DSP (Spring, 2020) The z-Transform

The z-Transform

< Introduction
® Why do we study them?
B Ageneralization of DTFT.
Some sequences that do not converge for DTFT have valid z-transforms.
B Better notation (compared to FT) in analytical problems (complex variable theory)

B Solving difference equation. - algebraic equation.

® Fourier Transform, Laplace Transform, DTFT, & z-Transform
Fourier Transform

I{x(t)} = j_“; x(t)e dt

To encompass a broader class of signals:

j:(x(t)e*"‘)e*jmdt = fwx(t)e*‘dt = L{x(t)} Laplace Transform
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X(t) = > x[k]5(t—KT)

k=—c0

Similarly,
L{x(1)} = L{ i X[KIo(t-KT)}= [ { i x[K]&(t —KT)}e dt = i XK~ 5(t-KT)e *dt

=—0

o0

= SxKIe® = S xKlz* = Z{x[nl} = X (2)

= k=—o0

z-Transform

® FEigenfunctions of discrete-time LTI systems

7" Discrete- H(z)z"
> Time LTI '

If x[n] =z, Z, : some complex constant
y[n]= x[n]*h[n]= > x[n-klh[k]= > zg"h[k]={> h[klz;"}z; = H(z,)z;
k=—o0 k=—o0 k=—o0
Remark:
_ —Jjnw
X ()], n = 2 xIN]e
N=-—o0

DTFT can be viewed as a special case: Z =€ Jo
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< z-Transform

® (Two-sided) z-Transform (bilateral z-Transform)

Forward: Z{X[n]} = ix[n]z*” = X (2)

nN=—o0

From DTFT viewpoint: zgxn]3 = F{r"x[n]}

rel?=z

(Or, DTFT is a special case of z-T when z = el®  unit circle.)

Inverse: y[n] = thj? X (2)2" 'z = Z X (2)]

Note: The integration is evaluated along a counterclockwise circle on the complex z plane

with a radius r. (A proof of this formula requires the complex variable theory.)

® Single-sided z-Transform (unilateral) — for causal sequences

X(@) =3 x[nlz"

® Region of Convergence (ROC)

The set of values of z for which the z-transform converges.

B Uniform convergence
If z=rel® (polar form), the z-transform converges uniformly if X[n]r™" is absolutely

summable; that is,

S IXnIF " | <0

n=—
B In general, if some value of z, say z = z,, is in the ROC, then all values of z on the circle
defined by | z |<| z, | are also in the ROC. <» ROC is a “ring”.
B |f ROC contains the unit circle, |z| =1, then the FT of this sequence converges.
B By its definition, X(z) is a Laurent series (complex variable)
=>» X(2) is an analytic function in its ROC

=> All its derivatives are continuous (in z) within its ROC.
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DTFT v.s. z-Transform

- X1[n] =

sin w,n

—0o<N<o

Not absolutely summable; but square summable

- z-transform does not exist; DTFT (in m.s. sense) exists.

- X,[n] = cos ayn,

—oo <N

<00

Not absolutely summable; not square summable

—> z-transform does not exist; “useful” DTFT (impulses) eXists.

- X,[n]=a"u[n], |al>1

—0<N<K<

—> z-transform exists (a certain ROC); DTFT does not exist.

