters have equal ripple property. 

(2) Although we may obtain )(sH c
in closed form, it is often difficult to find the 

locations of poles and zeros of )(zH  from )(sH c
directly. 
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Bilinear Transform Design Example using 4 analog filters: 

   

30dB-  gain    stopband maximum

0.3dB- gain     passband minimum

0dB gain     passband maximum

6.0 frequency  edge stopband

5.0 frequency  edge passband















s

p

 

  

Butterworth: 15th order 
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Chebyshev I and II: 7th order 
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Elliptic: 5th order 
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 Frequency Transformation 

-- Transform one-type (often lowpass) filter to another type. 

Typically, we first design a frequency-normalized prototype lowpass filter. Then, use an 

algebraic transformation to derive the desired lowpass, high pass , …, filters from the 

prototype lowpass filter. 

<Prototype filter>                <Desired filter> 

Z                                        z 

              )( 11   zGZ  

                                zHZH
zGZlp   11

 

  Typically, this transform is made of all-pass like factors  
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         Remarks:  The desired properties of G(.) are 

(1) transforms the unit circle in Z to the unit circle in z,  

(2)  transforms the interior of the unit circle in Z to the interior of the unit circle in z,  

(3) G(.) is rational. 

  Example:  Lowpass to lowpass (with different passband and stopband frequency, but magni-

tude is not changed) 
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Check the relationship between   (the Z filter) and   (the z filter).   is a pa-

rameter. Different   offers different “shapes” of the transformed filters in  . 
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If 
p  is to be mapped to

p , then 

  
  2/sin

2/sin

pp

pp









  

 

 Various Digital to Digital Transformations 
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 Design of FIR Filters by Windowing 

 Why FIR filters? 

-- Always stable 

-- Exact linear phase 

-- Less sensitive to inaccurate coefficients 

<Disadvantage> Higher complexity (storage, multiplication) due to higher orders 

 Design Methods 

(1) Windowing 

(2) Frequency sampling 

(3) Computer-aided design 

Remark: No meaningful analog FIR filters 

 Windowing technique advantages 

-- Simple 

-- Pick up a “segment” (window) of the ideal (infinite) ][nhd
 

-- Filter order = window length  = (M+1) 

         General form:   ][][][ d nwnhnh   

          Filter impulse response = Desired response x Window 

         Example: Rectangular window     

           Window shape: 
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 Because the filter specifications are (often) given in the frequency domain )( j
d eH . 

We take the inverse DTFT to obtain ][nhd
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Now, because of the inclusion of w[n],    

      







 deWeHeH jjj )(
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    (A periodic convolution) 

That is, )( jeH  is “smeared” version of )( j
d eH . 

Why )( jeW  cannot be )(  je ? (If so, )()(  j
d

j eHeH  !) 

 

Parameters (to choose): (1) Window size (order of filter) 

                                        (2) Window shape 

 

 Rectangular Window:  
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-- Narrow mainlobe 

-- High sidelobe (Gibbs phenomenon) 

-- Frequency response 
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-- Mainlobe ~ 
1

4

M

 ,  M , )()(   jj eeW   

-- Peak sidelobe ~ -13 dB (lower than the mainlobe) 

    Area under each lobe remains constant with increasing M  

        Increasing M does not lower the (relative) amplitude of the sidelobe.  

(Gibbs phenomemnon) 

         Remarks:  For frequency selective filters (ideal lowpass, highpass, …), 

narrow mainlobe  sharp transition 

                                lower sidelobe  oscillation reduction 

              

 Commonly Used Windows  

--  Sidelobe amplitude (area) vs. mainlobe width 

-- Closed form, easy to compute 

    Bartlett (triangular) Window: 
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         Hanning Window: 
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         Hamming Window: 
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         Blackman Window: 
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 Generalized Linear Phase Filters 

-- We wish )( jeH  be (general) linear phase. 

       <Window>  Choose windows such that 

                             MnnMwnw  0   ],[][  

                           That is, symmetric about M/2 (samples) 

    2
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 , where  jeWe
 is real. 

       <Desired filter> Suppose the desired filter is also generalized linear phase 
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       <Filter> )( jeH  is a periodic convolution of )( j
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   jeAe
 is real.   

