The \mathbf{z}-Transform

Introduction

- Why do we study them?
- A generalization of DTFT.

Some sequences that do not converge for DTFT have valid z-transforms.
■ Better notation (compared to FT) in analytical problems (complex variable theory)
■ Solving difference equation. \rightarrow algebraic equation.

- Fourier Transform, Laplace Transform, DTFT, \& z-Transform

Fourier Transform

$$
\mathfrak{J}\{x(t)\}=\int_{-\infty}^{\infty} x(t) e^{-j \Omega t} d t
$$

To encompass a broader class of signals:

$$
\int_{-\infty}^{\infty}\left(x(t) e^{-\sigma t}\right) e^{-j \Omega t} d t \equiv \int_{-\infty}^{\infty} x(t) e^{-s t} d t \equiv L\{x(t)\} \quad \text { Laplace Transform }
$$

Region of Convergence

$$
x(t)=\sum_{k=-\infty}^{\infty} x[k] \delta(t-k T)
$$

Similarly,

$$
\begin{aligned}
L\{x(t)\} & \left.=L\left\{\sum_{k=-\infty}^{\infty} x[k] \delta(t-k T)\right\}=\int_{-\infty}^{\infty}\left\{\sum_{k=-\infty}^{\infty} x[k] \delta(t-k T)\right\} e^{-s t} d t=\sum_{k=-\infty}^{\infty} x[k]\right]_{-\infty}^{\infty} \delta(t-k T) e^{-s t} d t \\
= & \sum_{k=-\infty}^{\infty} x[k] e^{-s k T} \equiv \sum_{k=-\infty}^{\infty} x[k] z^{-k} \equiv \mathrm{Z}\{\mathrm{x}[n]\} \equiv X(z) \\
& z-\text { Transform }
\end{aligned}
$$

- Eigenfunctions of discrete-time LTI systems

$$
\begin{aligned}
& \text { If } x[n]=z_{0}^{n} \quad z_{0}^{n}: \text { some complex constant } \\
& y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[n-k] h[k]=\sum_{k=-\infty}^{\infty} z_{0}^{n-k} h[k]=\left\{\sum_{k=-\infty}^{\infty} h[k] z_{0}^{-k}\right\} z_{0}^{n}=H\left(z_{0}\right) z_{0}^{n}
\end{aligned}
$$

Remark:

$$
\left.X(z)\right|_{z=e^{j w}}=\sum_{n=-\infty}^{\infty} x[n] e^{-j n w}
$$

DTFT can be viewed as a special case: $z=e^{j \omega}$

z-Transform

- (Two-sided) z-Transform (bilateral z-Transform)

Forward: $Z\{x[n]\}=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \equiv X(z)$
From DTFT viewpoint: $Z\{x[n]\}=\left.F\left\{r^{-n} x[n]\right\}\right|_{r^{\prime} e^{\prime \prime}=z}$
(Or, DTFT is a special case of z-T when $z=e^{j \omega}$, unit circle.)
Inverse: $x[n]=\frac{1}{2 \pi j} \oint_{\Gamma} X(z) z^{n-1} d z \equiv Z^{-1}[X(z)]$
Note: The integration is evaluated along a counterclockwise circle on the complex z plane with a radius r. (A proof of this formula requires the complex variable theory.)

- Single-sided z-Transform (unilateral) - for causal sequences

$$
X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}
$$

- Region of Convergence (ROC)

The set of values of z for which the z-transform converges.

■ Uniform convergence
If $z=r e^{j \omega}$ (polar form), the z-transform converges uniformly if $x[n] r^{-n}$ is absolutely summable; that is,

$$
\sum_{n=-\infty}^{\infty}\left|x[n] r^{-n}\right|<\infty
$$

■ In general, if some value of z, say $z=z_{1}$, is in the ROC, then all values of z on the circle defined by $|z|=\left|z_{1}\right|$ are also in the ROC. $\quad \rightarrow$ ROC is a "ring".