® Some Common Z-T Pairs

The z-Transform

TABLE3.1  SOME COMMON z-TRANSFORM PAIRS
Sequence Transform ROC
1. 8[n] 1 All z
1
2. uln] T lzf > 1
1
3. —ul—-n—1] = lz] =1
4. 8[n —m] - All z except 0 (if m > 0) or oo (if m < 0)
n J'
5. a"uln) = lz| = lal
1
6. —a"u[—n —1] 1z < |a|
1 —az™!
-1
7. na"uln) (1—(!;#1)2 |z| = |a|
az™!
8. *H(t”“[*” — 1] m |Z‘ < |(t‘
1 — cos(wg)z™!
9. cos z 1
S(awgn)un) = ZCos(wU)z—' g lz| >
. sin(wg)z !
10. sin z 1
(@on)uln] 1 —2cos(wo)z ! +z72 2] >
11. r" cos(won)uln] L —rcos(wp)z” 12|
. ' cos(won)uln z| =
! @0 1 —2rcos(wp)z— ' +r2z2 '
. rsin(wg)z !
12. " sin( z
’ won)uln) 1 —2rcos(wp)z™ ! + r2z2 izl > r
a®, 0<=n<N-1, 1—alz =V
b |0. otherwise 1 —az- lz[ >0
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<> Properties of ROC for z-Transform

® Rational functions

X(z):M

Q(2)
Poles — Roots of the denominator; the z such that X (z) — o
Zeros — Roots of the numerator; the z such that X (z) =0
B Properties of ROC

(1) The ROC is aring or disk in the z-plane centered at the origin.

(2) TheF.T. of x[n] converges absolutely < its ROC includes the unit circle.

(3) The ROC cannot contain any poles.

(4) If x[n] is finite-duration, then the ROC is the entire z-plane except possibly Z =0 or
L =00,

(5) Ifx[n] is right-sided, the ROC, if exists, must be of the form ‘Z‘ > Iax EXCEpt possi-
bly Z =00, where I

max 1S the magnitude of the largest pole.

(6) Ifx[n] is left-sided, the ROC, if exists, must be of the form |z| < r,,, except possi-
blyz =0, where I 1S the magnitude of the smallest pole.

(7) If x[n] is two-sided, the ROC must be of the form r, < \z\ <r, if exists, where I} and
I, are the magnitudes of the interior and exterior poles.

(8) The ROC must be a connected region.

In general, if X () is rational, its inverse has the following form (assuming N poles: {d.}
x[n] = iAﬂ(dk)n . For a right-sided sequence, it means N > N, where N, is the first
k=1

nonzero sample.

N
The nth term in the z-transform is x[n]r " = zAk(dkr_l)n .
k=1

This sequence converges if i| dkr‘l " < oo for every pole k=1...,N. Inorderto

n:Nl

beso, |r[>d, |,k=1...,N.



DSP  (Spring, 2010)

Unit circle

The z-Transform

Im z-plane
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< Pole Location and Time-Domain Behavior for Causal

Signals

Reference: Digital Signal Processing by Proakis & Manolakis

i

Figure 3.11

T ] l l n

Time-domain behavior of a single-real pole causal signal as a function
of the location of the pole with respect to the unit circle.
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Figure 3.12  Time-domain behavior of causal signals corresponding to a double (m = 2) real

pole. as a function of the pole location.
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Figure 3.13 A pair of complex-conjugate poles corresponds to causal signals with

oscillatory behavior.
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z-plane x(n)

[ ]

m=2

Figure 3.14 Causal signal corresponding to a double pair of complex-conjugate
poles on the unit circle.

< The Inverse z-Transform

Inverse formula: X[n]:i-§x(z)zn—ldz
r

This formula can be proved using Cauchy integral theorem (complex variable theory).
® Methods of evaluating the inverse z-transform

(1) Table lookup or inspection

(2) Partial fraction expansion

(3) Power series expansion
® Inspection (transform pairs in the table) — memorized them
® Partial Fraction Expansion

Ny oM
bp+bzt+-+b,z™ > X(Z):Z (bpz™ +---+by)
Ay +az  +-rayz M (a,z" +---+ay)

X(z) =

Hence, it has M zeros (roots of Zbkz'\"*" ), N poles (roots of ZakzN"‘ ), and (M-N)

poles at zero if M>N (or (N-M) zeros at zero if N>M).