   Thus, )( jeH  is also generalized linear phase. 
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  Example: Linear phase lowpass filter 

Ideal lowpass:  
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                    Impulse response: 
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Designed filter: 
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                c : 1/2 amplitude of  jeH  = cutoff frequency of the dieal lowpass filter 

                 Peak to the left of c  occurs at ~ 1/2 mainlobe width 

                 -Peak to the right of c  occurs at ~ 1/2 mainlobe width 

                 Transition bandwidth   ~ mainlobe width- (smaller) 

                 Peak approximation error: proportional to sidelobe area       
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 Kaiser Window 

-- Nearly optimal trade-off between mainlobe width and sidelobe area 
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   where )(0 I : zeroth-order modified Bessel function of the first kind 

          : M/2 

   : shape parameter; 0 , rectangular window 

 ,  mainlobe width  , sidelobe area      

               -- 10log20 A  
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5021),21(07886.0)21(5842.0
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               -- 
ps    (stopband – passband) 






285.2

8A
M   (within +-2 over a wide range of   and A) 
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Kaiser window example – lowpass 

Specifications: 001.021    

         Ideal lowpass cutoff: 


 5.0
2

ps

c 


  

         Select parameters: 
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                                        5.18
2
 M  

          This is a type II, linear phase (odd M, even symmetry) filter. 

         Approximation error:     ||||  jj
d eHeH   
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Kaiser window example – highpass 

Ideal highpass:  
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Specifications: 021.021    

Highpass cutoff: 
2

5.035.0

2

ps

c








  

Select parameters: 














24

6.2

MA

  

This is a Type I filter. 

 Check!  Approximation error = 0.0213 > 0.021!! 

Increase M to 25  Not good! This is a Type II filter: a zero at –1.   0j
d eH  

But we want it to be 1 because this is a highpass filter. 

Increase M to 26.  Okay!   

  

                         M = 24                                   M = 25 
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Kaiser window example – differentiator 

     Ideal differentiator: ~
td

d
 

                 
   

2diff

2
diff

2

2
sin
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cos

][
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Note that both terms in ][nhdiff  are odd symmetric.  

Hence,                  ][][ nMhnh  . 

This must be a Type III or Type IV system. 

            <Comparison> 

    Case 1: M=10, 4.2    Type III   

 Zeros at 0 and –1.  Approximation is not good at   . 

Case 2: M=5, 4.2    Type IV   

 Zeros at 0.  Approximation error is smaller. 

  

M = 10                                M = 5 
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 Optimum Approximation of FIR Filters  

 Why computer-aided design? 

-- Optimum: minimize an error criterion 

-- More freedom in selecting constraints.  

    (In windowing method: must   21 ) 

 Several algorithms – Parks-McClellan algorithm (1972) 

Type I linear phase FIR filter 

    Its symmetry property: ][][ ee nhnh   (omit delay) 

    Check its frequency response: 
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             Note that 
k

k xaxP )(  is an Lth-order polynominal. In the above process, we use a 

polynominal expression of cos(.), )(cos)cos(  nTn  , where )(nT  is the nth-order 

Chebyshev polynominal. Thus, we shift our goal from finding (L+1) values of ]}[{ nhe  

to finding (L+1) values of }{ ka . 

( want to use the polynominal approximation algorithms.) 

 

        <Our Problem now> 

Adjustable parameters: }{ ka , (L+1) values 

Specifications: Kpp 
2

1,,



 , and L (L is often preselected) 

Error criterion:      jj eAeHWE ed)()(   

Goal: minimize the maximum error  
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 )(maxmin
][e




E
Fnh

L 

,  F: passband and stopband 

                  (Note: Often, no constraint on the transition band) 

(Why choose this minimization target? Even error values!  

 

           Recall: In the rectangular windowing method, we actually minimize 

   







 


 deHeH jj
2

d
2

2

1 . Although the total squared error can be small but errors 

at some frequencies may be large.) 

 

         <Alternation Theorem> 

PF : closed subset consists of (the union) of 

disjoint closed subsets of the real axis 

x 

Example, lowpass: 

],[],,0[  sp
  

 cosx  

]1,[cos],cos,1[ sp   

)(xP : rth-order polynominal  





r

k

k
k xaxP

0

)(  

 





L

k

k
kaP

0

)(cos)(cos   

)(xDP
: desired function of x continuous on 

PF  

cos

1,0

1,1
)(












x

xx

xx
xD

s

p
P

 

 

)(xWP
: weighting: positive, continuous on 

PF  








s

p
P xx

xxK
xW

1,1

1,/1
)(  

)(xEP
: weighted error 

)]()()[()( xPxDxWxE PPP   

 

)]()()[()( xPxDxWxE PPP   

E : maximum error  

)(max xEE P
Fx P

  
 

2E  

     )(xP  is the unique rth-order polynominal that minimizes E  

 if and only if )(xEP  exhibits at least (r+2) alternations  

         Alternation: There exist (r+2) values ix  in PF  such that  

        )1(,,2,1,)()( 1   riExExE iPiP  , where 
221  rxxx  . 