- If ROC contains the unit circle, $|z|=1$, then the FT of this sequence converges.
- By its definition, $X(z)$ is a Laurent series (complex variable)
$\rightarrow X(z)$ is an analytic function in its ROC
\rightarrow All its derivatives are continuous (in z) within its ROC.
- DTFT v.s. z-Transform
-- $x_{1}[n]=\frac{\sin \omega_{c} n}{\pi n}, \quad-\infty<n<\infty$
Not absolutely summable; but square summable
$\rightarrow z$-transform does not exist; DTFT (in m.s. sense) exists.
-- $x_{2}[n]=\cos \omega_{0} n, \quad-\infty<n<\infty$
Not absolutely summable; not square summable
$\rightarrow z$-transform does not exist; "useful" DTFT (impulses) exists.
-- $x_{3}[n]=a^{n} u[n], \quad|a|>1, \quad-\infty<n<\infty$
$\rightarrow z$-transform exists (a certain ROC); DTFT does not exist.

- Some Common Z-T Pairs

TABLE 3.1 SOME COMMON z-TRANSFORM PAIRS

Sequence	Transform	ROC
1. $\delta[n]$	1	All z
2. $u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
4. $\delta[n-m]$	$\frac{z^{-m}}{1-a z^{-1}}$	All z except 0 (if $m>0)$ or $\infty($ if $m<0)$
5. $a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
6. $-a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
7. $n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
8. $-n a^{n} u[-n-1]$	$\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|>1$
9. $\cos \left(\omega_{0} n\right) u[n]$	$\frac{\sin \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|>1$
10. $\sin \left(\omega_{0} n\right) u[n]$	$\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$
11. $r^{n} \cos \left(\omega_{0} n\right) u[n]$		
12. $r^{n} \sin \left(\omega_{0} n\right) u[n]$	$\frac{r \sin \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$
13. $\begin{cases}a^{n}, 0 \leq n \leq N-1, & \frac{1-a^{N} z^{-N}}{1-a z^{-1}} \\ 0, ~ o t h e r w i s e & \end{cases}$	$\|z\|>0$	

Properties of ROC for z-Transform

- Rational functions

$X(z)=\frac{P(z)}{Q(z)}$
Poles - Roots of the denominator; the z such that $X(z) \rightarrow \infty$
Zeros - Roots of the numerator; the z such that $X(z)=0$

- Properties of ROC
(1) The ROC is a ring or disk in the z-plane centered at the origin.
(2) The F.T. of $x[n]$ converges absolutely \Leftrightarrow its ROC includes the unit circle.
(3) The ROC cannot contain any poles.
(4) If $x[n]$ is finite-duration, then the ROC is the entire z-plane except possibly $z=0$ or $z=\infty$.
(5) If $x[n]$ is right-sided, the ROC, if exists, must be of the form $|z|>r_{\max }$ except possibly $z=\infty$, where $r_{\text {max }}$ is the magnitude of the largest pole.
(6) If $x[n]$ is left-sided, the ROC, if exists, must be of the form $|z|<r_{\text {min }}$ except possibly $z=0$, where $r_{\text {min }}$ is the magnitude of the smallest pole.
(7) If $x[n]$ is two-sided, the ROC must be of the form $r_{1}<|z|<r_{2}$ if exists, where r_{1} and r_{2} are the magnitudes of the interior and exterior poles.
(8) The ROC must be a connected region.

In general, if $X(z)$ is rational, its inverse has the following form (assuming N poles: $\left\{d_{k}\right\}$)
$x[n]=\sum_{k=1}^{N} A_{k}\left(d_{k}\right)^{n}$. For a right-sided sequence, it means $n \geq N_{1}$, where N_{1} is the first nonzero sample.

The nth term in the z-transform is $x[n] r^{-n}=\sum_{k=1}^{N} A_{k}\left(d_{k} r^{-1}\right)^{n}$.

This sequence converges if $\sum_{n=N_{1}}^{\infty}\left|d_{k} r^{-1}\right|^{n}<\infty$ for every pole $k=1, \ldots, N$. In order to be so, $|r|>\left|d_{k}\right|, k=1, \ldots, N$.

(a)

\triangleleft Pole Location and Time-Domain Behavior for Causal

Signals

Reference: Digital Signal Processing by Proakis \& Manolakis

Figure 3.11 Time-domain behavior of a single-real pole causal signal as a function of the location of the pole with respect to the unit circle.

Figure 3.12 Time-domain behavior of causal signals corresponding to a double $(m=2)$ real pole, as a function of the pole location.