> X(2)= by(l-c,z)--(A-cy2z™) ; ¢, nonzero zeros; d, , nonzero poles.

ao(l_dlz_l)"'(l_sz_l)
B Casel: M < N, strictly proper
Simple (single) poles:

A A A
0= e Ty T
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where A =(1-d,z")X(2)|

Zidk

Multiple poles: Assume di iIs the sth order pole. (Repeated s times)

> C, G, G,
X(@)= klz:ﬂ(l d Z’l) a- dZ’1)+(1 OIZ’1) +(1—di271)s

single-pole terms multiple-pole terms
where 1 dsm
" (s—m)l(=d,)*™ |dws ™

[(L-d;w)> X (W_l)]}

W=df1

B Case2: M >N
M-N N S C
X(z)= Y. Bz"+ D] +Y m
r=0

K=tk (1— d 2 mE@a-dizhm

impulses  single-poles multiple-pole

® Power Series Expansion

0

X(z)= > x[nlz”™"

N=-—o0

B Case 1. Right-sided sequence, ROC: ‘Z‘ > ax

It is expanded in powers of z!

<. |z[Ma]

B X (@)=

B Case 2: Left-sided sequence, ROC: ‘Z‘< F i

It is expanded in powers of Z.

5 lzllal

Ex. 1
X(2) =
(2) 1

W Case 3: Two-sided sequence, ROC: 1, <|z|<T,

X(2)= X, (2) + X_(2)
converges for | Z|> 1, converges for | Z |< I,
2 x[n]= x.[n] + x_[n]

causal sequence anti-causal sequence
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< z-Transform Properties

If x[n] <> X[z] and y[n] <> Y[z]. ROC: Ry, Ry

B Linearity: ax[n]+by[n] <> aX(z)+DbY (z)
ROC: R'> R, MR, - At least as large as their intersection; larger if pole/zero can-

cellation occurs

W Time Shifting: x[n—n,]<>z ™X(z) ROC: R=R, +{0or « |

B Multiplication by an exponential segence:

a"x[n] <> X(z/a) ROC: R'=[a|R, - expands or contracts

m Differentiation of X(2): nx[n] <> -z dX(z)  Roc: R'= Ry
dz

B Conjugation of a complex sequence: x*[n] <> X *(z*), ROC: R'=Ry

B Timereversal: X*[-n]< X *(1/z%),
ROC: R'=1/R, (Meaning: If R, :r, <|z|<r,  then R:1/r < z|<1/r;.

Corollary: x[-n] < X (1/2)

B Convolution: x[n]*y[n] <> X(2)Y(2)

ROC: R'> R, NR, (=, if no pole/zero cancellation)

W Initial VValue Theorem:

If x[n]=0, n<0, then x[0]= lim X (z2)
Z—>0

10
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B Final Value Theorem:
If (1) x[n]=0, n<0, and
(2) all singularities of (L—z )X (z) are inside the unit circle,
then x[oo] = lim (1~ 7YX (2)

Remarks: (1) If all poles of X(z) are inside unit circle, x[n] —»0asn —
(2) If there are multiple poles at “1”, X[n] —ccasn — o

(3) If poles are on the unit circle but not at “1”, x[n] = cos wyn

<Supplementary>
z-Transform Solutions of Linear Difference Equations

Use single-sided z-transform:
Z{yIn-q}=2"Y(2) + y[-1
Z{y[n-2}=2*Y () + 2 y[-1 + y[-2]
Z{y[n-3}=2"Y (2) + 2 y[-U+z7y[-2]+ y[-3]

For causal signals, their single-sided z-transforms are identical to their two-sided

z-transforms.

Ex., Find y[n] of the difference eqn.
y[n]-0.5y[n—1]=x[n] with x[n]=1,n>0,and y[-1]=1

(Sol) Take the single-sided z-transform of the above eqn.

1

2 Y(2)-05{z 7Y (2) + Y[-1}= X (z) = —

1 1
> V(@)= {1—0.521}{0'5+ 1- zl}

_ 0.5 N 1
1-05z" (1-05zH@1-z1
2 0.5

> Y(z):

1-z' 1-05z°
Take the inverse z-transform

> y[n]=2-0.5(0.5)", n>0
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