 Remark: Two conditions here for alternation: value and sign. 
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Type I linear phase FIR filter 

(1) Maximum number of alternations of errors = (L+3) 

(2) Alternations always occur at p  and s  

(3) Equiripple except possibly at 0  and    

 

L=7 

L+3 

L+2 

L+2 

L+2 
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(Reasons) 

   (a) Locations of extrema: Lth-order polynominal has at most L-1 extrema. Now, in 

addition, the local extrema may locate at band edges 
sp  ,,,0 . Hence, at 

most, there are (L+3) extrema or alternations.  

      (Note: Because cosx , 0
)(cos






d

dP , at 0  and   .) 

 

    (b) If p  is not an alternation, for example, then because of the +- sign sequence, we 

loose two alternations  (L+1) alternations  violates the (L+2) alternation the-

orem. 

 

    (c) The only possibility that the extrema can be a non-alternation is that it locates at 

0  or   . In either case, we have (L+2) alternations – minimum re-

quirement.  
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      Type II linear phase FIR filter 

Its symmetry property: ][][ ee nMhnh  , M odd  

Frequency response:  
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Problem:  How to handle 
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 ? 

Transfer specifications! 

Let 
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 Parks-McClellan Algorithm 

<Type I Lowpass> 

According to the preceding theorems, errors 

     jj eAeHWE ed)()(    has alternations at 2,...,1,  Lii , if  jeAe
 

is the optimum solution. 

 That is, let E , the maximum error,  

     2,..,2,1,)1()( 1
ed   LieAeHW ijj

i
ii   . 

Because 


L

k

k
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j
e aaaaeA

0

2
210 )(coscos1)(cos)(  , 

at 1 :   2
12110

2
12110 )(1)(coscos1 xaxaaaaa   

at 2 :   2
22210

2
22210 )(1)(coscos1 xaxaaaaa   

  … 

     Hence, 
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              Remark:  For Type I lowpass filter, p  and s  must be two of the alternation fre-

quencies }{ i . 

            Now, we have L+2 simultaneous equations and L+2 unknowns, }{ ia  and  .   

The solutions are 
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Once we know }{ ia , we can calculate  jeAe
 for all  . 
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            However, there is short cut.  We can calculate  jeAe
 for all   directly based on 

 kj

dk eHW
 ),(  and k  without solving for }{ ia . 

    
 

 



























1

1

1

1
e cos

L

k k

k

L

k
k

k

k

j

xx
d

c
xx

d

PeA  , 

where  
)(

)1( 1

k

k
j

dk
W

eHc k






 , 

                        


 


1

,1 )(

1L

kii ik

k
xx

d  

 

 

 

 



DSP  (Spring, 2020)                                                                                                                                 Filter Design                                

NCTU EE 39 

 

 

   -- How to decide M (for lowpass)?  (Experimental formula) 

                 
 

ps

2110

324.2

13log10












M  

       

Example: Lowpass Filter 

 

w 0.4 

2 = 0.001 

1 - 1 = 1 – 0.01 

1 

0.6 
 

 

10
2

1 



K  

 









324.2

13log10 2110M     M = 26 
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But the maximum errors in the passband and stopband are 0.0116 and 0.00116, respectively. 

 M = 27 
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Remark: The Kaiser window method requires a value M = 38 to meet or exceed the same 

specifications. 

Example:  Bandpass filter 

Note: (1) From the alternation theorem 

 the minimum number of alternations for the optimum approximation is L + 2. 

(2) Multiband filters can have more than L+3 alternations. 

(3) Local extrema can occur in the transition regions. 

 

 IIR vs. FIR Filters 

  Property FIR IIR 

Stability Always stable Incorporate stability constraint 

in design 

Analog design No meaningful analog equiv-

alent 

Simple transformation from an-

alog filters 

Phase linearity Can be exact linear Nonlinear typically 

Computation More multiplications and ad-

ditions  

Fewer 

Storage More coefficients Fewer 

Sensitivity to coefficient 

inaccuracy 

Low sensitivity Higher 

Adaptivity Easy Difficult 

 