Figure 3.13 A pair of complex-conjugate poles corresponds to causal signals with oscillatory behavior.

Figure 3.14 Causal signal corresponding to a double pair of complex-conjugate poles on the unit circle.

The Inverse z-Transform

Inverse formula: $x[n]=\frac{1}{2 \pi j} \oint_{\Gamma} X(z) z^{n-1} d z$
This formula can be proved using Cauchy integral theorem (complex variable theory).

- Methods of evaluating the inverse z-transform
(1) Table lookup or inspection
(2) Partial fraction expansion
(3) Power series expansion
- Inspection (transform pairs in the table) - memorized them
- Partial Fraction Expansion

$$
X(z)=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+\cdots+a_{N} z^{-N}} \rightarrow X(z)=\frac{z^{N}\left(b_{0} z^{M}+\cdots+b_{M}\right)}{z^{M}\left(a_{0} z^{N}+\cdots+a_{N}\right)}
$$

Hence, it has M zeros (roots of $\sum b_{k} z^{M-k}$), N poles (roots of $\sum a_{k} z^{N-k}$), and ($M-N$) poles at zero if $M>N$ (or ($N-M$) zeros at zero if $N>M$).
$\rightarrow_{X(z)}=\frac{b_{0}\left(1-c_{1} z^{-1}\right) \cdots\left(1-c_{M} z^{-1}\right)}{a_{0}\left(1-d_{1} z^{-1}\right) \cdots\left(1-d_{N} z^{-1}\right)} ; c_{k}$, nonzero zeros; d_{k}, nonzero poles.
■ Case 1: $M<N$, strictly proper
Simple (single) poles:

$$
X(z)=\frac{A_{1}}{\left(1-d_{1} z^{-1}\right)}+\frac{A_{2}}{\left(1-d_{2} z^{-1}\right)}+\cdots+\frac{A_{N}}{\left(1-d_{N} z^{-1}\right)}
$$

where $A_{k}=\left.\left(1-d_{k} z^{-1}\right) X(z)\right|_{z=d_{k}}$
Multiple poles: Assume d_{i} is the s th order pole. (Repeated s times)

$$
X(z)=\sum_{k=1, k \neq i}^{N} \frac{A_{k}}{\left(1-d_{k} z^{-1}\right)}+\frac{C_{1}}{\left(1-d_{i} z^{-1}\right)}+\frac{C_{2}}{\left(1-d_{i} z^{-1}\right)^{2}}+\cdots+\frac{C_{s}}{\left(1-d_{i} z^{-1}\right)^{s}}
$$

single-pole terms multiple-pole terms

$$
\text { where } \quad C_{m}=\frac{1}{(s-m)!\left(-d_{i}\right)^{s-m}}\left\{\frac{d^{s-m}}{d w^{s-m}}\left[\left(1-d_{i} w\right)^{s} X\left(w^{-1}\right)\right]\right\}_{w=d_{i}^{-1}}
$$

Case 2: $M \geq N$

$$
X(z)=\sum_{r=0}^{M-N} B_{r} z^{-r}+\sum_{k=1, k \neq i}^{N} \frac{A_{k}}{\left(1-d_{k} z^{-1}\right)}+\sum_{m=1}^{s} \frac{C_{m}}{\left(1-d_{i} z^{-1}\right)^{m}}
$$

impulses single-poles multiple-pole

- Power Series Expansion

$X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}$

- Case 1: Right-sided sequence, ROC: $|z|>r_{\text {max }}$

It is expanded in powers of z^{-1}.
Ex. $X(z)=\frac{1}{1-a z^{-1}}, \quad|z|>|a|$

■ Case 2: Left-sided sequence, ROC: $|z|<r_{\text {min }}$ It is expanded in powers of Z.
Ex. $X(z)=\frac{1}{1-a z^{-1}}, \quad|z|<|a|$

- Case 3: Two-sided sequence, ROC: $r_{1}<|z|<r_{2}$

$$
\begin{array}{ccc}
& X(z)=X_{+}(z) & +
\end{array} c X_{-}(z)
$$

z-Transform Properties

If $x[n] \leftrightarrow X[z]$ and $y[n] \leftrightarrow Y[z]$, ROC: R_{X}, R_{Y}

■ Linearity: $a x[n]+b y[n] \leftrightarrow a X(z)+b Y(z)$
ROC: $R^{\prime} \supset R_{X} \cap R_{Y}$-- At least as large as their intersection; larger if pole/zero cancellation occurs

■ Time Shifting: $x\left[n-n_{0}\right] \leftrightarrow z^{-n_{0}} X(z) \quad$ ROC: $R^{\prime}=R_{X} \pm\{0$ or $\infty\}$

- Multiplication by an exponential seqence:

$$
a^{n} x[n] \leftrightarrow X(z / a) \quad \text { ROC: } R^{\prime}=|a| R_{X}-- \text { expands or contracts }
$$

■ Differentiation of $\mathbf{X}(\mathbf{z}): n x[n] \leftrightarrow-z \frac{d X(z)}{d z}, \quad$ ROC: $R^{\prime}=R_{X}$

■ Conjugation of a complex sequence: $x^{*}[n] \leftrightarrow X^{*}\left(z^{*}\right), \quad$ ROC: $R^{\prime}=R_{X}$

- Time reversal: $x *[-n] \leftrightarrow X^{*}\left(1 / z^{*}\right)$,

ROC: $R^{\prime}=1 / R_{X}$ (Meaning: If $R_{X}: r_{R}<|z|<r_{L}$, then $R^{\prime}: 1 / r_{L}<|z|<1 / r_{R}$. Corollary: $x[-n] \leftrightarrow X(1 / z)$

■ Convolution: $x[n] * y[n] \leftrightarrow X(z) Y(z)$
ROC: $R^{\prime} \supset R_{X} \cap R_{Y}$ (=, if no pole/zero cancellation)

■ Initial Value Theorem:

$$
\text { If } x[n]=0, n<0, \text { then } x[0]=\lim _{z \rightarrow \infty} X(z)
$$

- Final Value Theorem:

If (1) $x[n]=0, n<0$, and
(2) all singularities of $\left(1-z^{-1}\right) X(z)$ are inside the unit circle,
then $x[\infty]=\lim _{z \rightarrow 1}\left(1-z^{-1}\right) X(z)$
Remarks: (1) If all poles of $X(z)$ are inside unit circle, $x[n] \rightarrow 0$ as $n \rightarrow \infty$
(2) If there are multiple poles at " 1 ", $x[n] \rightarrow \infty$ as $n \rightarrow \infty$
(3) If poles are on the unit circle but not at " 1 ", $x[n] \approx \cos \omega_{0} n$

<Supplementary>

z-Transform Solutions of Linear Difference Equations

Use single-sided z-transform:

$$
\begin{aligned}
Z\{y[n-1]\} & =z^{-1} Y(z)+y[-1] \\
Z\{y[n-2]\} & =z^{-2} Y(z)+z^{-1} y[-1]+y[-2] \\
Z\{y[n-3]\} & =z^{-3} Y(z)+z^{-2} y[-1]+z^{-1} y[-2]+y[-3]
\end{aligned}
$$

For causal signals, their single-sided z-transforms are identical to their two-sided z-transforms.
$E x$., Find $y[n]$ of the difference eqn.

$$
y[n]-0.5 y[n-1]=x[n] \text { with } x[n]=1, n \geq 0, \text { and } y[-1]=1
$$

(Sol) Take the single-sided z-transform of the above eqn.

$$
\begin{aligned}
& \rightarrow_{Y(z)}-0.5\left\{z^{-1} Y(z)+y[-1]\right\}=X(z)=\frac{1}{1-z^{-1}} \\
& \rightarrow Y(z)=\left\{\frac{1}{1-0.5 z^{-1}}\right\}\left\{0.5+\frac{1}{1-z^{-1}}\right\} \\
& \\
& =\frac{0.5}{1-0.5 z^{-1}}+\frac{1}{\left(1-0.5 z^{-1}\right)\left(1-z^{-1}\right)} \\
& \rightarrow Y(z)=\frac{2}{1-z^{-1}}-\frac{0.5}{1-0.5 z^{-1}}
\end{aligned}
$$

Take the inverse z-transform

$$
\rightarrow y[n]=2-0.5(0.5)^{n}, n \geq 0
$$

